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Abstract—In this paper, we present a comparative 

performance of the various analysis-synthesis techniques 

which separate the acoustic parameters and allow the 

reconstruction of the speech signal, which is very close to 

original speech. The analysis-synthesis of speech signal is 

used for speech enhancement, speech coding, speech 

synthesis, speech modification and voice conversion. Our 

comparative study includes Linear Predictive Coder, 

Cepstral Coder, Harmonic Noise Model based coder and 

Mel-Cepstrum Envelope with Mel Log Spectral 

Approximation. The comparative performance of these 

vocoders is evaluated using different objective measures 

namely line spectral distortion, Mel cepstral distortion and 

signal to noise ratio. Along with objective measures, 

subjective measure, mean opinion score is also considered to 

evaluate the quality and naturalness of the resynthesized 

speech in term of original speech. 

 

Index Terms—acoustic parameters, complex cepstrum, 

harmonic noise model, linear predictive coefficients, mel-

cepstrum envelope, mel log spectral approximation, vocoder 

 

I. INTRODUCTION 

Vocoder is an intrinsic tool, in the field of signal 

processing and research, for speech analysis and 

synthesis. One of the major advantages of the speech 

vocoder is that it allows the separation of the segmental 

and supra-segmental parameters to enhance, modify and 

resynthesize speech signal. The analyzed parameters are 

used in the framework of speech recognition, speaker 

recognition and vocal emotion recognition. The 

modifications of these analyzed features are used for 

various applications like speech coding, speech 

enhancement, speech and speaker modification and voice 

conversion [1]-[4]. The speech signal contains acoustic 

and linguistic information. The language, dialect, 

phoneme pronunciation and social background of speaker 

are related to the linguistic parameters. The acoustic 

parameters are related to the physical structure of human 

speech production and perception mechanism. They are 

reflected at various levels such as shape of the vocal tract, 

shape of the glottis excitation and long term prosodic 

parameters. Among these the shape of vocal tract is 

represented using linear prediction Analysis while the 

glottal parameters are shown by equivalent modification 
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of Linear Predictive Coefficients (LPC) termed as LP 

residual [5]. 

The term vocoders are classified on the basis of the 

type of information they yield as parametric and non-

parametric vocoders. The parametric vocoders are phase 

vocoder, formant vocoder, LPC, Complex Cepstrum (CC) 

[6], Mel Frequency Cepstrum Coefficients (MFCC), 

Wavelet filter Bank [7], Harmonic Noise Model (HNM) 

and STRAIGHT [8]. The non-parametric vocoders are 

those which are not based on any speech processing 

models such as channel vocoders, Pitch Synchronous 

Overlap and Add (PSOLA) and its variants [9]. Another 

way of classifying vocoders may be on the basis of 

speech models namely, the source-filter and perception 

models. The class of source-filter model includes the LP 

related vocoder, cepstrum and sinusoidal model based 

vocoder. The LPC based analysis-synthesis may yield a 

very low data rate with respect to speech coding. It 

reduces the computational complexity and produces more 

natural synthetic speech. Further, the homomorphic 

vocoders [10], [11] are used for de-convolution of vocal 

tract and glottal parameters from the speech signal. The 

cepstrum vocoders work on the principle of 

homomorphic decomposition. The models based on 

human auditory system are the perception based models 

such as Mel Cepstrum Envelope (MCEP) and the HNM. 

The MCEP [12] overcomes the drawbacks of cepstrum 

coefficients and requires the Mel Log Spectrum 

Approximation (MLSA) [13] filter for synthesis of 

speech. Subsequently, the HNM has been proposed [14] 

to provide flexibility for speech modification and 

synthesis with good quality of synthesized speech. Thus, 

taking this into consideration, this paper covers 

implementation of a range of vocoders such as LPC, CC, 

MCEP-MLSA and HNM Vocoders. Although the 

vocoders have been part of speech applications for quite 

some time, not much work has been presented in this 

direction. Similar approaches have been found in [15], 

[16], but this paper presents a detailed evaluation and 

implementation of various vocoders under controlled 

experimental conditions. Nevertheless, the work may still 

offer useful insights in terms of: i) resemblances and 

dissimilarities between various vocoders; ii) parameters 

that affect the quality of speech; iii) most suitable 

vocoder in case of naturalness. 

The paper is organized as follows: Section II describes 

the implementation of LPC, its analysis and synthesis. 
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Section III comprises of Complex Cepstrum based 

analysis-synthesis. MCEP-MLSA based vocoder is 

presented in Section IV. Section V consists of HNM 

employed for analysis-synthesis process. The database 

and comparative performance using objective and 

subjective evaluations are discussed in Section VI. Lastly 

the section VII lists the concluding remarks and 

discussion of results. 

II. LINEAR PREDICTION ANALYSIS-SYNTHESIS 

A highly accurate analysis-synthesis scheme is LPC 

Vocoder [17]-[19] which is widely used due to its 

simplified architecture and quality of synthesized speech. 

For low-bit-rate speech coding applications, the LPC 

parameters are generally used to encode the spectral 

envelope. The LPC parameters form a perceptually 

attractive description of the spectral envelope since they 

describe the spectral peaks more accurately than the 

spectral valleys [20]. As a result, they are used to 

describe the power spectrum envelope not only in LPC-

based coders [21], but also in some coders which are 

based on entirely different principles [22]-[24]. Due to 

issues of quantization, stability and independence of 

vocal tract and glottal excitation, LPC parameters are 

converted into LSF (Line Spectral Frequencies) which 

overcome these limitations leading to comparatively far 

better results [25]. In this work, the input speech signal is 

pre-processed and segmented in 30msec frame with 50% 

(i.e. 15msec) overlapping frames. Each frame is 

multiplied by hamming window which smoothness the 

signal and removes artifacts that will be generated during 

reconstruction. The LPC analysis can be represented 

using an all pole filter followed by an error prediction 

filter as shown in Fig. 1. The LPC analysis is fed to 

synthesizer to reconstruct the speech signal. 

The predicted speech sample s(  ) is given as 

 (  )  ∑    (    )     (  )
 
      (1) 

where    is the discrete time instant, x(  ) is the glottal 

excitation signal, cp is the linear prediction co-efficient 

and p is the order of LPC filter. The synthetic speech is 

 ̂(  )  ∑    (    ) 
           (2) 

The predicted error is 

 (  )   (  )   ̂(  )   ((  )  ∑    (    ) 
    (3) 

 

Figure 1. LPC analysis-synthesis 

Generally, the order of LPC coefficients is taken as 

two coefficients per formants. In this work, we used the 

Akaike Information Criteria (AIC) [26] to compute the 

order of LPC as 16. 

III. COMPLEX CEPSTRAL ANALYSIS-SYNTHESIS 

Cepstral analysis-synthesis scheme follows the 

principle of homomorphic decomposition that the speech 

signal is a convolution of vocal tract filter response with 

an impulse excitation. Thus through the process of 

liftering, a simple and robust parametric approach is 

obtained which can be employed to extract fundamental 

frequency of speech while they show some limitations in 

formant estimation validating the use of LPC in case of 

estimation of formants. The Cepstrum may be real or 

complex. The real cepstrum has an infinite impulse 

response with a minimum phase that discards the glottal 

flow information of the speech and only the magnitude is 

considered. This contradicts to work presented by [27], 

[28] who suggests that the speech signal comprises of 

both minimum as well as maximum phase indicating that 

phase too contains information. Unlike the real cepstrum, 

the complex cepstrum vocoder takes into account the 

phase along with magnitude of the speech signal. This 

results into a stable, finite impulse response with a mixed 

phase vocoder. [6] has shown that the Complex Cepstrum 

Vocoder can be certainly used in speech processing 

applications like Speaker Modification and outperforms 

the real cepstrum vocoders. The CC co-efficient is given 

as 

  ( )                 ( )                (4) 

where s(n) = Original Speech cc(m)= Complex Cepstrum 

Coefficients, FFT and IFFT are the Fourier and Inverse 

Fourier Transform respectively 

  ( )                 ( )                 (5) 

where ss(n) = synthetic speech signal. 

The Fig. 2 shows block diagram of Complex Cepstrum 

based Vocoder. The input speech signal is pre-processed 

and segmented in 30msec frame with 50% (i.e. 15msec) 

overlapping frames. Each frame is multiplied by 

hamming window which smoothens the signal and 

removes artifacts that will be generated during 

reconstruction. The order of FFT is chosen to 1024. 

 

Figure 2. Complex cepstrum vocoder 

Although the complex cepstrum overcomes the 

limitations of LPC vocoder, it is highly complex and has 

a higher order than the conventional LPC Vocoder. 

IV. MEL-CEPSTRAL ENVELOPE-MEL LOG SPECTRUM 

APPROXIMATION ANALYSIS-SYNTHESIS 

The higher order of cepstral analysis-synthesis leads to 

computational complexity which is overwhelmed by 

using an extension to cepstrum on Mel-scale, termed as 

Mel Cepstral Coefficient [12]. The log spectrum on a Mel 
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frequency scale is considered to be a more effective 

representation of the spectral envelope of speech than that 

on the linear frequency scale. The Mel cepstrum envelope 

which is defined as the Fourier transform of a spectral 

envelope of the Mel log spectrum has a comparatively 

low order; hence it is an efficient parameter. The Mel 

cepstrum also has the same good features as those of the 

conventional cepstrum. The MLSA filter is used for 

cepstrum synthesis on the Mel scale [13]. It has the 

advantages of low coefficient sensitivity and an 

improvement in quantization of coefficient. Pitch 

parameter (F0) is obtained by using peak picking 

algorithm for the upper quefrency cepstrum. 

Fig. 3 shows MCEP-MLSA based vocoder. In the 

analysis step, MCEPs and the fundamental frequency (F0) 

is derived for every 15 msec duration with 30% 

overlapping. As per [12], the frequency warping factor is 

taken as           with filter order         as        and 

the quantization width   as 0.25. In synthesis step, the 

MLSA filter gives a highly precise approximation with 

third order modified Pade approximation 0.024 (0.2 dB) 

[12]. 

The MCEP-MLSA vocoder yields same quality speech 

synthesized at 60-70 % of data rates in the conventional 

cepstral vocoder or the LPC vocoder. 

 

Figure 3. MCEP-MLSA vocoder 

V. HARMONIC-NOISE MODEL ANALYSIS-SYNTHESIS 

The HNM decomposes the speech signal into harmonic 

and noise part where the harmonic part accounts for the 

periodic structure of the speech signal and the noise part 

accounts for the non-periodic structure of the speech 

signal such as fricative noise, period to period variation 

of the glottal excitation [3], [14]. HNM has a capability 

of providing high quality speech synthesis and prosodic 

modifications. One main drawback of this model is its 

complexity. 

Thus speech signal is given as 

 ( )   ( )   ( )   (6) 

where h(n) is the harmonic part while e(n) is the noise 

part. 

 ( )  ∑   ( ) 
       (  ( ))   ( )       (7) 

where Gm(n) is the amplitude of m
th

 harmonic, 

 ( ) ∫   ( )  
 

- 
 is the phase of the m

th
 harmonic,   ( ) 

is the instantaneous frequency and  ( )  is the residual 

signal. The harmonic part is simply subtracted from the 

speech signal to yield the noise part. Fig. 4 shows the 

HNM analysis and the Fig. 5 shows HNM synthesis. 

The maximum voiced frequency and the Pitch are 

estimated in the HNM analysis for every 10ms frame. 

The window length is dependent on minimum 

fundamental frequency. The voiced and unvoiced 

detection is carried out by assuming the threshold value 

to 5dB. The noise estimation is performed by an AR filter 

with an order of 10. During the synthesis, the amplitude, 

phase and frequency are linearly interpolated along with 

phase un-warping. The HNM suffers from an inter-frame 

incoherence between voiced frames when frames are 

concatenated as they are considered independent of 

position of glottal closure instants [4]. This issue can be 

resolved by post analysis like cross correlation function 

to estimate phase mismatches [4]. 

 

Figure 4. HNM analysis 

 

Figure 5. HNM synthesis 

VI. DATABASE AND EXPERIMENTAL RESULTS 

For the evaluation of mentioned vocoders, the CMU-

ARCTIC corpus is used [29]. The experimental training 

set includes phonetically balanced English utterances of 

seven professional narrators. The utterances in this 

database are sampled at 16 kHz. The corpus includes 

sentences of JMK (Canadian Male), BDL (US Male), 

AWB (Scottish Male), RMS (US Male), KSP (Indian 

Male), CLB (US Female) and SLT (US Female). 

In order to evaluate the comparative performance of 

discussed vocoders the objective measures, such as Mel 

Cepstral Distortion (MCD), Log Spectral Distortion (LSD) 

and Signal to Noise Ratio (SNR) are computed. The end 

user of the vocoder system is a human listener, hence 

subjective perception is essential to confirm the objective 

measures. The subjective measures include rating the 

system performance in terms of similarity and quality of 

the resynthesized speech signal. 
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A. Log-Spectral Distortion 

The LSD is used to find the closeness between the two 

speech signals. It is computed as Root Mean Square 

(RMS) value of the difference of the LP-log spectra of 

the synthesized speech and original speech signal. The 

frame durations is 25ms long with 60% (15ms) 

overlapping between the adjacent frames [30]. The RMS 

value of the difference between linear predictive spectra 

of the original speaker speech (sn) and synthesized 

speaker speech (sc) in the frame is defined as 

    
 

 
∑ {

 
 

 
  

∑ ((   (  )     (  )) 
    

   }

   

  
   
    (8) 

where, N is the frequency bin. 

In the computation of LSD, 30 different samples of 

different Male and Female speakers of ARCTIC database 

are considered. Fig. 6 shows the LSD based comparative 

performance of the LPC, CC, HNM and MCEP-MLSA 

vocoders. The results reveal that the performance of the 

LPC and Complex Cepstrum vocoders are consistent. 

 

Figure 6. LSD between original and synthesized speech samples of 
mentioned vocoders 

B. Mel Cepstral Distortion 

Along with LSD, the Mel Cepstral Distortion (MCD) 

is also used as an objective error measure, which is 

known to have correlation with subjective test results. 

The MCD between the synthesized speech and original 

speech is calculated as [31] 

   [  ]  
  

    
√∑      

  
 
        

        (9) 

where        and        are the     Mel Cepstrum 

Coefficients (MCC) of the original and synthesized 

speech respectively and D is the order of MFCC features. 

The zero
th

 term is not considered in MCD computation as 

it describes the energy of the frame and it is usually 

copied from the source. In these experimentation 30 

samples of two Male and Female each are considered. 

Among these the MCD of eight samples are shown in the 

Fig. 7 with multiple shades for individual vocoder 

scheme. 

C. Signal to Noise Ratio 

The SNR in dB is the ratio of signal energy to the 

energy of noisy speech [30]. It is defined as 

            
∑  ( )  

∑ [ ( )   ( )]  
       (10) 

where s n  is original speech and s’ n  is the synthetic 

speech. The original and synthetic signal must be 

synchronized as the SNR value is highly sensitive to 

alignment of both signals. 

Fig. 8 shows the signal to noise of various vocoding 

techniques. Due to susceptibility to noise, the SNR may 

not be as high as possible for analysis-synthesis method. 

 

Figure 7. MCD based objective test for various vocoders 

 

Figure 8. SNR curve for multiple vocoders 

 

Figure 9. MOS test for vocoders 

D. Subjective Test 

The effectiveness of the algorithm can be evaluated 

using different subjective listening tests. The subjective 

tests are used to determine the closeness between the 

synthesized and original speech sample. Thirty 

synthesized speech utterances for each of vocoder and the 

corresponding original utterances were presented to 

twenty non-professional listeners. They were asked to 

judge their comparative performance with corresponding 
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source and target on a scale of 1 to 5; where rating 5 

specifies an excellent match between the transformed and 

target utterances, rating 1 indicates a poor match between 

the original target utterance and the transformed utterance 

and the other ratings indicate different levels of variation 

between 1 and 5. The ratings given to each set of 

utterances were used to calculate the Mean Opinion 

Scores (MOS) [32] for the mentioned vocoders and the 

results are shown in Fig. 9 with various colour bands 

indicating their respective scores piled up one after the 

other. The obtained MOS results show that the synthesis 

was effective, if the LPC vocoding scheme is employed 

with similar results from CC vocoder. 

VII. CONCLUSION 

In this paper we compare the performance of various 

vocoders namely, LPC, Complex Cepstrum, Harmonic 

Noise Model and MCEP-MLSA Vocoders. Evaluation of 

synthesized speech in terms of quality and naturalness is 

performed by experimental analysis. Various objective 

measures such as LSD, MCD and SNR are used. Along 

with these, the subjective measure such as MOS is also 

considered to measure the quality of the synthesized 

speech with respect to original speech signal. These 

objective and subjective results show that the 

performance of the LPC and CC vocoder is consistent for 

all the speech samples. However, the computational 

complexity of the complex cepstrum is higher than LPC 

vocoder. In analysis, the Mel cepstrum envelope is more 

robust with less computational complexity but in 

synthesis it loses pitch and phase of the speech signal. 

The results of this experiment is not stretched in all 

possible ways to yield very accurate answers but are 

precise about the performance of each individual vocoder. 

Lastly, the HNM vocoder although very popular for 

speech synthesis works profoundly well in case of highly 

periodic signals but in fact signals are rarely perfectly 

periodic in nature. It is also true that the sampling rate of 

speech signal affects the HNM performance. Hence there 

is a slight degradation in speech quality due to roll off 

characteristics at higher sampling rates. 
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