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Abstract—This paper proposes a novel approach to 

overcome the main problems in high-dimensional data 

mining. We construct a composite kernel machine (CKM) 

on a special space (the kernel locally consistent concept 

factorization (KLCCF) space) to solve three problems in 

high-dimensional data mining: the curse of dimensionality, 

data complexity and nonlinearity. CKM exploits multiple 

data sources with strong capability to identify the relevant 

ones and their apposite kernel representation. KLCCF finds 

a compact representation of data, which uncovers the 

hidden information and simultaneously respects the 

intrinsic geometric structure of data manifold. Our new 

system robustly overcomes the weakness of CKM, it 

outperforms many traditional classification systems. 

 

Index Terms—data mining, multiple kernel learning, kernel 

locally consistent concept factorization, manifold learning, 

support vector machine 

 

I. INTRODUCTION 

Data sets of high dimensionality pose great challenges 
on efficient processing to most existing data mining 
algorithms (Witten and Frank [1]). Mining high-
dimensional heterogeneous data is a crucial component in 
many information applications. Financial data mining 
becomes a popular topic owing to the late-2000s financial 
crisis. Many techniques have been developed for 
bankruptcy predictions. Popular methods include 
regression, discriminant analysis, logistic models, factor 
analysis, decision trees, neural networks, fuzzy logic, 
genetic algorithms, etc. However, their performance is 
usually not satisfactory. 

A reliable high-dimensional data mining system for 
financial distress predictions is urgently demanded by all 
banking and investment institutes to control their 
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financial risk. Previously, they invested heavily on 
establishing an automatic decision support system for 
evaluating the credit quality of their borrowers. The 
objective of this paper is to develop such a system to 
prevent banking institutes from investing a distressed 
company. 

Reviewing recent literature, many advanced 
approaches from data mining or artificial intelligence 
were developed to solve the problems as mentioned 
above. These methods (Witten and Frank [1]) include 
inductive learning, case-based reasoning, neural networks, 
rough set theory (Ahn et al. [2]), and support vector 
machines (SVM) (Wu et al. [3]; Hua et al. [4]). SVM, a 
special form of kernel classifiers, has become 
increasingly popular. SVM considers the structural risk in 
system modeling, and regularizes the model for good 
generalization and sparse representation. SVMs are 
successful in many applications. They outperform typical 
methods in classifications. However, the success of SVM 
depends on the good choice of model parameters and the 
kernel function, (namely, the data representation). In 
kernel methods, the data representation is implicitly 
chosen through the so-called kernel. This kernel actually 
plays two important roles: it defines the similarity 
between two examples, while defining an appropriate 
regularization term for the learning problem. 

The choice of kernel and features are typically hand-
crafted and fixed in advance. However, hand-tuning 
kernel parameters can be difficult as can selecting and 
combining appropriate sets of features. Recent 
applications have also shown that using multiple kernels 
instead of a single one can enhance the interpretability of 
the decision function and improve performances 
(Lanckriet et al. [5]). Multiple Kernel Learning (MKL) 
seeks to address this issue by learning the kernel from 
training data. In particular, it focuses on how the kernel 
can be learnt as a linear combination of given base 
kernels. 
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The flat combination of kernels in MKL does not 

include any mechanism to cluster the kernels related to 

each source. In order to favor the selection/removal of 

kernels between or within predefined groups, one has to 

define a structure among kernels, which will guide the 

selection process. Composite kernel machines (CKM, 

Szafranski et al. [6]) addresses the problem by defining a 

structure among kernels, which is particularly well suited 

to the problem of learning from multiple sources. Then, 

each source can be represented by a group of kernels, and 

the algorithm aims at identifying the relevant sources and 

their apposite kernel representation. 

In financial data mining, high dimensional data from 

public financial statements and stock markets can be used 

for bankruptcy predictions. However, the high 

dimensional data make kernel classifiers infeasible due to 

the curse of dimensionality (Bellman [7]). Regarding 

dimensionality reduction, linear algorithms such as 

principal component analysis (PCA, Fukunaga [8]) and 

discriminant analysis (LDA, Fukunaga [8]) are the two 

most widely used methods due to their relative simplicity 

and effectiveness. However, classical techniques for 

manifold learning are designed to operate when the 

submanifold is embedded linearly, or almost linearly, in 

the observation space. Such algorithms often fail when 

nonlinear data structure cannot simply be regarded as a 

perturbation from a linear approximation. The task of 

nonlinear dimensionality reduction (NLDR) is to recover 

meaningful low-dimensional structures hidden in high 

dimensional data. 

Recently, matrix factorization based techniques, such 

as Non-negative Matrix Factorization (NMF, Lee and 

Seung [9]) and Concept Factorization (CF, Xu and Gong 

[10]), have yielded impressive results in dimensionality 

reduction. The non-negative constraints of NMF only 

allow additive combinations among different basis 

vectors which can learn a parts-based representation (Lee 

and Seung [9]). 

Financial data are probably sampled from a 

submanifold of the ambient Euclidean space. In fact, the 

financial data cannot fill up the high dimensional 

Euclidean space uniformly. Therefore, the intrinsic 

manifold structure needs to be considered while 

performing the matrix factorization. The major limitation 

of NMF is that it is unclear how to effectively perform 

NMF in the transformed data space, e.g. reproducing 

kernel Hilbert space (RKHS). To get rid of the limitations 

of NMF while inheriting all its strengths, Xu and Gong 

[10] proposed Concept Factorization (CF). Li and Ding 

[11] also proposed several interesting variations of NMF. 

The major advantage of CF over NMF is that it can be 

performed on any data representations, either in the 

original space or RKHS. 

However, NMF and CF only concern the global 

Euclidean geometry, whereas the local manifold 

geometry is not fully considered. Cai et al. [12] proposed 

a new version of CF called locally consistent concept 

factorization (LCCF) to extract the basis vectors which is 

consistent with the manifold geometry. Central to the 

approach of LCCF is a graph model which captures the 

local geometry of the data manifold. By using the graph 

Laplacian to smooth the data mapping, LCCF can extract 

features with respect to the intrinsic manifold structure. 

This study also employs a kernel version of LCCF 

(KLCCF) to mining underlying key features in high 

dimensional financial data, and constructs CMKMs on 

the submanifold created by KLCCF. Moreover, we 

incorporate the label information to the graph model used 

in KLCCF to improve our system performance. 

The remainder of this paper is organized as follows: 

Section 2 describes the CKM classifiers and KLCCF. 

Subsequently, Section 3 describes the study data and 

discusses the empirical findings. Conclusions are given in 

Section 4. 

II. THE PROPOSED METHODOLOGY 

To reduce the computational loading of kernel 

machines and simultaneously enhance their performance. 

This study constructs CKMs on a non-linear graph-based 

KLCCF. 

A. Composite Multiple Kernel Machines 

In multiple kernel learning (MKL), we are provided 

with M candidate kernels, K1, …, KM, and wish to 

estimate the parameters of the SVM classifier together 

with the weights of a convex combination of kernels 

K1, …, KM, that defines the effective kernel Kσ. 

=1 =1

= { = , 0, =1}
M M

m m m m

m m

K K             (1) 

Each kernel Km is associated to a RKHS Hm whose 

elements will be denoted fm, and σ1, …, σM is the 

weighting vector to be learned under the convex 

combination constraints. 

In order to favor the selection/removal of kernels 

between or within predefined groups. Szafranski et al. [6] 

improved traditional MKL by considering a tree structure 

among kernels. Szafranski et al. [6] indexes the tree depth 

by h, with h=0 for the root, and h=2 for the leaves. The 

leaf nodes represent the kernels at hand for the 

classification task; the nodes at depth 1 stand for the 

group-kernels formed by combining the kernels within 

each group; the root represents the global effective kernel 

merging the group-kernels. 

In the learning process, one would like to suppress the 

kernels and/or the groups that are irrelevant for the 

classification task. In the tree representation, this removal 

process consists in pruning the tree. When a branch is 

pruned at the leaf level, a single kernel is removed from 

the combination. When a subtree is pruned, a group-

kernel is removed from the combination, and the 

corresponding group of kernels has no influence on the 

classifier. 

The M  kernels situated at the leaves are indexed by 

{1, …, m, …, M}, and the group-kernels (at depth 1) are 

indexed by {1, …, l, …, L}. The set Gl of cardinality dl  

indexes the leaf-kernels belonging to group-kernel l, that 

is, the children of node l. The groups form a partition of 

the leaf-kernels, that is, 
l lG ={1,..., ,..., }m M  and 
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Mdll
= . The CKM of Szafranski et al. [6] is 

formulated as follows: 
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where σ1=(σ1,1…σ1,L) and σ2=(σ2,1…σ2,M) are weighting 

vectors; hyper-parameters p and q control the sparsity 

within or between groups. For details of the model, we 

refer to Szafranski et al. [6]. 

B. Kernel Locally Consistent Concept Factoriaztion 

Recently, Non-negative Matrix Factorization (NMF) 

has yielded impressive results in dimensionality reduction. 

In general given a nonnegative data matrix X, NMF tries 

to find reduced rank nonnegative matrices U and V so 

that X≈UV
T
. The column vectors of U can be thought of 

as basis vectors and V contains the coordinates. 

NMF can only be performed in the original feature 

space of the data points. In the case that the data are 

highly non-linear distributed, it is desirable that we can 

kernelize NMF and apply the powerful idea of the kernel 

method. To achieve this goal, Xu and Gong [10] 

proposed an extension of NMF, which is called Concept 

Factorization (CF). In CF, each basis uk is required to be 

a non-negative linear combination of the sample vectors 

xj. 

=1

=
N

k j jk

j

u x h                               (3) 

where 0jkh . Let ][= jkhH , CF essentially tries to find 

the following approximation, X≈XHV
T
, through 

minimization of O=‖X−XHV
T‖2

. 

CF tries to find a basis that is optimized for the linear 

approximation of the data. Let zT

j
 denote the j-th row of 

V, zT

j
=[vj1, …, vjk], can be regarded as the new 

representation of each data point in the new basis. Cai et 

al. [12, 13] indicated that knowledge of the geometric 

structure of the data can be exploited for better discovery 

of this basis. A natural assumption here could be that if 

two data points xi, xj are close in the intrinsic geometry of 

the data distribution, then zi
 and z j

, the representations 

of this two points in the new basis, are also close to each 

other. Actually zi
 and z j

 are equivalent to Vi
 and Vj

 in 

our formulation. This assumption is usually referred to as 

local consistency assumption, which plays an essential 

role in developing various kinds of algorithms including 

dimensionality reduction algorithms (Belkin and Niyogi 

[14]) and semi-supervised learning algorithms (Belkin et 

al. [15]). 

Local geometric structure can be effectively modeled 

through a nearest neighbor graph on a scatter of data 

points. Consider a graph with N vertices where each 

vertex corresponds to a data point. Define the edge 

weight matrix W as follows: 
T

i j

ij i j

if and belong to the same class;
W = || |||| ||

0 otherwise,

i jx x






x x

x x
 

Here, prior class-label information is also used to define 

the W. That is, the within-class geometric information is 

emphasized, and the similarity between two samples is 

set to zero if they belong to different classes. 

The optimal z  needs to minimize the following 

objective: 

jiji

ji

Wzz ,

2

,

)(  .                           (4) 

This objective function incurs a heavy penalty if 

neighboring vertices i and j are mapped far apart. With 

some simple algebraic formulations, we have 

,2=2=)( ,

2

,

VVzz LLWzz TT

jiji

ji

              (5) 

where L=D−W is the graph Laplacian (Chung [16]) and D 

is a diagonal matrix whose entries are column (or row, 

since W is symmetric) sums of W, 
jijii WD = . Finally, 

the minimization problem reduces to find the minimum 

of 

2=|| || ( )T TO X - XHV Tr V LV                (6) 

Define K= X
T
X. We can rewrite the objective function: 

= (( ) ( )) ( )T T T TO Tr X XHV X XHV Tr V LV  

= (( ) ( ) ( )T T T TTr I HV K I HV Tr V LV  

= ( ) 2 ( ) ( )T T TTr K Tr VH K Tr VH KHV  )( VV LTr T  

Next, we nonlinearly extend the formulation to high-

dimensional RKHS: 

=1

u = (x ) ,
N

k j jk

j

h                          (7) 

and ( ) ( )TK =φ X φ X . Similarly, KLCCF essentially tries 

to find the following approximation, ( ) TX X HV , 

through the minimization of 

2=|| - ( ) || ( )T TO X φ X HV Tr V LV            (8) 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

This study used bankrupt companies listed in the 

Taiwan Stock Exchange (TSE) for analysis. Their public 

financial information is used for the model input. These 

bankrupt companies were matched with normal 
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companies for comparison. The sample data covers the 

period from 2000 to 2007. 

For the balance of positive and negative samples, one 
company in financial crisis should be matched with one 
or two normal companies in the same year, in the same 
industry, running similar business items. Namely, they 
should produce the same products with the failed 
company and have similar scale of operation. 
Additionally, the normal company whose total asset or 
the scale of operation income should be close to the failed 
company. In our samples, 50 failed firms and 100 non-
failed firms were selected. The study traced the data up to 
5 years, which started from the day a respective company 
falls into financial distress backward up to a period of 5 
years. The financial reports of the non-failed companies 
will be matched (pooled together) with the failed 
company in the same year. For example, company A 
failed in 2005 and company B failed in 2007. We will 
pool them and their matched companies A’, B’ in the 
same file labeled C000 representing their financial status 
in the year of bankruptcy. Companies A and A’ (or 
company B and B’) will be traced backward up to five 
years. These data were put in separate files labeled C000, 
C111, C222, C333, and C444 respectively for 
classification. 

The variables of this research are selected from the 
TEJ (Taiwan Economic Journal) financial database, 
which contains the following five financial indexes: 
profitability index, per share rates index, growth rates 
index, debt-paying ability index, management ability 
index. Altogether, there are 54 financial ratios covered by 
the five indexes. If some values of a ratio lost on some 
firms, this ratio was deleted. As a result, overall 48 
financial ratios were obtained for analysis. 

This study tested five conventional classifiers and a 

kernel classifier (SVM) for bankruptcy predictions, 

including decision tree (J48), nearest neighbors with three 

neighbors (KNN), logistic regressions, Bayesian 

networks (BayesianNet), radial basis neural network 

(RBFNetwork), and SVM. For kernel classifiers, this 

study selected the polynomial kernel of two degrees for 

input owing to its good performance compared with other 

types of kernels. The data set was randomly divided into 

ten parts, and ten-folds cross validation was applied to 

evaluate the model performance. 

Table I shows that SVM outperforms other classifiers. 

Namely, kernel classifiers outperform traditional 

classifiers due to their flexibility in dealing nonlinear and 

high-dimensional data. Consequently, this study 

implemented an advanced kernel classifier, the CKM, for 

subsequent classifications. 

In high-dimensional classification problems, some 

input variables or features may be irrelevant. Avoiding 

irrelevant features is important, because they generally 

deteriorate the performance of a classifier. There are two 

approaches to address the problem: feature subset 

selection and dimensionality reduction. First, we try the 

two means of feature selection: Chi-Squared Statistics (x
2
, 

Witten and Frank [1]) and Information Gain (IG, Witten 

and Frank [1]). After determination of the optimal feature 

subset, the selected input variables were fed into six 

classification algorithms (J48, KNN, BayesianNet, 

Logistic, RBFNetwork, SVM) for distress prediction. 

Table II and III show that x
2
 and IG could slightly 

improve the performance of all classifiers. However, they 

deteriorate the performance of RBFNetwork significantly. 

RBFNetwork is a strong classifiers capable to re-scale 

feature weighting (importance) internally. Outside feature 

selection schemes using different criterions to select 

feature subsets do not always match its need. 

TABLE I.  PERFORMANCE COMPARISON ON BASIC PREDICTION MODELS (ACCURACY %) 

 Sample C000 Sample C111 Sample C222 Sample C333 Sample C444 

J48 90.7007 87.5912 84.6715 81.3433 71.8750 

KNN 88.3212 90.5109 81.7518 76.1194 73.4375 

BayesianNet 90.2409 90.5109 85.4015 84.3284 80.0313 

Logistic 88.4058 84.0580 75.3623 71.1111 70.5426 

RBFNetwork 89.1304 90.5797 85.5072 74.8148 78.2946 

SVM 91.2409 91.3043 86.2319 83.5821 80.6875 

TABLE II.  PERFORMANCE ENHANCEMENTS BY CHI-SQUARED (X
2) STATISTICS 

 Sample C000 Sample C111 Sample C222 Sample C333 Sample C444 

x2+J48 92.2007 90.5109 88.3212 84.3284 78.1250 

x2+KNN 91.2409 87.5912 84.6415 74.6269 78.1250 

x2+BayesianNet 92.2409 92.1606 89.0511 86.5672 79.6875 

x2+Logistic 92.7536 93.4783 87.6812 84.4444 82.1705 

x2+RBFNetwork 76.8116 73.1884 73.1884 75.5556 82.1705 

x2+SVM 92.5797 93.4783 88.4058 83.7037 82.1705 

TABLE III.  PERFORMANCE ENHANCEMENTS BY INFORMATION-GAIN (IG) 

 Sample C000 Sample C111 Sample C222 Sample C333 Sample C444 

IG+J48 93.2007 92.1406 88.3212 84.3284 78.1250 

IG+KNN 91.2409 91.2409 84.6715 74.6269 78.1250 

IG+BayesianNet 92.8909 92.1606 89.0511 86.5672 79.6875 

IG+Logistic 92.7536 92.7536 87.6812 84.4444 82.1705 

IG+RBFNetwork 76.8116 73.1884 73.1884 75.5556 79.8450 

IG+SVM 92.0290 92.7536 88.4058 82.9630 82.1705 
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TABLE IV.  PERFORMANCE IMPROVEMENTS BY DIMENSIONALITY REDUCTIONS 

 Sample C000 Sample C111 Sample C222 Sample C333 Sample C444 

ICA+SVM 74.8350 65.2200 72.1980 65.2750 65.3210 

PCA+SVM 82.6400 84.0700 76.0990 78.6810 78.4620 

LDA+SVM 86.2091 81.0989 81.0990 80.0550 77.5640 

KPCA+SVM 88.8680 87.0330 80.9340 81.5930 79.2310 

Isomap+SVM 83.2970 86.2641 82.6919 83.0770 76.0260 

KLCCF+CKM 100.0000 92.8600 85.7100 84.6200 79.4900 

TABLE V.  AVERAGE PERFORMANCE OF EACH CLASSIFIER 

J48 KNN BNet Log RBFNet SVM 

83.2363 82.0282 86.1026 77.8960 83.6653 86.6093 

x2+J48 x2+KNN x2+BNet x2+Log x2+RBFNet x2+SVM 

86.6972 83.2451 87.9415 88.1056 76.1829 88.0676 

IG +J48 IG +KNN IG +BNet IG +Log IG +RBFNet IG +SVM 

87.2232 83.9810 88.0715 87.9607 75.7178 87.6644 

ICA +SVM PCA +SVM LDA +SVM Isomap +SVM KPCA +SVM KLCCF+CKM 

68.5698 79.9904 81.2052 82.2712 83.5318 88.5360 

Note: “Bnet” is the abbreviation of “Bayesian Network”; “Log” is the abbreviation of “Logistic”. 

 

Next, we compare our method (CKM on KLCCF) with 

other dimensionality reduction methods. We compared 

our system with other famous subspace or manifold 

learning algorithms such as the PCA, ICA (Independent 

Component Analysis, Hyvärinen et al. [17]), LDA, kernel 

PCA (KPCA), and Isomap (Tenenbaum et al. [18]). The 

dimension of subspace was set to five for all algorithms. 

Table IV shows that CKM on KLCCF significantly 

outperform other classifiers. It achieved the highest 

accuracy. This results fully demonstrate that financial 

data are not sampled from a linear manifold. Hence, 

linear algorithms such as PCA ICA, and LDA fail to 

extract discriminative information from data manifold. 

Considering graph-based nonlinear manifold learning 

algorithms (KLCCF) are more effective. On the other 

hand, our data come from diverse sources, only multiple 

kernel machines such as CKM are powerful enough to 

handle the complex structure in data. We also find in 

Table 4 that nonlinear dimensionality reduction methods 

(such as kernel PCA) is not always better than linear 

algorithms (PCA ICA, and LDA), since KPCA works in 

an unsupervised manner which lacks information to guide 

the mapping learning that could maintain most 

discriminant power. However, KLCCF is a supervised 

algorithm which nonlinearly forms a manifold not only 

preserving local geometry of the data samples, but also 

contains label information to discriminate the data. 

Table V displays average performance for each 

classifier. Table V clearly demonstrate the superiority of 

the our new classifier. The new classifier substantially 

outperforms other dimensionality reduction based 

classifiers. Moreover, it also outperforms typical SVM 

classifiers. 

IV. CONCLUSIONS 

From geometric perspective, data is usually sampled 

from a low dimensional manifold embedded in high 

dimensional ambient space. KLCCF finds a compact 

representation which uncovers the hidden information 

and simultaneously respects the intrinsic geometric 

structure. This study constructed a CKM on KLCCF to 

create a novel system for bankruptcy predictions. In 

KLCCF, an affinity graph is constructed to encode the 

geometrical information and KLCCF seeks a matrix 

factorization which respects the graph structure. CKM is 

an excellent framework to exploit multiple data sources 

with strong capability to identify the relevant sources and 

their apposite kernel representation. Combining the above 

two techniques make our hybrid classifier powerful and 

robust. The empirical results confirmed the superiority of 

the proposed system. CKM on KLCCF is a robust and 

reliable framework for high dimensional data mining. 

Future research may consider semi-supervised 

subspace or manifold learning algorithms to enhance 

system performance, or to include more variables such as 

non-financial and macroeconomic variables to improve 

accuracy. 
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