
The Implementation of Simplified Universal

Assembler in Forth Assembly Language

Jyi-Jinn Chang
Instrument Technology Research Center, National Applied Research Laboratories, Taipei, Taiwan (R.O.C)

Abstract—In this paper, SDK (Software Development Kits)

and IDE (Integrated Development Environment) of forth

assembly language is designed. It can be assembled to

different machine codes and would replace the traditional

assembly languages, such as x86, ARM, MIPS and so on.

The forth language is a kind of algebra language that is

easier to code and to debug the programs. Therefore, it is a

good tool language to be taught in the courses of computer

organization and architecture for the students learning the

low-level language easily and quickly.

Index Terms—forth, assembly language, machine code,

assembler

I. INTRODUCTION

Forth language is a natural, mathematical, and algebra
language. Unlike the other traditional assembly languages,
it is easy to learn and develop applications for students
and programmers. This assembler can translate assembly
codes to the machine codes depended on different kinds
of CPU. Especially, it will be assembled directly to the
machine codes, because it is assembly language, it does
not need to compile. [1], [2]

This language can be used in embedded system, PC
desktop application and so on. The beginner who does
not know about the knowledge of computer will feel easy
to learn assembly language. The programmer can design
and debug programs faster and easier than the other
traditional languages.

This forth system assembly language is simple to use,
easy to learn. From now on, there are too many assembly
language in this world, and each assembly language
cannot compile with each other, like x86 and ARM. If it
could be defined a standard assembly language,
programmers can just use only one assembly language to
develop applications, device’s drivers and so on. This
will help programmer to program in more effect and do
not spend too much time in debugging. It can be not only
used in embedded system, but also in PC desktop to
design a programs, applications, and drivers. Especially
PC desktop, it supports to assemble the source codes in

Manuscript received December 30, 2013; revised April 28, 2014.

forth assembly language in Linux, Windows, MacOS,
and so on.

The machine codes assembled from the forth assembly
language are extremely tinny. Therefore, it can be
assembled to many types of CPU’s machine codes, such
as x86, ARM, MIPS, and etc.

Although it is a not popular programming language, it
can be used for the spirit of the forth language system to
develop a simplest universal assembler. At that time, the
learner can just use only one assembly language and
shorten the schedule of developing programs and drivers.
Also, it is much easier to design a compiler for higher-
level because it does not need to compile with each of
CPU’s instructions. [3]

II. MOTIVATION

The forth assembly language can be assembled to
different machine codes. If there has only one assembly
language, it would be helpful for designing compiler for
high-level programming language, such as C, C++, Basic,
and so forth, and shortening the time of developing and
enhancing the performance for execution. That is why the
forth assembly language may compile with most of the
CPU instructions to the only one assembly language.

The forth language has been developed and researched
by many experts. It has inherited the spiritual of high-
level programming language so that it is simple to use,
easy to learn. Because of its advantage, it can be a good
course for senior high students, freshmen to learn about
the foundation of computer science.

III. DESIGN

A. About Assembler

This assembler is developed by C++ language. It can
be compiled at Windows, Linux, and MacOS operation
systems. The user can command the orders to do
something, like assembling, debugging, and dis-
assembling. As the source codes are assembled, it would
generate two files, one is “.hex”, and another is “.bin”.
The hex file recorded the machine codes in hex number.
The bin file is generated in binary format. And, the binary
file can be executed. However, if it has errors, then it
would not generate any file and trigger warning messages.

International Journal of Signal Processing Systems Vol. 2, No. 1 June 2014

©2014 Engineering and Technology Publishing 78
doi: 10.12720/ijsps.2.1.78-82

Gang-Jeng Huang and Shiuh-Ku Weng
Department of Information Engineering, Chung Cheng Institute of Technology National Defense University, Taoyuan,

Taiwan (R.O.C)

Email: qoo24571864@gmail.com, skw@ndu.edu.tw

mailto:qoo24571864@gmail.com

B. Define Operator, Branch, Instruction

And now, it can be designed the base of the forth

language rule to build a table for compiling with other

CPU instructions. From the Table III, like R1=23. R1=23

means load the value “23” (in forth language, all numbers

are hex number) into R1 (Register 1). In x86 instruction,

it is needed to use the “MOV” instruction to let the

number move to the register [4]. In MIPS instruction [5],

it is needed to use “ADDI” instruction to let number

move to the register. And the syntax is not like x86, ARM,

it should be designed as “ADDI R1, R1, 23”. Another, if

the programmer wants to let a register to subtract a value,

like R1-23, in ARM’s instruction it should be designed as

“SUB R1, 23”, and in MIPS it should be designed as

“ADDI R1, R1, 23”. [6], [7]

Then, these confusing and complex problems may let

the beginners feel difficult to learn about each CPU’s

instructions and he/she has to pay a lot of time to

understand each of CPU’s instruction working. The forth

language can solve the problem, all of users do not need

to learn each of assembly language but just learn forth

assembly language. It will be helpful for teacher because

it is similar like mathematical language. For the

programmer, it is much easy to understand the codes

meaning in a short time. If one who did not know about

ARM’s instructions, but he/she has learned the forth

assembly language, he/she can use the forth assembly

source codes to assemble to different machine codes. [8]

TABLE I. FORTH LANGUAGE OPERATOR TABLE

Operator Forth Assembly
Language

Plus/Add +

Minus/Subtract -

Multiple *

And &

Or |

Not /

Exclusive - Or ^

Right Shift >>

Left Shift <<

Rotation Right Shift >|>

TABLE II. BRANCH

Meaning Forth Assembly

Language

Equal ==

Not Equal != or <>

Signed Greater Than or Equal >=

Signed Less Than <

Signed Greater Than >

Signed Less Than or Equal <=

The Table I and Table II are the branch for the forth

assembly language used. The Table III is an example for

ARM cortex M0 instructions and forth assembly

language table [9], [10]. On the first column is ARM

cortex M0 instruction opcode, the second column is its

assembly language, and the third column is forth system

language. It can be found that the forth language is

translated to machine codes directly without any

intermediate codes and methods. We used the ARM

cortex M0 instructions for example. Above of all the

situations, it can be discovered that the forth assembly

language is based on mathematical, algebra language and

use some of spiritual of high-level programming language.

TABLE III. THE ARM CORTEX M0 INSTRUCTIONS VS FORTH

ASSEMBLY LANGUAGE TABLE

Opcode
(Hex)

ARM Assembly Language Forth Assembly
Language

2000 MOV_R,# R=#

4600 MOV_R1,R2 R1=R2

5800 LDR_R1,[R2,R3] R1=[R2+R3]

6800 LDR_R1,[R2,#] R1=[R2+#]

4800 LDR_R,[pc,#] R=[pc+#]

9800 LDR_R,[sp,#] R=[sp+#]

5C00 LDRB_R1,[R2,R3] R1=[R2+R3].b

7800 LDRB_R1,[R2,#] R1=[R2+#].b

5A00 LDRH_R1,[R2,R3] R1=[R2+R3].h

8800 LDRH_R1,[R2,#] R1=[R2+#].h

5600 LDRSB_R1,[R2,R3] R1=[R2+R3].sb

5E00 LDRSH_R1,[R2,R3] R1=[R2+R3].sh

5000 STR_R1,[R2,R3] [R2+R3]=R1

6000 STR_R1,[R2,#] [R2+#]=R1

9000 STR_R,[sp,#] [sp+#]=R

5400 STRB_R1,[R2,R3] [R2+R3]=R1.b

7000 STRB_R1,[R2,#] [R2+#]=R1.b

5200 STRH_R1,[R2,R3] [R2+R3]=R1.h

8000 STRH_R1,[R2,#] [R2+#]=R1.h

3000 ADD_R,# R=+#

4400 ADD_R1,R2 R1=+R2

1C00 ADD_R1,R2,# R1=R2+#

1800 ADD_R1,R2,R3 R1=R2+R3

A000 ADD_R,pc,# R=+(pc+#)

A800 ADD_R,sp,# R=+(sp+#)

4140 ADC_R1,R2 R1=+R2+C

3800 SUB_R,# R=-#

1E00 SUB_R1,R2,# R1=R2-#

B080 SUB_R1,R2,R3 R1=R2-R3

4180 SBC_R1,R2 R1=-R2-C

4340 MUL_R1,R2 R1=*R2

43C0 MVN_R1,R2 R1=/R2

4000 AND_R1,R2 R1=&R2

4240 NEG_R1,R2 R1=-R2

4300 ORR_R1,R2 R1=|R2

4040 EOR_R1,R2 R1=^R2

4380 BIC_R1,R2 R1=@R2

0000 LSL_R1,R2,# R1=R2<<#

4040 LSL_R1,R2 R1=<<R2

0800 LSR_R1,R2,# R1=R2>>#

40C0 LSR_R1,R2 R1=>>R2

1000 ASR_R1,R2,# uR1=R2>>#

4100 ASR_R1,R2 uR1=>>R2

41C0 ROR_R1,R2 R=>|>R

2800 CMP_R,# R:#

4280 CMP_R1,R2 R1:R2

4500 CMP_R1,R2(h) R1:R2(h)

42C0 CMN_R1,R2 R1:-R2

F800 BL_# JUMP_#

4700 BX_R JUMP_R

F000 BL{X}_# JUMP{X}_#

4780 BLX_R CALL_R

E800 BLX_# CALL_#

BE00 BKPT_# BREAK_#

4200 TST_R1,R2 TEST.R1&R2

BC00 POP_{Rlist,pc} POP{Rlist,pc}

B400 PUSH_{Rlist,lr} PUSH{Rlist,lr}

C800 LDMIA_R,{Rlist} POP_R,{Rlist}

C000 STMIA_R,{Rlist } PUSH_R,{Rlist}

DF00 SWI_# SWI_#

International Journal of Signal Processing Systems Vol. 2, No. 1 June 2014

©2014 Engineering and Technology Publishing 79

C. Assembler Method and Syntax Defination

The assembler algorithm has two states called Pass 1

and Pass 2, also this forth language supports “if”, “else

if”, “else”, and “while” syntax. But it is not like higher

programming language, it will be assembled directly to

the shortest and simplest machine codes. This will be

much easy to establish applications, drivers, and also

accelerate the execution. In addition, it will record the

syntax with the data structure – queue. [11]

Parsing

Keyword “begin”

No

Read from file

Yes

Go to Pass 2EOF

Scan Syntax

Not EOF

Record error Scan ConditionScan Syntax

Yes

(if…else if…else)

(while…end while)

No

Error Error

AssembleAssemble

Accept Accept

Record into

Syntax Table

Figure 1. Pass 1 of the assembler

Syntax Table (queue)

Find the jumping address

Pass 1

Not empty

Build the List File

Build the Machine Code

Empty

End of AssemblerFill in the Address

Pop from the queue

Figure 2. Pass 2 of the assembler

Pass 1 (see Fig. 1).

Step 1. Parsing the source codes.

Step 2. Find the keyword “Begin”, it means the

beginning of the source codes.

Step 3. Assemble the source codes. If this assembler

found that it has read the end of the file, then go to the

Pass 2. Otherwise, go to the step 4.

Step 4. Find syntax. If it read “if”, “else-if”, “else”,

“end-if”, “while”, “end-loop”, it would record the address

and syntax.

Step 5. Find operator. It would find match the operator

and branch table.

Step 6. Assemble the source codes to hex codes, then

go to step 3. (If it finds the codes are error, it would not

assemble and record the line of the source codes. Finally,

it would let user know that where and what it happened.)

Pass 2 (see Fig. 2).

Step 1. Get the syntax table from the queue.

Step 2. Build the list file.

Step 3. Build the machine codes.

Step 4. End of the algorithm.

TABLE IV. STEP 1 SOURCE CODES VS MACHINE CODES

Line Address Machine Codes Source Codes

0 00004970 2D E9 00 40 push.LR

1 00004974 45 F2 FC 32 C4 pf.3=0

2 00004984 08 23 R3=8

3 00004986 56 21 R1=56

4 While z=1

5 00004988 FF F7 EC FF delay.R1

6 0000498C 5F EA 36 06 T rrc.r

7 00004990 08 D2 If c>=0

8 00004992 45 F2 FC 32 C4 pf.3=0

9 000049A2 07 E0 Else

10 000049A4 45 F2 FC 32 C4 pf.3=1

11 End If

12 000049B4 01 3B R3-1

13 000049B6 E7 D1 End Loop

14 000049B8 FF F7 D4 FF delay.R1

15 000049BC 45 F2 FC 32 C4 pf.3=1

16 000049CC FF F7 CA FF delay.R1

17 000049D0 01 26 T=1

18 000049D2 00 F0 25 F9 #emit

19 000049D6 00 F0 73 FB +!

20 000049DA 00 BD ret

TABLE V. TO ILLUSTRATE THE STEP 1’S SOURCE CODES

Line 0 Let the next instruction push into return stack.

Line 1 Output the first bit of RS232.

Line 2 The value “8” is ASCII-codes (8-bits).

Line 3 Set the count of delay.

Line 4 The while-loop start.

Line 5 Start the delay routine, the time is set by the register
1 (R1).

Line 6 Let register T shift right

Line 7 If the carry is 0.

Line 8 Output low potential from f bit 3 port.

Line 9 Else.

Line 10 Output high potential from f bit 3 port.

Line 11 End of If.

Line 13 End of while-loop.

Line 14 Start the delay routine, the time is set by the register

1 (R1).

Line 15 Set the stop bit to high potential.

Line 16 Start the delay routine, the time is set by the register
1 (R1).

Line 17 Set the register T.

Line 18 (System variable, to remember the number of the

output byte)

Line 19 Add and push back.

Line 20 Return

International Journal of Signal Processing Systems Vol. 2, No. 1 June 2014

©2014 Engineering and Technology Publishing 80

D. Token and Scan Operator and Syntax

When the assembler read the source codes, if will first

find the operator whether it would match the language

table or not. If it matched the instruction, it would

assemble to the machine codes directly. If it does not, it

will compare whether it is “if”, “else if”, “else”, “end if”,

“while loop”, “end loop” keywords. If it is a keyword, it

would record the line of the codes and push the data into

the syntax queue. [12]

E. About Example and Tiny Forth System

These source codes in forth language is to build and set

up a tiny forth system.

Step 1. Generate the command “emid” from RS232

through the I/O hight/low, and then use the port “TX”

signal for example (from the Table IV and Table V).

Step 2. Design the command “key” (with the pin RX

from RS232). Because the “key” and “emit” are matched,

it should be set the same delay time (from the Table VI

and Table VII).

This part of source codes in forth language is for using

tiny-forth system. And then, this tiny forth system can be

used to build a huge, large forth system. Some of

umbilical or tethered systems in business used this

concept to accomplish the enormous and extremely

complex systems. Also, part of architectures through the

tiny system communicates others. This system looked

small but it can be a break point for developing and

researching in computer, or microprocessors.

TABLE VI. STEP 2 SOURCE CODES VS MACHINE CODES

Line Address Machine Codes Source Codes

0 00004A58 04 3F 3E 60 {dup}

1 00004A5C 00 B5 push.LR

2 00004A5E B6 1B T=0

3 While z=1

4 00004A60 FF F7 F2 FF c=rx

5 00004A64 00 28 R0:0

6 00004A66 FB D1 End Loop

7 00004A68 56 21 R1=56

8 00004A6A 48 08 R0=R1>>1

9 00004A6C FF F7 7C FF delay.R0

10 00004A70 08 23 R3=8

11 While z=1

12 00004A72 FF F7 77 FF delay.R1

13 00004A7A 4F EA 70 00 R0>>>1

14 00004A7E 76 08 T>>1

15 00004A80 46 EA 00 06 T|R0

16 00004A84 01 3B R3-1

17 00004A86 00 2B R3:0

18 00004A88 F3 D1 T>>18

19 00004A8A 36 0E delay.R1

20 00004A8C FF F7 6A FF ret

21 00004A90 00 BD nop

22 00004A92 00 BF c=rx

23 00004A48 45 F2 04 00 R0=5004

24 00004A4C C4 F2 02 00 R0t=4002

25 00004A50 00 68 R0=(R0+0)

26 00004A52 00 F0 01 00 R0=R0&1

27 00004A56 70 47 ret

TABLE VII. TO ILLUSTRATE THE STEP 2’S SOURCE CODES.

Line 0 To get the byte data and record to stack.

Line 1 Let the PC counter point to next instruction.

Line 2 Set register T to 0.

Line 3 The while-loop start.

Line 4 Let the port TX (from desktop) to the microprocessor’s
RX input port.

Line 5 Compare R0.

Line 6 End of while-loop.

Line 7 Set the count of delay.

Line 8 Shift right.

Line 9 Start the delay routine, the time is set by the register 0
(R0).

Line 10 Set the value of R3.

Line 11 The while-loop start.

Line 12 Start the delay routine, the time is set by the register 1

(R1).

Line 13 Let the R0’s the bit 0 to set the carry flag.

Line 14 Shift right.

Line 15 Or operator.

Line 16 Subtract.

Line 17 Compare R3.

Line 18 Shift right.

Line 19 Start the delay routine, the time is set by the register 1
(R1).

Line 20 Call the return.

Line 21 Cell for 4 address.

Line 22 Set R0. Because most of CPU let the import from the

RS232 store in the R0.

Line 23 Store the value into register (lower bytes).

Line 24 Store the value into register (higher bytes).

Line 25 Add.

Line 26 And operator.

Line 27 Return.

IV. CONCLUSION

The traditional assembly languages (such as x86, ARM,
MIPS) need to cost more time than to learn forth
assembly language. Someone who has ever learned about
C, C++, or high-level programming language, it would
understand the forth language in a short time. Also, the
traditional assembly languages are difficult for the
beginners who have never learned about computer
science.

From now on, there are countless assembly languages
and instructions. If it could be established the standard of
assembly language, this will help beginners to learn,
programmers to develop, and teachers to teach. In the
future, it can be designed a general compiler to compile
the high level languages to the forth language. Therefore,
it is not necessary to develop compilers for processors,
respectively. If the goal is achieved, it will create a new
computer research area.

ACKNOWLEDGMENT

The authors would want to thank Hsing-Yao Huang
(received the master degree from National Taiwan
University, ME in 1955) and Po-Chun Tsou to help the
author complete this paper and give illustrations.
Especially the ARM cortex M0 vs Forth Language table,
he gave a good suggestion for establishing and editing
this.

International Journal of Signal Processing Systems Vol. 2, No. 1 June 2014

©2014 Engineering and Technology Publishing 81

REFERENCES

[1] J. R. Hayes, M. E. Fraeman, R. L. Willians, and T. Zaremeba, “An
architecture for the direct execution of the forth programming

language,” in Proc. ASPLOS II, Oct. 1987, pp. 42-49.
[2] Leo Brodie, Starting Forth Run on iForth and SwiftForth, 1st ed.

Forth Inc., 2007, ch. 2

[3] Leo Brodie, Thinking Forth: A Language and Philosophy for
Solving Problems, 1st ed., Forth Inc., 2007, ch. 2.

[4] K. R. Irvine, Assembly Language for Intel-Based Computers, 5th
ed., Pearson, Sep. 2006, ch.4, 6, 7.

[5] L. Wittie and G. Shute. (Sep. 2010). MIPS Instruction Coding.

[Online]. pp. 1-4. Available:
http://www.cs.sunysb.edu/~lw/spim/MIPSinstHex.pdf

[6] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, 4th ed., Elsevier

Taiwan LLC., Oct. 2010, ch. 2.

[7] Standard Forth, ANSI INCITS 215-1994.
[8] H. M. Martin, “Developing a tethered forth model,” ACM

SIGFORTH Newsletter, vol. 2, no. 3, pp. 17-19, Mar. 1991.
[9] Gbadev. (Sep. 2001). ARM Thumb Reference. [Online]. Available:

http://re-eject.gbadev.org/files/ThumbRefV2-beta.pdf

[10] Atmel 8051 Microcontrollers Hardware Manual, Atmel
Corporation, 2007, ch. 1.

[11] L. L. Beck, System Software: An Introduction to Systems
Programming, 3rd ed., 1996, ch. 5.

[12] M. T. Goodrich and R. Tamassia, Algorithm Design: Foundations,

Analysis, and Internet Examples, John Wiley & Son, 2006, ch. 2.

Gang-Jeng Huang is studying at the
department of information engineering, Chung

Cheng Institute of Technology (CCIT),

National Defense University (NDU). His
experience includes the web site designer and

database administrator for the 22nd National
Defense Science and Technology Conference.

He also got the special award from the Taiwan

Summer of Code (TSOC), and its project is
simplified universal assembler.

Shiuh-Ku Weng received Ph.D degree from

Chung Cheng Institute of Technology (CCIT)

of National Defense University (NDU) in EE
in 1997. Now, he is an associate professor in

Department of Information Engineering,
CCIT, NDU. His research interests include

embedded system, image processing,

information security and system programming.

Jyi-Jinn Chang received BS degree from

National Taiwan Institute of Science and
Technology, in EE. He is working at Science

Based Park, Hsichu, Taiwan. His expertise
includes Instrument design and research,

microcomputer related facilities control

firmware design, and the forth language
development for using in large vacuum

coating deposition system.

International Journal of Signal Processing Systems Vol. 2, No. 1 June 2014

©2014 Engineering and Technology Publishing 82

