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Abstract—Transmission estimation is an important step in 
underwater image restoration based on dark channel prior. 
To obtain good visual quality, guided image filter is usually 
adopted to refine the crude transmission map of underwater 
images. In this paper, we first develop a simplified guided 
image filter for underwater image restoration to reduce the 
computational complexity of transmission estimation while 
maintaining good visual quality. Subsequently, a low-cost 
architecture for the simplified guided image filter is 
proposed to achieve real-time Full-HD (1920 × 1080) 
underwater image restoration. The proposed architecture is 
synthesized with TSMC 90nm CMOS technology and the 
result shows that it can operate at 100MHz and support 
Full-HD image restoration at a throughput of 30frame/s 
with 10.5K gate counts and 1.35KB on-chip memory. 
Compared to previous hardware design of guided image 
filter, the proposed design uses 11.3% of gate counts and 
42.2% of on-chip memory to achieve the same frame rate 
with almost no visual quality degradation.   
 
Index Terms—underwater image, dark channel prior, 
transmission estimation, guided image filter 
 

I. INTRODUCTION 

Clear and brilliant underwater image is crucial to many 
applications in ocean engineering, ocean science, and 
ocean biology [1]. A lot of approaches have been 
proposed to restore the underwater image, but most of 
them require high computing resource and long execution 
time. Recently, the work in [2] introduced a dark channel 
prior method to remove haze from a single input image 
efficiently. Several researches [3]-[8] have extended this 
method to restore the visual quality of underwater image. 
For this kind of image restoration methods, the concept of 
dark channel is applied to estimate the transmission map 

)(~ xt  which is reasonably good but contains some block 
effects. In [2], a soft matting method was used to refine 

)(~ xt  to remove the block effect, but this optimization 
has very high computational complexity and requires 
heavy computing resource. Therefore, many underwater 
image restoration systems (e.g., [5]-[8]) adopted the 
guided image filter (GIF) [9] to efficiently optimize )(~ xt  
into t(x). 

The GIF can perform edge-preserving smoothing 
operation and has a fast and non-approximate linear-time 
algorithm. Due to its simplicity, efficiency and high 
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quality, various applications have adopted the GIF as the 
filtering method. Moreover, some dedicated hardware 
implementations of GIF have been proposed for meeting 
the requirements of real-time applications. For example, 
an efficient VLSI architecture of GIF based on the double 
integral image technique was proposed in [10] to achieve 
real-time HD applications. In [10], integral image engines 
were utilized to compute the sum of the pixel values in 
the windows at all stages, leading to fewer computations. 
Moreover, the design in [10] employed the stripe-based 
method, which decomposes a frame into several vertical 
stripes and performs the computation stripe by stripe 
instead of on the whole frame, to significantly reduce the 
on-chip memory cost. As a result, the GIF in [10] 
implemented with TSMC 90-nm CMOS cell library can 
operate at 100MHz and support for Full-HD (1920×1080) 
30 frame/s with 92.9K gate counts and 3.2KB on-chip 
memory. However, the double integral image architecture 
requires high off-chip memory bandwidth since it has to 
load and store the image data and the intermediate 
coefficients frequently.  

The work in [11] proposed the VLSI design of moving 
sum based GIF, whose FPGA prototype can process 720P 
(1280 × 720) HD video at 60 frame/s. In the moving sum 
based GIF, the integral image engine in [10] is replaced 
by the mean filter with windows of radius r, where the 
column sum memory (its size depends on the image 
width) and a shift register (queue) with size 2r+1 are 
employed to store the required intermediate column sums. 
Compared to the GIF architecture in [10], the moving 
sum based GIF requires fewer arithmetic units and 
smaller bit number since the column sum is smaller than 
the integral image when the window size is the same. 
However, the on-chip memory overhead of the moving 
sum based GIF may become unacceptable when the 
image width and the window size of GIF becomes larger. 

In fact, none of previous VLSI architectures of GIF is 
customized and optimized according to the characteristic 
of underwater image restoration. To overcome the 
drawbacks of previous designs, we first simplify the GIF 
algorithm for underwater image restoration to 
significantly reduce the computational complexity and 
memory requirement with almost no quality degradation. 
Afterwards, a low-cost VLSI architecture for the 
simplified guided image filter is proposed by combining 
the advantages of GIF architectures in [10] and [11] to 
further reduce the cost of on-chip memory and 
computational resource. The synthesis result of the 
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proposed GIF shows that our design uses much fewer 
gate counts and on-chip memory to achieve the same 
frame rate with almost no visual quality degradation than 
the previous design in [10]. 

Algorithm: Guided Image Filter [11] 
Input:  guidance image I, guided image p 
Output:  output q (filtered image) 
Parameters:  r, ε 
1:   meanI = fmean(I);      meanp = fmean(p); 

corrI = fmean(I.*I);      corrIp = fmean(I.*p); 
2:   varI = corrI − meanI.* meanI ; 

covIp = corrIp − meanI.* meanp; 
3:   a = covIp/(varI + ε);      b = meanp − a.* meanI ; 
4:   meana = fmean(a);      meanb = fmean(b); 
5:   q = meana.*I + meanb; 

Figure 1.  Pseudocode of GIF algorithm. 
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Figure 2.  Hardware architecture of mean filter proposed in [11]. 

II. BACKGROUND 

A. Haze Removal 
The image formation model [12] widely used to 

describe hazy images can be expressed as 

 I(x) = J(x)t(x) + A(1−t(x)) (1) 

where I is the observed image (i.e., hazy image), J is the 
scene radiance, t(x) is the transmission along the ray, and 
A is the global background light. The first term J(x)t(x) is 
treated as direct attenuation and the second term A(1−t(x)) 
denotes airlight. The transmission map t is defined as 

 )()( xdext β−=  (2) 

where β is the scattering coefficient of the atmosphere 
and d is the scene depth at x. However, it is difficult to 
calculate the scattering coefficient and the scene depth 
exactly. Recently, He et al. [2] proposed a dark channel 
prior method to roughly estimate the transmission map t. 
They observed the haze-free scenes and found that at 
least the intensity of one color channel is far lower than 
others. The following equation describes this 
phenomenon. 

 





=

∈∈
)(minmin    )(

},,{)(Ω
yJxJ c

bgrcxy
dark  ≈ 0 (3) 

where Jc is a color channel of J and Ω(x) is a local patch 
centered at x. When the scene J is a haze-free image, the 

intensity value of Jdark is low and tends to be zero. 
Moreover, [2] assumed that the transmission in a local 
patch Ω(x) is constant. After rewriting (1) and applying 
(3) to (1), the transmission can be estimated as 

 







−=

∈ c

c

cxy A
yIxt )(minmin1)(~

)(Ω
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However, the red color component usually undergoes 
maximum attenuation in an underwater environment. 
Therefore, several works [5]-[8] for underwater image 
restoration modified the dark channel prior according to 
the absorption effect in the red channel to enhance the 
restoration performance. Nevertheless, this estimated 
transmission )(~ xt  is coarser and requires a smoothing 
operator which can preserve its edges. In [2], a soft 
matting procedure was employed to refine the coarse map 

)(~ xt  into t(x), but very high computational complexity 
and heavy computing resource are required. Instead of 
soft matting, many underwater image restoration systems  
[5]-[8] applied GIF [9] to refine ).(~ xt  After A and t have 
been obtained, the desired scene radiance J can be 
recovered as 

 A
xt

AxIJ +
−

=
)(

)(  (5) 

B. Guided Image Filtering 
Given a guidance image I and an input image p, a 

filtered output image q can be produced by GIF as 
follows: 

 ,     i k i k kq a I b i w= + ∀ ∈  (6) 

where ak and bk are linear constant coefficients in a 
window wk with radius r, centered at pixel k. Note that a 
radius-r window is a window with size (2r+1) × (2r+1). 
For the underwater image restoration based on dark 
channel prior, the guidance image is the intensity of 
observed image while the input image is the estimated 
transmission map ).(~ xt  To find the appropriate 
coefficients, [9] defined a cost function in window wk as 
follows 

 ( ) 
2 2( , ) ( )

k

k k k i k i k
i w

E a b a I b p aε
∈

= + − +∑  (7) 

where the parameter ε prevents ak from being too large. 
The solutions of (7) for ak and bk are listed in (8) and (9), 
respectively. 
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 kkkk apb µ−=  (9) 

where |w| is the number of pixels in window wk, µk and 
2
kσ  are the mean and the variance of I in window wk , and 

kp  is the mean of input image p in window wk. For a 
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window wk with radius r, |w| = (2r+1) × (2r+1). After the 
linear coefficients ak and bk are computed, the filtering 
output qi can be obtained by replacing them into (9). 
However, any pixel i is covered by several overlapping 
windows, different output pixel value qi may be produced 
by different local windows. In general, this problem is 
solved using the averaging strategy of overlapping 
windows and the filtering output is redefined as  

 
,

1  ( )    
k

i k i k k i k
k i w

q a I b a I b
w ∈

= + = +∑  (10) 

where ka  and kb  are the mean values of ak and bk in the 
window wk, respectively. 

Fig. 1 shows the pseudocode of GIF algorithm adopted 
in [11]. For a full-HD frame, the memory demand for the 
GIF algorithm is (4 + 2) × 1920 × 1080 × 4 bytes ≈ 50 
MB if I, I2, p, Ip, a, and b are represented with the IEEE 
754 single-precision format. Fig. 2 and Fig. 3 show the 
hardware architectures of mean filter and GIF proposed 
in [11], respectively, where fixed-point calculation is 
used. The mean filter with windows of radius r receives 
the new pixel and the old pixel, and outputs the mean 
corresponding to the window being filtered. The mean 
filter maintains a sum for each column in the image to be 
filtered, where each column sum accumulates 2r+1 pixels 
and the window sum is obtained by adding 2r+1 adjacent 
column sums. 
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Figure 3.  Hardware architecture of GIF proposed in [11]. 
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Figure 4.  The mean filtering process with r = 2. 

The mean filtering process with r = 2 is illustrated in 
Fig. 4. When the filter window moves from pixel (x−1, y) 
to (x, y) in the current image line, the first step consists of 
updating the current column sum of the filter window by 
subtracting the topmost old pixel and adding the 
bottommost new pixel. In the second step, the window 
sum of current pixel (x, y) can be calculated by 
subtracting its leftmost column sum (old column sum), 

and adding the updated column sum computed in step 1 
(new column sum). 
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Figure 5.  Hardware architecture of proposed mean filter. 
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Figure 6.  Hardware architecture of proposed GIF. 

III. ROPOSED GUIDED IMAGE FILTER 

As can be seen in Fig. 1, GIF algorithm performs six 
mean filtering processes to obtain the filtered output 
image q, where the last two mean filters are used to 
calculate ka  and kb  in (10). Fortunately, we find that the 
transmission map optimization is insensitive to the mean 
filtering processes of step 4 in Fig. 1 according to a large 
number of experiments. That is, the step 4 in Fig. 1 can 
be removed during the underwater image restoration with 
almost no quality degradation. Note that step 5 must be 
revised into q = a * I + b if step 4 is removed. Obviously, 
the simplified algorithm which only includes four mean 
filtering processes results in lower computational 
complexity and less memory and bandwidth demand. 

Nevertheless, the on-chip memory demand of each 
mean filter shown in Fig. 2 is still very high. The size of 
column sum memory in Fig. 2 depends on the image 
width and hence dual-port SRAM is used to store the 
column sums. Moreover, a shift register (queue) with size 
2r+1 is used to store the old column sums to avoid the 
access conflicts of column sum memory. To lower the 
on-chip memory demand of mean filter in Fig. 2, we 
employ the stripe-based method used in [10] to reduce the 
size of column sum memory. The stripe-based method 
decomposes a frame into several vertical stripes, thus the 
size of column sum memory is reduced from the width of 
frame to the width of stripe plus the extended region. 
Given a frame with width Wf and height Hf, a window 
with radius r, and the stripe width Ws, the size of each 
input stripe will be (Ws + 2r) × Hf and the size of column 
sum memory will be reduced from Wf to Ws+2r. 
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Because the size of column sum memory is 
significantly reduced from Wf to Ws+2r, register file 
rather than SRAM can be used to enhance the 
performance of memory accesses. For the mean filter 
shown in Fig. 2, two column sums have to be read from 
and one column sum has to be written to column sum 
memory in every operating cycle. Therefore, one register 
file with two read ports and one write port is adopted in 
the proposed mean filter to store (Ws+2r) column sums. 
As a result, shift register (queue) with size 2r+1 in Fig. 2 
can be removed from the proposed mean filter and a 
memory controller is required to handle the access of 
column sum memory. Fig. 5 and Fig. 6 illustrate the 
hardware architectures of proposed mean filter and GIF, 
respectively. In Fig. 5, the shift register (queue) in Fig. 2 
is removed, and the multiplier in Fig. 2 is replaced with 

shifts and additions/subtractions since 1/(2r+1)2 is a 
constant if r is known. In Fig. 6, the word number and 
access sequence of column sum memory in each mean 
filter are the same. Therefore, the four column sum 
memories can be merged into one register file with bigger 
bit number. 

For the example of a full-HD frame (Wf and Hf are 
1920 and 1080, respectively) with window size 31× 31 
(i.e., r = 15) and stripe width Ws = 120, the frame will be 
decomposed into 16 vertical stripes and the size of 
column sum memory is reduced from 1920 to 150. 
Moreover, if the input pixels of mean filter are 8 (16) bits, 
the column sum and the window sum will be 14 (22) and 
18 (26) bits, respectively. That is, one 150-word (each 
word 72 bits) register file is required in the proposed GIF. 
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Figure 7.  Qualitative Comparison of different GIF designs (a) Original underwater images with a size 1920×1080, from top to bottom: Image 1, 
Image 2, Image 3, and Image 4, (b) Enhanced results by Trad_GIF, (c) Enhanced results by Simp_GIF, and (d) Enhanced results by HW_GIF. 

TABLE I.  QUANTITATIVE COMPARISON OF DIFFERENT GIF DESIGNS IN TERMS OF ENTROPY, SIFT, AND COLORFULNESS 

Images GIF design Entropy SIFT Colorfulness 
 Trad_GIF 5.6699 3208 90.0030 

Image 1 Simp_GIF 5.6747 3197 89.9981 
 HW_GIF 5.6567 3088 89.9528 
 Trad_GIF 6.5754 9149 58.9561 

Image 2 Simp_GIF 6.5889 8938 58.9529 
 HW_GIF 6.4969 9194 59.3980 
 Trad_GIF 5.0883 37351 68.7135 

Image 3 Simp_GIF 5.0876 37042 68.7330 
 HW_GIF 5.0428 33778 68.0130 
 Trad_GIF 6.1360 1869 88.4697 

Image 4 Simp_GIF 6.1434 1794 88.1461 
 HW_GIF 6.2000 2008 87.1271 
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IV. EXPERIMENTAL RESULTS 

To verify the efficiency of the proposed design, an 
underwater image restoration system similar to the one in 
[5] was implemented in C++ language with single-
precision floating-point (FP) format. The traditional GIF 
algorithm in Fig. 1 (denoted as Trad_GIF), the simplified 
GIF algorithm (denoted as Simp_GIF), and the hardware 
design of proposed GIF (denoted as HW_GIF) are 
embedded in this restoration system to evaluate the 
restoration performance. Note that Trad_GIF and 
Simp_GIF are software implementation with single-
precision FP format and HW_GIF is the hardware design 
implemented in SystemC with the fixed-point format as 
described in Section III. Furthermore, several Full-HD 
underwater images (Image 1 to 4) in different water 
conditions and different scene configurations were used 
for the experiments. The output results shown in Fig. 7 
demonstrate that the visual quality produced by 
Simp_GIF and HW_GIF is comparable to that of 
Trad_GIF. 

In addition to the aforementioned qualitative 
comparison, the quantitative evaluation is carried out to 
further validate the results of proposed design. The image 
quality metrics in terms of entropy, SIFT (Scale-Invariant 
Feature Transform) local feature points [13] and 
colorfulness [14] are adopted, and Table I lists the 
comparative values for the underwater images shown in 
Fig. 7. The value of entropy represents the valuable 
information contained in the recovered images. The SIFT 
local feature points indicate the global contrast and local 
features while the colorfulness metric expresses the 
colorfulness of an image. The results in Table I show that 
the visual quality in terms of entropy, SIFT, and 
colorfulness of underwater images produced by 
Simp_GIF and HW_GIF is very close to that of 
Trad_GIF. That is, the simplifications in Simp_GIF and 
HW_GIF result in almost no quantitative performance 
degradation compared with Trad_GIF. 

TABLE II.  COMPARISON WITH PREVIOUS VLSI DESIGN OF GIF 

GIF Design Kao [10] Proposed 

Technology TSMC 90nm TSMC 90nm 
Frame Size 1920 × 1080 1920 × 1080 

Frame Rate (fps) 30 30 
Filter Window Size 31 × 31 31 × 31 

Stripe Width 120/180 120/150 
Operating Frequency 100 MHz 100 MHz 

Gate Counts 92.9 K 10.5 K 
On-chip Memory (Byte) 3.2 K 1.35 K 

Bandwidth (bit) 262.31M 116.12M 
 

To evaluate the hardware efficiency, the hardware 
architecture of the proposed HW_GIF in Fig. 6 with r = 
15 and Ws = 120 was implemented in Verilog HDL and 
synthesized by using the Synopsys Design Compiler with 
the TSMC 90nm CMOS standard cell technology library. 
Synthesis results show that our design spends 10.5K gate 
counts (excluded register file) and 1.35KB on-chip 
memory. It can operate at 100MHz clock frequency and 

achieve the throughput of 30 frame/s Full-HD 1080p. The 
synthesis results are summarized and compared with [10] 
in Table II. As can be seen in Table II, the proposed 
design uses 11.3% of gate counts, 42.2% of on-chip 
memory, and 44.3% of bandwidth to achieve the same 
frame rate. 

V. CONCLUSION 

This paper has proposed a simplified GIF and its low-
cost hardware architecture to achieve real-time Full-HD 
underwater image restoration while maintaining good 
visual quality. The synthesis result in TSMC 90nm 
CMOS technology has shown that the proposed VLSI 
design of GIF can operate at 100MHz and support Full-
HD image restoration at a throughput of 30 frame/s with 
only 10.5K gate counts and 1.35KB on-chip memory. 
The visual quality of the proposed GIF was also 
evaluated through extensive experiments. 
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