
Reducing Time-Related Demands of Flow-Based

Network Monitoring Tools Emerging during Data

Processing

Adrián Pekár and Martin Chovanec
Institute of Computer Technology of the Technical University of Košice, B. Němcovej 3, 042 00 Košice, Slovakia

Email: {adrian.pekar, martin.chovanec}@tuke.sk

Abstract—This paper deals with the time-related demands

of flow-based network monitoring tools emerging during

data analysis and visualization. Nowadays, most of the

monitoring tools are based on flow measurement. Despite its

popularity it is still surrounded by several issues, especially

in case of data analysis and visualization. As networks are

continuously growing in size, connected users and the

volume of transmitted traffic, monitoring tools generate

more and more measurement data. In consequence,

processing the queries by the storage systems and the

subsequent visualization of the results by the analyzing

applications represent an excessive response time of the

flow-based monitoring tools, thus their operation and

management are becoming complex. In this paper we

provide a solution for mitigating the time-related demands

of flow-based monitoring tools emerging during data

analysis and visualization. 

Index Terms—data analysis and visualization, IPFIX,

MongoDB, network traffic monitoring

I. INTRODUCTION

Nowadays, the most commonly used data

measurement methods are based on collecting

information about the network and its traffic at the level

of flows. Network monitoring by flow-level based

measurement platforms – either implementing the

NetFlow v9 [2] or IPFIX [3] protocols – is based on the

analysis of information obtained from traffic properties

and characteristics. These properties (e.g. the total

number of bytes of all packets belonging to a certain flow)

and characteristics (e.g. source IP address) of the flow are

carried in flow records [2], [3]. The export of flow

records represents a push-based mechanism, where the

data are transmitted from the exporter(s) to the collector(s)

over either the TCP, UDP or the SCTP protocols [2], [3].

Further important tasks, as described above, are data

processing, analysis, evaluation and visualization, which

most commonly take place in an analyzing application

(analyzer).

There are many motivational factors for measuring and

analyzing network traffic. Among others, flow records

have a wide range of use from analyzing the traffic of the

network through anomaly detection [5] up to ensuring

Manuscript received August 15, 2015; revised May 3, 2016.

Quality of Service (QoS). However, despite its popularity,

flow-level measurement is still surrounded by several

issues, especially when it comes to data analysis and

visualization. As networks are continuously growing in

connected users, size and the volume of transmitted data

(network traffic), their management and operations are

becoming more and more complex. In consequence,

current flow-based network monitoring systems generate

a huge volume of measurement data what represents one

of the most critical issues from the view of both, data

analysis (processing) and visualization (interpretation).

In the following Sections we provide a brief

explanation of the problem we intended to contribute to;

following with the description of our proposed solution;

up to the summary of preliminary experiments. The last

Section draws a conclusion and some future directions.

Since we expect IPFIX to be the industry standard for

flow monitoring in the near future, and considering the

fact that between IPFIX and NetFlow is just a slight

difference, in the following we will describe our approach

in the context of the IPFIX specification.

II. DESCRIPTION OF THE PROBLEM ARISING DURING

DATA ANALYSIS AND VISUALIZATION

Figure 1. General architecture of a monitoring platform implementing
IPFIX

Monitoring and analyzing the network traffic based on

the IPFIX protocol [3], as depicted in Fig. 1, can be split

into the following steps:

1) The information obtained from the captured

packets after timestamping, sampling,

classification, etc.; are encapsulated into IPFIX

messages and sent from the exporter(s) [11] to the

collector(s) [11].

2) In the collector, after parsing the currently

obtained template/data record, the obtained flow-

level data are stored in the database of the

metering platform and/or sent directly to the

analyzer.

International Journal of Signal Processing Systems Vol. 4, No. 6, December 2016

©2016 Int. J. Sig. Process. Syst. 537
doi: 10.18178/ijsps.4.6.537-541

3) The analysis over the flow-level information is

performed by an analyzing application. For

example, the data obtained from a database can be

processed and visualized in a form of plots.

Obviously, these plots will vary according to the

desired type of analysis.

However, when too many flows are present in the

traffic, IPFIX-based measurement platforms have to deal

with several issues. Except the lower components of the

monitoring platform [13], the immense volume of

measurement data (flow records) also have a high impact

on the analyzing (evaluating) process(es). The time

necessary for an analyzing application to get the traffic

information using a database depends on many factors

that are difficult to estimate. These factors, among, others

are:

 The time required by the exporter to prepare and

transmit the flow record to the collector.

 The time required by the collector to parse the

flow record and transmit the data to the database.

 The time required by the analyzing application to

process the received data from the database.

Another significant time period is the one that is

consumed by the database server to store the data and

return the result to the analyzer’s query. This time period

is highly dependent on various database technologies and

data storing techniques. Moreover, with the growth of

data in the database, processing the queries is becoming

more and more time consuming. Unfortunately, the

demands related to the storage, processing, analysis,

evaluation and visualization of the flow records

proportionally grow with their number.

Since the collector stores each data about the IP flows

measured by the exporter(s), the size of the data in the

database can be really large. For example, monitoring the

network with balanced traffic during 10 days results in

approximately 1.5 million of stored flow records in the

database. If a user want to see what happened on the

network during those days, the database system would

return 1.5 million records. On the basis of these records

the analyzer would have to generate a plot of the flow

rate in a form of interconnected points. In the case of

such a large amount of number, this generation is

becoming software and hardware challenging. As a result,

both, processing the queries by the database and the

subsequent visualization of the results by the analyzer

represent an excessive response time of the flow-based

measurement tool.

In summary, one of the most critical part of flow-based

monitoring architectures is their database. This is also

reflected in the paper [13] describing the problems arising

during network traffic monitoring. For these reasons in

our work we intended to improve the way of storing the

data of network traffic flows in the database and

accessing/querying them.

III. RELATED WORK

During the last decade many efforts have been placed

to address the problems emerging during storing and

accessing a large set of data. To improve the performance

of the flow collecting mechanisms, various data

compressing methods have been applied. Currently the

most commonly used methods in persistent storages (ie.

slower storage solution, but the most appropriate way to

store data for a longer time [7]) are (i) row-oriented

databases (or SQL) such as PostgreSQL, MySQL, etc.;

(ii) column-oriented databases (or NoSQL) such as

FastBit [6], BigTable [1], MongoDB [14] etc.; and (iii)

flat files [4]. Each of them has advantages and

disadvantages. While column-oriented databases (DBes)

perform best in case of query related tasks (e.g. read), the

required disk space and their overall write performance is

not very impressive. Row-oriented DBes performs in

comparison with the other 2 storage formats the worst.

Their only advantage is the well-known and flexible

query syntax. From the described 3 formats, flat files

provide the best performance, however, since their speed

is highly influenced by the data type (e.g. binary or text)

they have to work with, this result is relative. The

performance of these storage formats in case of flow

collection related tasks have been compared in several

works. The performance comparison of flat files and row-

oriented DBes is provided in [8]. The paper by Velan [16]

compared the performance between column-oriented

DBes and flat files. The performance of column- and

row-oriented DBes is provided in [4].

The difference between SQL (row-oriented) and

NoSQL (a sub-class of column-oriented DBes) databases

is in how they store the data. While SQL DBes use a

fixed structure, NoSQL DBes do not have such a

structure (the structure is created “on-the-fly” during

writing). Since these databases differ from their basic, the

manipulation with the data (more precisely the query

syntax) also alters; in favor of the SQL DBes. If it comes

to their performance – as showed in papers focusing on

SQL and NoSQL DB performance [9], [10] – NoSQL

databases are the absolute choice. The abovementioned

conclusions can be driven from Table I.

TABLE I. COMPARISON OF SQL AND NOSQL DATABASES

Property SQL NoSQL

Data model Rigidly defined Free

Data manipulation Standard SQL Via API

Reliability Native ACID
Necessary

implementation

Read and write Slow Fast

Portability Simpler Complex

A promising way how to deal with large data sets in

SQL databases is to deploy aggregation and

summarization methods. Although this solution – as

described in one of our previous works [12] – can bring

positive results, in a long term – as described in our

further work [13] – they still do not represent an

appropriate workaround.

In conclusion, although the SQL databases might have

some advantages such as the well-known SQL syntax,

most of the developers got used to with, in case of such

large amount of data with which one has to count in the

case of network traffic monitoring, NoSQL database is an

appropriate choice. Thus, in our solution we picked

International Journal of Signal Processing Systems Vol. 4, No. 6, December 2016

©2016 Int. J. Sig. Process. Syst. 538

NoSQL database – specifically the MongoDB [14].

Another advantage of NoSQL databases is, that they treat

records as objects, thus simplifying the implementation of

the communication channel between the software

components of the monitoring tool and the database.

IV. DESIGN OF THE PROPOSED SOLUTION

The evaluating application consists of an interface and

several evaluating modules. The interface of the

evaluating application is implemented by connectors

which are used to connect the application to the database.

The actual version of the evaluating application uses the

MongoDB. As a connector between the evaluating

application and the web interface the Redis database

service [15] was used. To improve the speed and

performance, a listener was also implemented which is

listening on a pre-defined port to receive only messages

designated for the concrete evaluating modules. The last

component of evaluating application is a configuration

file which is used to set the desired settings for the

evaluating service (e.g. the information to connect to

MongoDB and Redis). In addition, it also contains flags

which indicate whether the module is used. As a basis an

abstract module was implemented. This provides a

starting point when implementing the individual modules

adjusted to the specific purpose the module is performing.

Obviously, since some data sets are used repeatedly, in

the following we describe 3 modules, whose algorithmic

complexity differs.

1) One of these modules is the one which returns the

number of flows (NumberOfFlows). This module

receives a request from the evaluating application

with a filtrating criteria. On the basis of this

filtrating criteria, a database query is generated

and subsequently sent to the DB. From the data

returned by the DB a sum from the flow identifiers

is created, resulting in the number of flows.

2) Another module, with different complexity of

algorithm is the one returning the amount of data

transferred in the traffic

(AmountOfTransferredData). Similarly, this

module first receives a message with the filtrating

criteria and creates a database query. From the

returned records the sum of all the data is

calculated. The computed value is sent back to the

web interface via the Redis database service.

3) The last module we focused on in our work is

returning the number of top uploaders

(TopUploader). The principles of evaluating this

module is similar to the previous ones, however, a

further iteration is realized to get only unique IP

addresses.

The main part of communication channels between the

evaluating application and the web interface is the Redis

database service. The user visits the user interface’s page

and selects a tab. Each tab belongs to a selected module.

After the tab is selected the web application generates a

request to all the modules which are classified in the tab.

Each request is formed with a module name and a

filtrating criteria. All these requests are stored in the

Redis DB service. The application stores all the requests

in a queue. After the module receives the request, it is

processed and the result is stored in the Redis database

service again. The web application subsequently pulls out

the result from the query and interprets them in the GUI

in a form of various plots. The mechanism of sending a

request from the web interface is described in Fig. 2a.

The mechanism of receiving a request from the web

interface by the evaluating application is showed in Fig.

2b.

a. Communication between the web app. and the evaluator b. Communication between the evaluator and the web app.

Figure 2. Communication channels between the web application and the evaluator

V. PRELIMINARY EXPERIMENTS

The abovementioned solution was implemented in the

SLAmeter network traffic metering and evaluating tool

[11]. For creating various network monitoring scenarios

we realized 3 measurements, during which we collected 3

different data sets:

 One database with only approx. 500 records

(noted in Fig. 3 – 5 with number 1);

 Another DB with approx. 5 000 records (noted in

Fig. 3 – 5 with number 2);

 And a third one with approx. 50 000 records

(noted in Fig. 3 – 5 with number 3).

Subsequently we compared the times required by the 3

modules of the tool. These modules were, as described

International Journal of Signal Processing Systems Vol. 4, No. 6, December 2016

©2016 Int. J. Sig. Process. Syst. 539

above, the NumberOfFlows, AmountOfTransferredData

and TopUploader.

The first examined module was the one generating the

number of the flows – NumberOfFlows. In Fig. 3 we can

see, that in the case of the smallest database having only

approx. 500 records the time required for the execution of

the module (aggregation on the basis of flow ID) took 37

milliseconds (ms). However, with the increase of data in

the database, the time required for the

evaluation/execution of the module also increased. The

comparison of the smallest and the largest data sets

yielded to the result that the time difference was approx.

419ms, however, the number of records was hundredfold.

Figure 3. Chart of time dependency and the amount of data of the
NumberOfFlows module

The second experiment was performed with the

module determining the number of transferred data –

AmountOfTransferredData. Since all the data in the

database met the requirements of this module, during the

execution of the module all the data in the database had to

be processed. As showed in Fig. 4, the total time required

for the execution of the module over the largest database

was almost 4-time larger as the time in case of the second

largest data set. However, if we take into account that the

difference in the records is approx. 45 000, the evaluation

in the case of large data set realized during almost a

second is suitable.

Figure 4. Chart of time dependency and the amount of data of the
AmountOfTransferredData module

The last module is the module returning the number of

top uploaders – TopUploaders. As shown in Fig. 5,

processing a large amount of data (i.e. the DB with

approx. 50 000 records) took 7 seconds. However, the

algorithm for this module is more complex than in the

case of the previous modules.

Figure 5. Chart of time dependency and the amount of data of the
TopUploader module

VI. CONCLUSION

The constant performance increase of the monitoring

systems is not a good strategy in dealing with the amount

of transmitted data. Even if a small portion of the traffic

is measured, the network will still have a lot more devices

than the monitoring system. This results in an

incomparable difference between their computation

resources, i.e. the resources for traffic generation and

traffic measurement. As networks are continuously

growing, monitoring tools generate more and more

measurement data. In consequence, processing the

queries by the storage systems and the subsequent

visualization of the results by the analyzing applications

represent an excessive response time of the flow-based

monitoring tools. In overall, this makes the operation and

management of networks more complex. Therefore we

can consider the database management system as one of

the most critical points of the monitoring tool.

This paper was devoted to the time-related demands of

flow-based network monitoring tools emerging during

data analysis and visualization. We provided a solution

for mitigating the time-related demands of flow-based

monitoring tools emerging during data analysis and

visualization. Currently there is no method by which we

could measure the traffic on a per-flow basis. We

provided several storage systems. Although the classical

SQL databases might have some advantages such as the

well-known SQL syntax, in case of a large amount of

data with which we have to count in case of network

traffic monitoring, NoSQL database is an appropriate

choice. Thus, in our solution we picked the NoSQL

database – specifically MongoDB and implemented it

according to the design presented in this work.

Preliminary experiments returned positive results. They

showed that by appropriate design and implementation,

the processing time can be reduced. In addition, due the

caching mechanism of the database system, even if a

module required more time at first processing, the

upcoming evaluations of the same data set required

significantly less.

International Journal of Signal Processing Systems Vol. 4, No. 6, December 2016

©2016 Int. J. Sig. Process. Syst. 540

Future work will be aimed at the realization of

experiments with SQL databases in similar network

conditions and their confrontation with the achieved

results presented in this paper, as well as at such methods,

by which the behavior of the monitoring tool can be

automatically adjusted to the network state.

ACKNOWLEDGMENT

This publication is the result of the Project

implementation: University Science Park TECHNICOM

for Innovation Applications Supported by Knowledge

Technology, ITMS: 26220220182, supported by the

Research & Development Operational Programme funded

by the ERDF. We support research activities in Slovakia.

This project is being co-financed by the European Union.

REFERENCES

[1] B. Claise. (2004). Cisco Systems NetFlow Services Export

Version 9. RFC 3954 (Informational). [Online]. Available:
http://www.ietf.org/rfc/rfc3954.txt

[2] B. Claise and B. Trammell. (2013). Information Model for IP
Flow Information Export (IPFIX). RFC7012 (Proposed Standard).

[Online]. Available: http://www.ietf.org/rfc/rfc7012.txt

[3] M. Ennert, E. Chovancová, and Z. Dudláková, “Testing of IDS
model using several intrusion detection tools,” Journal of Applied

Mathematics and Computational Mech., vol. 14, no. 1, pp. 55-62,
2015.

[4] A. Pekár, et al., “Slameter – The evaluator of network traffic

parameters,” in Proc. 10th IEEE International Conference on
Emerging eLearning Technologies and Applications, 2012, pp.

291-295.
[5] A. Pekár, et al., “Issues in the passive approach of network traffic

monitoring,” in Proc. 17th IEEE International Conference on

Intelligent Engineering Systems, 2013, pp. 327-332.
[6] R. Hofstede, et al., “Flow monitoring explained: From packet

capture to data analysis with Netflow and IPFIX,” IEEE
Communications Surveys Tutorials, vol. 16, no. 4, pp. 2037-2064,

2014.

[7] FastBit: An efficient compressed bitmap index technology.
[Online]. Available: https://sdm.lbl.gov/fastbit/

[8] F. Chang, et al., “Bigtable: A distributed storage system for
structured data,” ACM Trans. Comput. Syst., vol. 26, no. 2, pp.

205-218, 2008.

[9] E. Plugge, T. Hawkins, and P. Membrey, The Definitive Guide to
MongoDB: The NoSQL Database for Cloud and Desktop

Computing, 1st ed., Berkely, CA: Apress, 2010.

[10] L. Deri, V. Lorenzetti, and S. Mortimer, “Collection and
exploration of large data monitoring sets using bitmap databases,”

Lecture Notes in Computer Science, vol. 6003, pp. 73-86, 2010.
[11] R. Hofstede, A. Sperotto, T. Fioreze, and A. Pras, “The network

data handling war: MySQL vs NfDump,” Lecture Notes in Comp.

Science, vol. 6164, pp. 167-176, 2010.
[12] P. Velan, “Practical experience with IPFIX flow collectors,” in

Proc. 13th IFIP/IEEE International Symposium on Integrated
Network Management, 2013, pp. 1015-1020, 2013.

[13] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL

database,” in Proc. 6th International Conference on Pervasive
Computing and Applications, 2011, pp. 363-366.

[14] Y. Li and S. Manoharan, “A performance comparison of SQL and
NoSQL databases,” in Proc. IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing, 2013.

[15] L. Vokorokos, et al., “Preparing databases for network traffic
monitoring,” in Proc. 10th IEEE International Symposium on

Applied Machine Intelligence and Informatics, 2012, pp. 13-18.
[16] R. M. Lerner, “At the forge: Redis,” Linux Journal, vol. 2010, p.

197, 2010.

Adrián Pekár graduated at the Dept. of
Computers and Informatics of the Faculty of

Electrical Engineering and Informatics of the

Technical University of Košice, Slovakia in
2011. Since then, his scientific research is

focusing on the optimization of measurement
platforms based on the IPFIX protocol. He

defended his PhD thesis in the field of network

traffic characteristics’ measurements and
monitoring in 2014. His area of interest

includes QoS; IPFIX; traffic management and engineering; cloud
computing and virtualization.

Martin Chovanec received his engineering
degree in the field of Computer Science in

2005 at the Faculty of Electrical Engineering
and Informatics (FEEI) of the Technical

University of Košice (TUKE). In 2008 he

received his PhD degree at the Department of
Computers and Informatics of the FEEI of the

TUKE. Since then his scientific research is
focused on network security and encryption

algorithms. Currently he is the director of the

Inst. of Computer Technology of the TUKE.

International Journal of Signal Processing Systems Vol. 4, No. 6, December 2016

©2016 Int. J. Sig. Process. Syst. 541

