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Abstract—Gramophones have regained widespread 

popularity over the past few years. Being an analogue 

storage medium, gramophone records are subject to 

distortions which are mainly caused by scratches. This 

paper empirically analyses various outlier detection 

algorithms and proposes a novel predictive approach for 

noise detection. Twelve different forecasting models were 

utilized for the predictive deviation method. Once outliers 

are identified, they can be reconstructed using interpolation 

algorithms or time series approximation. Experiments were 

conducted on 800 songs from eight genres, both with 

artificial and real gramophone noise. The algorithms were 

compared according to their detection rate, computational 

speed and the tradeoff between accuracy and speed. It was 

found that the novel absolute predictive deviation using the 

autoregressive integrate moving average model performed 

best overall. The experiments also indicated that it was 

easier to detect noise in stable signals from genres, 

compared to noise in volatile signals. 
 

Index Terms—gramophone records, noise detection, audio 

prediction, signal modelling, time series, outliers 

 

I. INTRODUCTION 

The first commercial gramophone record was 

produced by Berliner in 1889, following decades of 

research and experimentation by Scott, Cros, Edison and 

Bell. Although gramophones were discontinued as 

mainstream music medium in the late 1980s, they 

continued to be popular amongst audiophiles with a 

steady sales growth over the past few years. The US 

alone recorded more than six million record sales in 2013, 

a 33% increase from the previous year [1]. Besides the 

interest in modern records, most music and other audio 

recordings prior to the 1960s were only produced and 

released for the gramophone. Many of these archived 

recordings are now being digitized by museums, music 

labels and collectors. 

Gramophone records are an analogue storage medium 

and are, therefore, subject to noise caused by scratches 

and improper handling. This paper discusses and 

empirically analysis various outlier detection algorithms 

that can be utilized to detect disruptions in audio signals 

that were caused by physical scratches on a record. 

Identified outliers can then be mathematically 

reconstructed using an interpolation algorithm in order to 
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remove the noise and improve the audio quality of the 

recording [2]. Various polynomials and time series 

models are discussed which form part of a novel 

predictive outlier detection approach. The methodology 

and performance measurement used during the 

experiments are described, followed by the empirical 

results. Finally, the algorithms are compared according to 

their detection accuracy and execution speed. 

II. STATE OF THE ART 

Over the years various methods were proposed for the 

identification of outliers in gramophone audio. One 

approach uses mono records which are played back with 

a stereo turntable, generating two identical signals from 

one groove which are then correlated to identified outliers 

[3]. In more recent years, bidirectional processing in the 

time domain was used, which relies on unidirectional 

detection techniques to eliminate impulse disturbances of 

gramophone recordings [4]. Another approach utilizes a 

model-based predictor that matches highly repetitive 

click patterns to a set of previously generated noise 

templates [5]. Sprechmann proposed a technique where 

multiple copies of the same record were used to refurbish 

the audio signal, with the hope that the scratches and 

damages do not occur in the same place on the different 

copies [6]. Czyzewski formulated a frequency-based click 

detector which subtracts the frequency spectrum of the 

impulse-related part of the signal from the whole spectral 

representation of the signal, therefore, highlighting the 

segments which are affected most by noise [7]. 

Most of these approaches are limited, since they 

require special equipment, multiple records, or have 

restrictive processing techniques. This paper discuses a 

number of generic outlier detection algorithms and 

proposes a novel prediction approach which does not 

have these restrictions imposed. Although specific 

attention is given to gramophone noise, due to the 

genericity, the algorithms in this paper can be applied to 

other types of noise in audio signals, such as corrupted 

packets in VoIP or noise filtering in radios with a poor 

reception. 

III.  OUTLIER DETECTION ALGORITHMS 

This section discusses five outlier detection methods, 

namely the Standard Score (SS), Median Absolute 

Deviation (MAD), Mahalanobis Distance (MHD), 
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Nearest Neighbour Deviation (NND), Mean Absolute 

Spectral Deviation (MASD) and a Novel Absolute 

Predictive Deviation (APD) approach. 

A. Standard Score 

The SS is a statistical relationship between an 

observation and its population mean. A score greater than 

zero indicates that the point of interest is above the mean, 

whereas a negative score denotes a value below the mean. 

The SS for the data point yt in the series y at time delay t 

is calculated as: 

 𝑑𝑠𝑠(𝑦𝑡) =
𝑦𝑡−𝜇

𝜎
                               (1) 

where µ is the mean and σ the standard deviation of y. A 

rule of thumb is to mark values as outliers if their 

absolute standard score is 2.5 or greater for a set of up to 

80 samples. If the score is calculated with more than 80 

samples, the threshold is increased to 3 [8]. It was 

however shown that the absolute maximum possible 

score is dependent on the sample count n and is more 

accurately calculated as 𝑛 − 1 √𝑛⁄  [9]. The SS may be 

exaggerated when a few or even a single extreme outlier 

is present, which is especially prominent in small datasets. 

Moderate outliers can therefore go undetected in the 

presence of extreme outliers. 

B. Median Absolute Deviation 

The mean and standard deviation are greatly 

influenced by a few extreme outliers in the population. 

The MAD utilizes the median of the population, which 

reduces the risk of a single extreme value affecting the 

outcome of the score, since the median is statistically 

more robust than the mean [10]. The median is 

computationally expensive to calculate and can be 

accelerated with more efficient approaches, such as 

quickselect, which is based on quicksort [11], or 

successive binning [12]. A MAD score at time delay t is 

defined as: 

𝑑𝑚𝑎𝑑(𝑦𝑡) =
𝑐(𝑦𝑡−𝑦

~
)

𝑚𝑎𝑑𝑦
      𝑚𝑎𝑑𝑦 = median(|𝑦𝑖 − 𝑦

~
|)𝑖=1

𝑛  (2) 

where �̃� is the median of the subset y with n samples and 

c a constant greater than zero. Based on simulations, 

Iglewicz and Hoaglin suggested setting c to 0.6745 and 

flagging samples as outliers if the MAD score exceeds 

3.5 [13]. However, the threshold of 3.5 depends on the 

dynamic range of the series y and should therefore be 

adjusted according to the input data. 

C. Mahalanobis Distance 

Mahalanobis introduced a relative measure to 

determine the distance from a data point to a common 

position. The MHD accounts for the covariance between 

variables and accommodates variances in different 

directions. It differs from the Euclidean distance in that it 

is scale-invariant and therefore does not change when the 

scales of length are multiplied by a common factor. A 

function f(x) is said to be scale-invariant for a scale factor 

λ if f(λx) = λ
∆
f(x) for some exponent ∆. Given a vector y 

of n multivariate independent random data points and a 

vector µ holding the means of the independent variables, 

the MHD is defined as: 

 𝑑𝑚ℎ𝑑(𝐲) = √(𝐲 − 𝝁)T𝐂−1(𝐲 − 𝝁)               (3) 

where C
−1 

is the inverse of the covariance matrix. The 

MHD is called a normalized Euclidean distance if the 

covariance matrix is diagonal [14] and reduces to the 

Euclidean distance if the covariance matrix is equal to the 

identify matrix [15]. 

D. Nearest Neighbour Deviation 

Outliers can be detected by calculating the deviation of 

a subset of k samples from a larger dataset, which is 

commonly referred to as kNN outlier detection. The 

deviation for continuous attributes is typically calculated 

using the Euclidean distance between vectors of attributes 

[16]-[18]. However, other means for determining the 

deviation exists, such as the Mahalanobis, Kullback-

Leibler and Hamming distances [19]. If the data is 

multivariate, the distance is calculated for each individual 

attribute and then combined to represent the distance for 

all multivariate attributes [20]. 

NN outlier detectors are broadly categorised into 

global and local methods. The former approach 

determines a kNN global anomaly by calculating the 

distance to the k
th

 neighbour [21]. Using the mean 

distance instead of the distance to the k
th

 neighbour is 

more robust with regards to statistical fluctuation and 

often the preferred method [22], [23]. The global kNN 

score of point yt at time delay t using k/2 samples on both 

sides of y is calculated as follows: 

𝑑𝑛𝑛𝑑(𝑦𝑡) =
1

𝑘
(∑ |𝑦𝑡 − 𝑦𝑖|

𝑘

2
𝑖=1

+ ∑ |𝑦𝑡 − 𝑦𝑗|
𝑘+1

𝑗=
𝑘

2
+2

)  (4) 

To ensure that both sides of y contribute equally, the 

window size k should be an even number. 

The second category of NN anomaly detectors 

employs the Local Outlier Factor (LOF). LOF flags 

outliers by calculating the local deviation of a point with 

respect to its k nearest neighbours [24]. Various 

extensions and improvements to LOF were proposed, 

such as the local outlier probability [25], the connectivity 

based outlier factor [26], influenced outlierness [27], and 

the local correlation integral [28]. Benchmarking with 

optimal parameters between global kNN, LOF and the 

mentioned LOF extensions showed that the kNN global 

score on average performed best over a number of 

datasets, with LOF and its extensions only achieving a 

slightly better detection rate on individual datasets [22]. 

E. Mean Absolute Spectral Deviation 

Noise can be detected in the time domain by 

identifying points that substantially deviate from the 

surrounding samples. Transforming the signal into the 

frequency domain moves the problem from detecting 

which samples are distorted to determining which 

frequencies are affected by the disruptions. Applying 

spectral methods to identify anomalies in the frequency 

domain is suitable, since outliers often cause a phase and 

amplitude shift in the Fourier series. An algorithm was 
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proposed by Shittu and Shangodoyin that makes use of 

Maximum Likelihood Estimation (MLE) to approximate 

the parameters of a Fourier model in order to determine 

the variance between the approximation and the actual 

values [29]. However, it was found that the algorithm 

performed well for three datasets, but very poorly for two 

others. Another proposition utilizes warped linear 

prediction on the frequency domain of audio data by 

using bilinear conformal mapping to emphasize outliers 

in higher frequencies [30]. 

Outliers can be detected by moving a window over the 

signal, generating frequency spectra and comparing them 

to the surrounding frequencies [7]. The mean absolute 

deviation is computed using the Euclidean distance 

between the frequency spectrum of a window at a certain 

time delay and the amplitudes of neighbouring 

frequencies. The Discrete Fourier Transform (DFT) 

calculates a set of discrete frequencies f from a sample 

window y, where the resolution of the DFT is depended 

on the window size and the windowing function. Given a 

window of n samples, the MASD is calculated using: 

 𝑑𝑚𝑎𝑠𝑑(𝔣) =
1

𝑛−1
∑ |𝔣𝑖−1 − 𝔣𝑖|

𝑣𝑛
𝑖=𝑢𝑛                   (5) 

where u and v are additional parameters in [0, 1] which 

control the range of frequencies considered to be affected 

by noise. 

F. Absolute Predictive Deviation 

Prediction-based outlier detection employs a 

forecasting model to determine the next values in a time 

series and if the predicted values deviate from the 

observed values with a certain degree, they are marked as 

outliers. Various predictive outlier detectors were 

proposed, using models such as multilayer perceptrons 

[31], autoregressive models [32], [33] and nearest cluster 

prediction [31]. Given a forecasting model m with a lag 

of n points that predicts the next value in the series y at 

time delay t+1, outliers are calculated with the APD as 

follows: 

         𝑑𝑎𝑝𝑑(𝑦) = |𝑦𝑡+1 − 𝑚(𝑦𝑡−𝑛+1, … , 𝑦𝑡)|             (6) 

An alternative approach makes use of the Mahalanobis 

distance to determine the deviation from the original 

signal [34]. If the absolute deviation in (6) exceeds a 

given threshold, the sample is flagged as an outlier. This 

approach is sound for univariate outliers, but can skew 

the model estimation for multivariate outliers, depending 

on the characteristics of the input data and the forecasting 

model. If yt+1 was flagged as an outlier, the observed 

value at t+1 should not be used for future model 

estimations, that is for estimations at yt+2, ..., yt+r, where r 

is the number of sequential points that contain noise. The 

problem is mitigated by utilising one of two alternative 

approaches. The first approach makes use of recurrent 

prediction where a single sample is forecasted at a time. 

Outliers at t+1 are replaced with their predicted value 

before estimating the next sample at t+2. The second 

approach utilizes batch prediction to estimate a model 

once for the given samples and then predict all r 

sequential outliers at once. Although batch prediction is 

computationally less expensive than recurrent forecasting, 

since the model has to be estimated 

only once for an entire batch of sequential outliers, it 

relies on the model’s ability to accurately predict up to r 

points. If the model is able to accurately predict enough 

samples into the future, batch prediction is advised, 

otherwise recurrent prediction should be used. The 

notation APD-m will be used in this paper, where m 

represents the forecasting model. 

IV.  PREDICTION MODELS 

This section briefly introduces various polynomials 

and time series models that are utilized in the novel APD 

outlier detection. Interested readers are referred to [2] for 

a more detailed discussion on the given models. 

A. Standard Polynomials 

Standard Polynomials (STP) is a mathematical 

expression of a set of terms, where each term consists of 

a variable and a coefficient, defined as: 

𝑚𝑠𝑡𝑝(𝑥) = 𝛼𝑑𝑥𝑑 + 𝛼𝑑−1𝑥𝑑−1 + ⋯ + 𝛼0 = ∑ 𝛼𝑖𝑥
𝑖𝑑

𝑖=0
  

(7) 

where x represent the variables’ time delay, αi the 

coefficients, and d the degree of the polynomial. The 

coefficients are approximated using Linear Least Squares 

(LLS) regression. 

B. Fourier Polynomials 

Fourier introduced a series to model a complex partial 

differentiable equation as a superposition of simpler 

oscillating sine and cosine functions. The discrete Fourier 

Polynomial (FOP) with a finite sum of sine and cosine 

functions is given as: 

𝑚𝑓𝑜𝑝(𝑥) =
𝛼0

2
+ ∑ [

𝑑

𝑖=1
𝛼𝑖cos(𝑖𝜋𝑥) + 𝛽𝑖sin(𝑖𝜋𝑥)]   (8) 

where αi and βi are the polynomial’s coefficients of order 

d that are estimated with a LLS fit. 

C. Newton Polynomials 

Newton formulated a polynomial of least degree that 

coincides at all points of a finite dataset. Given n + 1 data 

points (xi,yi), the Newton Polynomial (NEP) is defined as: 

𝑚𝑛𝑒𝑝(𝑥) = ∑ 𝛼𝑖ℎ𝑖(𝑥)       ℎ𝑖
𝑛

𝑖=0
(𝑥) = ∏ (𝑥 − 𝑥𝑖)

𝑖−1

𝑗=0
  (9) 

where hi(x) is the i
th

 Newton basis polynomial. The 

coefficients αi are typically computed with Newton’s 

divided differences, but can also be approximated using 

LLS regression. 

D. Hermite Polynomial 

Hermite introduced a polynomial closely related to the 

Newton and Lagrange polynomials. Besides calculating a 

polynomial for n+1 points, Hermite also considered the 

derivatives at these points. The Hermite Polynomial 

(HEP) using the first derivative is defined as: 

𝑚ℎ𝑒𝑝(𝑥) = ∑ ℎ𝑖(𝑥)𝑓(𝑥𝑖)
𝑛

𝑖=0
+ ∑ ℎ𝑖

𝑛
𝑖=0 (𝑥)𝑓′(𝑥𝑖)   (10) 
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where hi and  ℎ𝑖  are the first and second fundamental 

Hermite polynomials. Although Hermite originally used 

Lagrange polynomials, Hermite’s concept of osculation 

can be applied to any polynomials as long as the 

derivatives are known. This paper examines Osculating 

Standard Polynomials (OSP) and Osculating Fourier 

Polynomials (OFP). 

E. Autoregressive Model 

The Autoregressive (AR) model is an infinite impulse 

response filter that models a random process where the 

generated output is linearly depended on the previous 

values in the process. The model generates internal 

dynamics, since it retains memory by keeping track of the 

feedback. Given a sequential series y with n+1 data 

points, the AR model of order p predicts the value of a 

point at time delay t with the previous values of the series 

as follows: 

𝑦𝑡 = 𝑐 + 𝜀𝑡 + ∑ 𝛼𝑖𝑦𝑡−𝑖
𝑝
𝑖=1                     (11) 

where c is a constant, typically considered to be zero, εt 

the white noise error term, almost always considered to 

be Gaussian white noise, and αi the coefficients for the 

model. The AR coefficients are estimated using a LLS fit. 

F. Moving Average Model 

The Moving Average (MA) is a statistical calculation 

where a series of averages are generated from subsets of 

the full dataset. A study by Slutsky on applying the MA 

on random events lead to the formulation of a finite 

impulse response filter where univariate time series are 

modelled with white noise terms with some additional 

interpretation added to the model [35]. Slutzky [35] and 

Yule [36] independently discovered that the moving 

summation of random data series oscillates when no such 

fluctuation exists in the original observation. The MA 

model is defined as: 

𝑦𝑡 = 𝜇 + 𝜀𝑡 + ∑ 𝛽𝑖𝜀𝑡−𝑖
𝑞
𝑖=1                    (12) 

where µ is the mean of the series, typically assumed to be 

zero, βi the model coefficients of order q and εt, ..., εt−q the 

white noise error terms. The error terms are assumed to 

be independent and identically distributed random 

variables, meaning that all random variables are mutually 

independent and are subject to the same probability 

distribution. The MA coefficients are approximated using 

MLE which in turn is maximized through a gradient-

based method such as the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) [37] or the Berndt-Hall-Hall-Hausman 

(BHHH) [38] algorithms. 

G. Autoregressive Moving Average Model 

The Autoregressive Moving Average (ARMA) model 

is a combination of the AR and MA models. Proposed by 

Whittle [39], Box and Jenkins later popularized the model 

by describing a method for determining the model orders 

and an iterative method for estimating the model 

coefficients [40]. The ARMA model is defined as: 

    𝑦𝑡 = 𝑐 + 𝜀𝑡 + ∑ 𝛼𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖𝜀𝑡−𝑖

𝑞
𝑖=1          (13) 

where p and q are the AR and MA model orders 

respectively. The model coefficients are typically 

approximated with MLE using BFGS or BHHH. 

H. Autoregressive Integrated Moving Average Model 

The Autoregressive Integrated Moving Average 

(ARIMA) model is a generalization of the ARMA model 

which is applied if the observed data shows some 

characteristics of non-stationarity, such as seasonality, 

trends and cycles [40]. A differencing operation is added 

as an initial step to the ARMA model to remove possible 

non-stationarity. The ARMA model in (13) can also be 

expressed in terms of the lag operator as α(L)yt = β(L)εt, 

where α(L) and β(L) are the lag polynomials of the AR 

and MA processes respectively. The ARIMA model 

incorporates the difference operator, yt −yt−1 = (1−L)yt, as 

follows: 

(1 − ∑ 𝛼𝑖𝐿
𝑖𝑝

𝑖=1
)(1 − 𝐿)𝑑𝑦𝑡 = (1 + ∑ 𝛽𝑖𝐿

𝑖𝑞

𝑖=1
)𝜀𝑡  (14) 

where p is the AR order, q the MA order and d the order 

of integration. ARIMA coefficients approximation 

follows the same technique as the ARMA model. 

I. Autoregressive Conditional Heteroskedasticity 

The Autoregressive Conditional Heteroskedasticity 

(ARCH) model was developed by Engel for financial 

markets that show periods of low volatility followed by 

periods of high volatility and vice versa [41]. ARCH 

achieves non-constant conditional variance by calculating 

the variance of the current error term εt as a function of 

the error terms εt−i in the previous i time periods. 

Therefore the forecasting is done on the error variance at 

time t, compared to the AR model which does its 

prediction directly on the previously observed time series 

values. The ARCH process for a zero mean series is 

defined as: 

𝑦𝑡 = 𝜎𝑡𝜀𝑡          𝜎𝑡 = √𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2𝑞

𝑖=1
        (15) 

where εt is Gaussian white noise and σt is the conditional 

variance, modelled by an AR process. Since ARCH 

makes use of an AR process, the coefficients can be 

estimated through LLS fitting using Yule-Walker 

equations. Since the distribution of  is naturally not 

normal, the Yule-Walker approach does not provide an 

accurate estimation. The initial coefficients can be set 

with the Yule-Walker approach and then iteratively 

refined using MLE. 

J. Generalized Autoregressive Conditional 

Heteroskedasticity 

The generalized autoregressive conditional 

heteroskedasticity (GARCH) model is a generalization of 

the ARCH model proposed by Bollerslev which also uses 

the weighted average of past squared residuals without 

the declining weights ever reaching zero [42]. GARCH 

uses an ARMA model for the error variance as follows: 

    𝜎𝑡 = √𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2𝑞

𝑖=1
+ ∑ 𝛽𝑖𝜎𝑡−𝑖

2𝑝

𝑖=1
        (16) 
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where αi and βi are the model coefficients and p and q the 

GARCH and ARCH orders respectively. The model 

coefficients are solved the same way as ARMA 

coefficients. 

V. METHODOLOGY 

This section explains the methodology and procedures 

followed to obtain the empirical results. The test data, 

noise generation and masking, performance measurement, 

computational speed and tradeoff is discussed. 

A. Test Data and Noise 

Benchmarking was performed on a set of 800 songs in 

eight genres, namely classical, country, electronic, jazz, 

metal, pop, reggae and rock music. The tracks were 

encoded in stereo using the Free Lossless Audio Codec 

(FLAC) with a sample rate of 44.1kHz. In order to 

evaluate the algorithm’s performance in a controlled 

environment, the songs were subjected to artificially 

generated noise. Another set of 83 songs recorded from 

real gramophones was used as a validation set to verify 

the performance of the artificially disrupted tracks. Fig. 1 

shows typical audio disruptions in gramophone 

recordings. 

 

Figure 1.  Typical disruptions caused by scratches on records. 

A common approach in audio processing is to generate 

disruptions in clean audio data with Gaussian white noise 

[43]-[45]. It was suggested that positive pulses with a 

constant magnitude and a mixture of white noise and 

impulses should be used [46]. The test data in this paper 

was distorted with four different types of artificial 

generated noise which resemble the disruptions caused by 

scratches in Fig. 1. The noise was generated using 

positive and negative pulses with varying magnitudes and 

then subjected to a Gaussian white noise process. Most 

scratches do not affect more than 30 sequential samples. 

Benchmarking was conducted with noise of up to 50 

samples in order to accommodate longer disruptions. The 

algorithms are, however, able to detect noise of any 

duration. 

B. Noise Masking 

The detection algorithms generate a per-sample noise 

map with values in [0, z] where z is determined by each 

individual algorithm. A binary mask is generated for each 

sample i in the signal, indicating whether or not the 

sample is an outlier. Given a threshold θ and a noise map 

η, the mask is generated as follows: 

𝜂�̆� = {
1   𝑓𝑜𝑟 𝜂𝑖 ≥ 𝜃
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                         (17) 

C. Performance Measurement 

The algorithms’ performance was evaluated using the 

Sensitivity (SEN), Specificity (SPE) and the Matthews 

Correlation Coefficient (MCC). The True Positives (TP) 

and True Negatives (TN) are the number of correctly 

identified outliers and inliers respectively, whereas the 

False Positives (FP) and False Negatives (FN) are the 

number of incorrectly flagged inliers and outliers 

respectively. The SEN is the ability of an algorithm to 

correctly identify outliers, whereas the SPE is the 

capacity to which inliers are correctly recognized. The 

SEN and SPE is calculated as: 

SEN =
TP

TP+FN
            SPE =

TN

TN+FP
             (18) 

The MCC is used as a combined measurement to 

evaluate how well outliers are correctly identified and 

penalizing mislabeled inliers. The MCC is computed 

using: 

            MCC =
TP×TN−FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
           (19) 

D. Computational Speed and Tradeoff 

The execution time of the algorithms are measured as a 

speed, that is the duration in seconds it takes to process a 

second of audio data using a single processor thread and 

is denoted as s\s. In order to evaluate the tradeoff between 

the detection accuracy and the execution speed, a tradeoff 

measurement is needed. Based on the scoring metric in 

[47], the Speed-Accuracy Tradeoff (SAT) is calculated 

using: 

SAT = (
1−𝜅

�̂�−�̌�
+

𝜏

τ̂−τ̌
)

−1

                        (20) 

where κ is the detection MCC and τ the computational 

speed measured in s\s. κˆ and κˇ are the best and worst 

MCCs, with τˆ and τˇ the fastest and slowest execution 

times respectively. A higher SAT score indicates a more 

efficient tradeoff between the accuracy and the speed. An 

Intel Core i7 2600 at 3.4GHz machine with 16GB 

memory was used for the experiments. 

VI.  EMPIRICAL RESULTS 

Table I shows the threshold from (17), the sensitivity, 

specificity, overall detection accuracy, computational 

time and tradeoff of the outlier detection algorithms. All 

algorithms’ parameters were optimized using fractional 

factorial design. 

The NND had the highest sensitivity, but due to the 

lowest specificity amongst all algorithms had an overall 

low MCC. The MHD achieved the best specificity, 

slightly higher than that of the SS and MAD. The overall 

best detection accuracy was achieved by the APD using 

the ARIMA model, with a MCC of 0.837. The APD-HEP 

had the fastest execution time, and besides the APD-NEP 

and MASD is the only algorithm that can be executed in 

real time using a single thread. The APD-AR was the 

most efficient algorithm by achieving a good detection 

rate within a limited timespan. The proximity-based 

algorithms, namely SS, MAD, MHD and the NND, had a 
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good detection accuracy, but still remained inferior to 

most predictive algorithms. 

TABLE I.  THE THRESHOLD, SENSITIVITY, SPECIFICITY, DETECTION 

ACCURACY, SPEED AND TRADEOFF OF THE OUTLIER DETECTION 

ALGORITHMS 

Algorithm THLD SEN SPE MCC Speed SAT 

SS 3.289 0.681 0.999 0.792 5.467 1.211 

MAD 3.822 0.637 0.999 0.741 19.16 0.824 

MHD 3.275 0.685 0.999 0.799 15.47 1.053 

NND 0.680 0.825 0.993 0.754 1.691 1.100 

MASD 8.095 0.384 0.998 0.558 0.506 0.627 

APD-STP 0.179 0.785 0.997 0.802 13.81 1.093 

APD-OSP 0.176 0.783 0.998 0.804 30.86 0.863 

APD-FOP 0.196 0.802 0.997 0.818 24.69 0.985 

APD-OFP 0.197 0.801 0.997 0.820 68.23 0.606 

APD-NEP 0.174 0.736 0.999 0.800 0.771 1.373 

APD-HEP 0.546 0.536 0.998 0.647 0.497 0.783 

APD-AR 0.181 0.811 0.998 0.836 4.269 1.530 

APD-MA 0.190 0.753 0.996 0.747 24.77 0.785 

APD-ARMA 0.181 0.823 0.998 0.835 26.64 1.014 

APD-ARIMA 0.182 0.803 0.998 0.837 11.50 1.323 

APD-ARCH 0.202 0.801 0.998 0.83 14.59 1.211 

APD-GARCH 0.202 0.801 0.998 0.83 14.59 1.211 

 

Fig. 2 illustrates the change in the sensitivity with an 

increasing duration in the sequential distorted samples. 

The APD detection represents the best predictive 

algorithm, that is the ARIMA model. All algorithms 

struggled to detect univariate noise, that is a single 

outlying sample. The outlier detectors, except MASD, 

had a quick sensitivity increase with noise longer than 

two samples and stayed relatively stable for noise 

durations of up to 50 samples. MASD performed 

considerably poorer compared to the other algorithms. 

Although not shown in the graph, the MASD was tested 

with noise of up to 200 samples, which resulted in a 

steady increase in the sensitivity. MASD was therefore 

able to accurately detect long multivariate outliers, but 

had difficulty with noise durations shorter than 50 

samples, which is more common in gramophone 

distortions. 

 

Figure 2.  The detection sensitivity for an increasing duration. 

Fig. 3 illustrates the detection MCC of the outlier 

identifiers for different genres, with APD employing the 

ARIMA model. The MAD performed best for classical 

music, but was inferior to the SS, MHD and APD for all 

other genres. The APD performed well on average and 

showed a significant superiority with more volatile 

signals, especially the electronic, metal, and pop genres. 

 

Figure 3.  The detection accuracy for different genres. 

Table II compares the algorithms’ detection accuracy 

on artificially generated and real gramophone noise with 

the MCC’s standard deviation range given in the second 

column. As expected, all algorithms performed slightly 

worse when tested on real gramophone recordings. 

However, the difference between the two noise groups is 

statistically insignificant. The gramophone’s MCC falls 

within the artificial MCC’s standard deviation range and 

the artificial noise generation is therefore considered a 

sound representation of the gramophone noise. 

Once the noisy samples are flagged, they are 

reconstructed using one of the algorithms in [2] or [48]. A 

perceptual evaluation was conducted with 15 participants. 

The songs had a pleasant listening experience with most 

participants unable to distinguish between the original 

and reconstructed signals. Most of the noise that went 

undetected had a short duration and was difficult to 

identify by the human ear. 

TABLE II.  THE DETECTION ACCURACY (MCC) FOR ARTIFICIALLY 

GENERATED AND REAL GRAMOPHONE NOISE 

Algorithm Artificial Noise Gramophone Noise 
SS 0.7924 ± 0.172 0.7442 

MAD 0.7407 ± 0.195 0.7101 
MHD 0.7989 ± 0.168 0.7541 
NND 0.7539 ± 0.174 0.7100 

MASD 0.5582 ± 0.084 0.5001 
APD-ARIMA 0.8367 ± 0.108 0.7975 

VII.   CONCLUSION 

This paper analysed and benchmarked six different 

algorithms that are able to detect disruptions in audio 

signals caused by scratches on gramophone records. A 

novel predictive deviation outlier detection was proposed, 

utilizing one of twelve different forecasting models. The 

algorithms were benchmarked against each other by 

comparing the SEN, SPE and MCC of the detection 

process and measuring the execution time. It was found 

that the predictive outlier detection using the ARIMA 

model performed best on average. Predictive 

identification using the AR model had the most efficient 

tradeoff by detecting most outlier for a limited execution 

time. 
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Future research should focus on improving the 

detection accuracy with a more effective spectral 

algorithm. Using the Mahalanobis or nearest neighbour 

distance on the frequency spectrum instead of the 

Euclidean deviation may prove beneficial. The input 

signal can also be automatically categorized according to 

the volatility of the samples and then processed by the 

most accurate algorithm for the given volatility. The 

research will be extended in order to determine the ability 

of an Artificial Neural Network (ANN) to forecast audio 

signals. Initial research has shown that predictive ANNs 

have a performance and speed improvement in the APD 

compared to the other models presented in this paper. 

REFERENCES 

[1] F. Richter. (January 2014). The LP is Back! [Online]. Availabel: 
http://www.statista.com/chart/1465/vinyllp-sales-in-the-us 

[2] C. F. Stallmann and A. P. Engelbrecht, “Gramophone noise 

reconstruction: A comparative study of interpolation algorithms 
for noise reduction,” in Proc. SIGMAP, Colmar, France, 2015. 

[3] M. Niedzwiecki, “Elimination of clicks and background noise 

from archive gramophone recordings using the two track mono 
approach,” in Proc. European Signal Processing Conf., 1996, pp. 

1749-1752. 

[4] M. Niedzwiecki and M. Ciołek, “Elimination of impulsive 
disturbances from archive audio signals using bidirectional 

processing,” IEEE Transactions on ASLP, vol. 21, no. 5, pp. 1046-
1059, 2013. 

[5] M. Niedzwiecki and M. Ciołek, “Localization of impulsive 

disturbances in archive audio signals using predictive matched 
filtering,” in Proc. Int. Conf. on Acoustics, Speech, Signal 

Processing, 2014, pp. 2888-2892. 

[6] P. Sprechmann, A. M. Bronstein, J. M. Morel, and G. Sapiro, 
“Audio restoration from multiple copies,” in Proc. Int. Conf. on 

Acoustics, Speech and Signal Processing, 2013, pp. 878-882. 

[7] A. Czyzewski, “Some methods for detection and interpolation of 
impulsive distortions in old audio recordings,” in Proc. IEEE 

Applications of Signal Processing to Audio and Acoustics, 1995, 

pp. 139-142. 
[8] S. Vijendra and P. Shivani, “Robust outlier detection technique in 

data mining: A univariate approach,” Cornell University 

Repository, 2014. 
[9] R. E. Shiffler, “Maximum Z scores and outliers,” The American 

Statistician, vol. 42, no. 1, pp. 79-80, February 1988. 

[10] C. Leys, L. Christophe, O. Klein, P. Bernard, and L. Licata, 
“Detecting outliers: Do not use standard deviation around the 

mean, use absolute deviation around the median,” Journal of 

Experimental Social Psychology, vol. 49, no. 4, pp. 764-766, 2013. 
[11] C. A. R. Hoare, “Algorithm 65: Find,” Communications of the 

ACM, vol. 4, no. 7, pp. 321-322, July 1961. 

[12] R. J. Tibshirani, “Fast computation of the median by successive 
binning,” Cornell University Computing Research Repository, 

2008. 

[13] B. Iglewicz and D. C. Hoaglin, How to Detect and Handle 

Outliers Front Cover, 1st ed., Milwaukee, US: ASQ Quality Press 

1993. 

[14] M. Marghany and M. Hashim, “Comparison between Mahalanobis 
classification and neural network for oil spill detection using 

RADARSAT-1 SAR data,” International Journal of the Physical 

Sciences, vol. 6, no. 3, pp. 566-576, 2011. 
[15] L. Bodis, “Quantification of spectral similarity: Towards 

automatic spectra verification,” Ph.D. dissertation, Eidgenossische 

Technische Hochschule Zurich, Zurich, Switzerland, 2007. 
[16] K. Bhaduri and B. L. Matthews, “Algorithms for speeding up 

distance based outlier detection,” in Proc. ACM SIGKDD 

International Conference on Knowledge Discovery and Data 
Mining, August 2011, pp. 859-867. 

[17] P. Yang and B. Huang, “KNN based outlier detection algorithm in 

large dataset,” in Proc. IEEE International Workshop on 
Geoscience and Remote Sensing, vol. 1, 2008, pp. 611-613. 

[18] M. Zhao and V. Saligrama, “Anomaly detection with score 
functions based on nearest neighbor graphs,” in Proc. Neural 

Information Processing Systems, Vancouver, Canada, December 

2009, pp. 2250-2258. 
[19] J. Walters-Williams and Y. Li, “Comparative study of distance 

functions for nearest neighbors,” in Advanced Techniques in 

Computing Sciences and Software Engineering, Springer, 2010, 
pp. 79-84. 

[20] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data 

Mining, 1st ed., Boston, US: Addison-Wesley, 2005. 
[21] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms 

for mining outliers from large data sets,” ACM SIGMOD Record, 

vol. 29, no. 2, pp. 427-438, May 2000. 
[22] M. Amer and M. Goldstein, “Nearest-Neighbor and clustering 

based anomaly detection algorithms for RapidMiner,” in Proc. 

, 2012, pp. 1-12. 
[23] F. Angiulli and C. Pizzuti, “Fast outlier detection in high 

dimensional spaces,” in Proc. European Conference on Principles 

of Data Mining and Discovery, 2002, pp. 15-26. 

[24] M. Breunig, H. Kriegel, R. Ng, and J. Sander, “Identifying 

density-based local outliers,” ACM SIGMOD, vol. 29, no. 2, pp. 

93-104, 2000. 
[25] H. P. Kriegel, P. Kroger, E. Schubert, and A. Zimek, “LoOP: 

Local outlier probabilities,” in Proc. ACM IKM Conference, 2009, 

pp. 1649-1652. 
[26] J. Tang, Z. Chen, A. Fu, and D. Cheung, “Enhancing effectiveness 

of outlier detections for low density patterns,” in Proc. Pacific-

Asia Conference on Knowledge Discovery and Data Mining, 
Taipei, Taiwan, May 2002. 

[27] W. Jin, A. K. H. Tung, J. Han, and W. Wang, “Ranking outliers 

using symmetric neighborhood relationship,” in Proc. Pacific-Asia 
Conference on Advances in Knowledge Discovery and Data 

Mining, 2006, pp. 577-593. 

[28] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos, 
“LOCI: Fast outlier detection using the local correlation integral,” 

in Proc. International Conference on Data Engineering, March 

2003, pp. 315-326. 
[29] O. Shittu and D. Shangodoyin, “Detection of outliers in time series 

data: A frequency domain approach,” Asian Journal of Scientific 
Research, vol. 1, no. 2, pp. 130-137, 2008. 

[30] P. A. A. Esquef, M. Karjalainen, and V. Valimaki, “Detection of 

clicks in audio signals using warped linear prediction,” in Proc. 
International Conference on Digital Signal Processing, 2002, pp. 

1085-1088. 

[31] D. J. Hill and B. S. Minsker, “Anomaly detection in streaming 
environmental sensor data: A data-driven modeling approach,” 

Environmental Modelling and Software, vol. 25, no. 9, pp. 1014-

1022, 2010. 

[32] M. Niedzwiecki and M. Ciołek, “Elimination of clicks from 

archive speech signals using sparse autoregressive modeling,” in 

Proc. European Signal Processing Conference, 2012, pp. 2615-

2619. 

[33] R. S. Tsay, “Outliers, level shifts, and variance changes in time 

series,” Journal of Forecasting, vol. 7, no. 1, pp. 1-20, 1988. 

[34] M. C. Hau and H. Tong, “A practical method for outlier detection 

in autoregressive time series modelling,” Stochastic Hydrology 

and Hydraulics, vol. 3, no. 4, pp. 241-260, 1989. 

[35] E. Slutzky, “The summation of random causes as the source of 

cyclic processes,” Econometrica, vol. 5, no. 2, pp. 105-146, 1927. 

[36] G. Yule, “Why do we sometimes get nonsense correlations 

between time-series,” Royal Statistical Society Journal, vol. 89, pp. 

1-64, 1926. 

[37] C. Broyden, “The convergence of a class of double-rank 

minimization algorithms,” Journal of Applied Mathematics, vol. 6, 

pp. 76-90, 1970. 

[38] E. K. Berndt, B. H. Hall, R. E. Hall, and J. A. Hausman, 

“Estimation and inference in nonlinear structural models,” Annals 

of Economic and Social Measurement, vol. 3, no. 4, pp. 653-665, 

1974. 
[39] P. Whittle, “Hypothesis testing in time series analysis,” Ph.D. 

dissertation, Uppsala University, Uppsala, Sweden, 1951. 

[40] G. E. P. Box and G. M. Jenkins, Time Series Analysis: 

Forecasting and Control, San Francisco, US: Holden-Day, 

Incorporated, 1970. 

International Journal of Signal Processing Systems Vol. 4, No. 6, December 2016

©2016 Int. J. Sig. Process. Syst. 457

Rapid Miner Community Meeting and Conference



[41] R. Engle, “AR conditional heteroscedasticity with estimates of 
variance of UK inflation,” Econometrica, vol. 50, no. 4, pp. 987-

1007, 1982. 

[42] T. Bollerslev, “Generalized autoregressive conditional 
heteroskedasticity,” Journal of Econometrics, vol. 31, no. 3, pp. 

307-327, 1986. 

[43] L. Oudre, “Automatic detection and removal of impulsive noise in 
audio signals,” Image Processing on Line, vol. 5, pp. 267-281, 

2015. 

[44] P. Esquef and G. Welter, “Audio de-thumping using Huang’s 
emperical mode decomposition,” in Proc. International 

Conference on Digital Audio Effects, 2011, pp. 401-408. 

[45] J. Howarth and P. Wolfe, “Correction of wow and flutter effects in 
analog tape transfers,” Journal of the Audio Engineering Society, 

vol. 117, 2011. 

[46] M. Niedzwiecki and K. Cisowski, “Adaptive scheme for 
elimination of background noise and impulsive disturbances from 

audio signals,” in Proc. Quatrozieme Colloque, Juan-les-Pins, 

France, 1993, pp. 519-522. 

[47] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. 

Rinard, “Managing performance vs accuracy trade-offs with loop 

perforation,” in Proc. ACM SIGSOFT Symposium, 2011, pp. 124-
134. 

[48] C. F. Stallmann and A. P. Engelbrecht, “Gramophone noise 

detection and reconstruction using time delay artificial neural 
networks,” IEEE Transactions on Systems, Man, and Cybernetics, 

in review, 2015. 

Christoph F. Stallmann completed the 
Masters degree in Computer Science at the 

University of Pretoria, South Africa. He has 

worked at the Council for Scientific and 
Industrial Research (CSIR) and the South 

African National Space Agency (SANSA) and 

has been an assistant lecturer in Computer 
Science at the University of Pretoria since 

2011. His research interests include music and 

audio processing, signal modelling, and neural 
networks. His current research focuses on the noise detection and 

reconstruction of gramophones. 

 
 

Andries P. Engelbrecht received the Masters 

and PhD degrees in Computer Science from 
the University of Stellenbosch, South Africa, 

in 1994 and 1999 respectively. He is a 

Professor in Computer Science at the 

University of Pretoria, and serves as Head of 

the department. He also holds the position of 

South African Research Chair in Artificial 
Intelligence, leads the Computational 

Intelligence Research Group at the University 

of Pretoria, consisting of 40 Masters and PhD students, and has 
published over 220 papers. 

 

 

International Journal of Signal Processing Systems Vol. 4, No. 6, December 2016

©2016 Int. J. Sig. Process. Syst. 458




