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Abstract—Manifold learning is an emerging research 

domain of machine learning and helps to overcome the 

limits of standard neural networks which are restricted to 

Euclidean spaces. In this work, we give an introduction into 

manifold learning and how it is employed for important 

application fields in multimedia like similarity search, image 

classification, synthesis & enhancement, video analysis, 3D 

data processing and nonlinear dimension reduction. 

Furthermore, we present available open source software 

frameworks for manifold learning. One can see from this 

survey that manifold learning has a lot of potential for 

computer vision and multimedia.  
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I. INTRODUCTION 

Deep learning methods are nowadays the best way for 

the automatic analysis of multimedia data (e.g. images, 

video or 3D data) for tasks like classification or detection. 

However, classic neural networks are restricted to data 

lying in vector spaces, while data residing in smooth non-

Euclidean spaces arise naturally in many problem 

domains. For example, a 360◦  camera actually captures a 

spherical image, not a rectangular image. We will focus 

in the following on manifolds, especially Riemannian 

manifolds, which are well suited for generalizing a vector 

space because they are locally Euclidian and 

differentiable. 

A manifold M of dimension d corresponds to a 

topological structure which locally (so in the 

neighborhood of a point p ∈  M) looks like a 

d−dimensional Euclidean space. The ‖best‖ local 

approximation of this neighborhood of p with a 

d−dimensional Euclidean space is its tangent space TpM. 

The tangent space TpM can be seen as a linear 

approximation of M around p. For example, for a 2-

dimensional manifold its tangent space TpM is the tangent 

plane going through this point (see Fig. 1). A Riemannian 

manifold is a smooth manifold M equipped with a 

positive definite inner product gp on the tangent space 

TpM of each point p. 
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Figure 1. Tangent space and exponential map on a 2-dimensional 
manifold. Image courtesy of [1]. 

The inner product g induces a norm on the tangent 

space, which subsequently allows us to calculate curve 

lengths and distances on the manifold M. For each curve 

c(t) on the manifold its length can be calculated by 

integrating the norm along the curve [2–6]. A geodesic 
curve is a length-minimizing curve connecting two points 

p and q on the manifold. The distance between these 

points is defined as the length of the geodesic. Let p be a 

(reference) point on the manifold and v a vector of its 

tangent space TpM. The vector v can be mapped now to 

the point q on the manifold that is reached after unit time 

t = 1 by the geodesic c(t) starting at p with tangent vector 

v. This mapping expp(v) : TpM → M is called the 

exponential map at point p. 

The inverse mapping logp(q) : M → TpM is uniquely 

defined around a neighborhood of p. Informally, the 

exponential map and logarithm map move points back 

and forth between the manifold and the tangent space (see 

Fig. 1) while preserving distances. Furthermore, 

derivative operators like differential, intrinsic gradient, 

divergence and laplacian can be also defined on a 

manifold [7, 8], which allows us to perform calculus on 

the manifold. 

Closely related to manifolds are Lie groups. A Lie 

group is a smooth manifold that also forms a group [3], 

where both group operations (commonly called 

multiplication and inverse) are smooth mappings of 

manifolds. The Lie algebra g of a Lie group M is defined 

as the tangent space at the identity TeM, where e is the 

identity element of the group (see section 16 in [8]). 

Key components of neural networks – like mean, 

convolution, nonlinearities and batch normalization – can 

be defined on Riemannian manifolds as described in [9–

13]. Optimization algorithms for Riemannian manifolds 

(gradient descent, SGD, Adam etc.) can be found in [14–

21]. 
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Commonly encountered examples of Riemannian 

manifolds in computer vision are the n−sphere S
n
, the 

manifold of n×n symmetric positive matrices Pn, the 

special orthogonal group SO(n) (rotation matrices), the 

special euclidean group SE(n) (rigid body 

transformations), Grassman manifold Gr(n,p) (collection 

of all p−dimensional linear subspaces in R
n
, see [22]) and 

the Stiefel manifold St(n,p) (collection of all p-

dimensional orthogonal bases in R
n
). 

In the following, we will give an overview of manifold 

learning methods employed in important application 

fields in multimedia (similarity search, image 

classification, synthesis & enhancement, video analysis, 

3D data processing, nonlinear dimension reduction) and 

about available open source software frameworks. 

II. SIMILARITY SEARCH AND RETRIEVAL 

Image retrieval deals with searching for similar images 

in an image gallery, given a certain query image (see the 

surveys [23, 24]). Many methods employ for this metric 

learning, which transforms input images into embeddings 

(≈ feature vectors) and learns a distance function between 

these embeddings. 

The authors of [25] propose regularized ensemble 

diffusion for refining/reranking the initial similarity 

search results. They show that regularized ensemble 

diffusion is significantly more robust against noise in the 

data than standard diffusion. A diffusion process [26] 

models the relationship between objects on a graph-based 

manifold, wherein similarity values are diffused along the 

geodesic path in an iterative way. 

In [27] an unsupervised framework is presented for the 

identification of hard training examples for the training 

of an embedding. Hard training examples (both positive 

and negative samples) are identified by disagreement 

between euclidean and manifold similarities. 

A time- and memory-efficient algorithm for estimating 

similarities on the data manifold is proposed in [28]. 

They adapt the random walk procedure to estimate 

manifold similarities only an a small number of data in 

each mini-batch, rather than on all training data. 

The MLS
3
RDUH algorithm [29] utilizes the intrinsic 

manifold structure in the feature space and cosine 

similarity to reconstruct the local semantic structure and 

build a similarity matrix upon it. Then a novel log-cosh 

hashing loss function is used to optimize the hashing 

network in order to generate compact hash codes, guided 

by the similarity matrix. 

The work of [30] proposes a unsupervised metric 

learning algorithm that learns a metric in a lower 

dimensional latent space using constraints provided as 

tuples, which rely on pseudo-labels obtained by a graph-

based clustering method (authority ascent shift). The 

parameters of the approach are learned jointly using 

Riemannian optimization on a product manifold. 

III. IMAGE CLASSIFICATION AND OBJECT DETECTION 

The work [19] proposes a framework for the 

transformation of problems with manifold constraints into 

unconstrained problems on an Euclidean space through a 

mechanism they call dynamic trivializations. They show 

how to implement these trivializations efficiently for a 

large variety of commonly used matrix manifolds and 

provide a formula for the gradient of the matrix 

exponential. 

The authors of [31] propose manifold mixup, a novel 

regularizer which forces the training to interpolate 

between hidden representations – captured in the 

intermediate layers of the network – of samples. It can be 

seen as a generalization of input mixup which does the 

interpolation on a random layer of the network (whereas 

input mixup uses always layer 0). Experiments for the 

task of image classification show that manifold mixup 

flattens the class-specific representation (lower variance) 

and generates a smoother decision boundary. 

In [32] Hyperbolic Busemann learning with ideal 

prototypes is introduced. It places class prototypes at the 

ideal boundary of the Poincare ball (a hypersphere 

manifold with hyperbolic geometric) and introduces the 

penalized Busemann loss for optimizing with respect to 

ideal prototypes.  

An approach for few-shot image classification is 

presented in [33] which proposes embedding propagation 

as an unsupervised non-parametric regularizer. 

Embedding propagation leverages interpolation between 

the extracted features of a neural network, based on a 

similarity graph. Experiments show that embedding 

propagation yields a smoother embedding manifold and 

gives better performance on three standard datasets for 

few-shot image classification. 

The work [34] introduces a knowledge distillation 

method which is able to transfer an existing CNN model 

trained on perspective images to spherical images 

captured with a 360
◦ 

camera without any additional 

annotation effort (see Fig. 2). They train a spherical 

Faster R-CNN model with this method, demonstrating 

that an object detector for spherical images (in 

equirectangular projection) can be trained without any 

annotations in the 360
◦ 
images. 

 

 

 

Figure 2. Transfer CNNs trained on flat images to 360° images with the 
method from [34]. 

IV. IMAGE SYNTHESIS AND ENHANCEMENT 

For image synthesis and enhancement, state of the art 

algorithms employ either GANs (generative adversial 

networks [35]) or diffusion models [36]. 

The authors of [37] show that current solvers 

employed in diffusion models throw the generative 

sample path off the data manifold, causing the error to 
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accumulate. They propose an additional correction term 

inspired by the manifold constraint to force the iterations 

to be close to the data manifold. The proposed manifold 

constraint is easy to add to a solver, yet boosts its 

performance significantly. 

In [38] a novel implicit data augmentation approach 

for training GANs is proposed which facilitates stable 

strong and synthesizes high-quality samples. Specifically, 

the discriminator is interpreted as a metric embedding of 

the real data manifold, which offers real distances 

between real data samples. Experiments show that the 

proposed method improves the performance of image 

synthesis in the low-data regime. 

A method for comparing data manifolds based on their 

topology is presented in [39]. They introduce novel tools, 

specifically cross-barcode and manifold topology 

divergence score, which are able to track spatial 

discrepancies between manifolds on multiple scales. They 

apply it to assess the performance of generative models in 

various domains (images, 3D shapes or time series) and 

demonstrate that these tools are able to detect common 

problems of GAN-based image synthesis like mode 

dropping, mode collapse and image disturbance. 

The work [40] proposes progressive attentional 

manifold alignment for style transfer, which progressively 

aligns content manifolds to their most related style 

manifolds. Afterwards, space-aware interpolation is 

performed in order to increase the structural similarity of 

the corresponding manifolds, which makes it easier for 

the attention module to match features between them. 

Experiments show that the method generates high-quality 

style-transferred images (see Fig. 3). 

The authors of [41] proposes an algorithm for 

improving the diversity and visual quality of images 

generated by a conditional GAN, by systematically 

encouraging a bi-lipschitz mapping between the latent 

and output manifold. The performance improvement is 

shown on several image-to-image translation tasks. 

The FLAME algorithm proposed in [42] performs 

highly realistic image manipulations (e.g. changing 

expression, hair style or age of a synthetic face, see Fig. 4) 

with minimal supervision. It estimates linear latent 

directions in the latent space of StyleGAN2 using only a 

few image pairs and introduces a novel method for 

sampling from the attribute style manifold. 
 

 

Figure 3. From left to right: Content image, style image, style-
transferred image [40]. 

V. VIDEO ANALYSIS 

Most manifold learning methods for video analysis 

deal with the important task of human action recognition. 

Often they employ neural networks over the manifold Pn 

of symmetric positive matrices (usually covariance 

matrices) for this. 

The authors of [13] propose a dilated convolution 

operator on manifolds, based on the weighted Frechet 

mean [11], as well as a residual connection operator. 

Both are important building blocks of modern neural 

networks. They construct a manifold-valued network 

employing covariance matrices (calculated from CNN 

features) and train this network for human action 

detection on the UCF-11 video dataset. 

In [9] the convolution is defined as the weighted sum 

(reprojected to the manifold) in the tangent space TaM, 

where a is the Frechet mean of the input points for the 

convolution. They show that their proposed convolution 

operator is an isometry of the manifold, which 

corresponds to the translation-invariance property of the 

convolution in an Euclidean space. 

The work [43] proposes a geometry-aware deep 

learning algorithm for skeleton-based action recognition, 

where skeleton sequences are modeled as trajectories on 

Kendall’s shape space and then fed into a CNN-LSTM 

network. Kendall’s shape space is a special quotient 

manifold that defines shape as the geometric information 

that remains when location, scaling and rotational effects 

are filtered out [44, 45]. 

The algorithm [46] adopts a neural network over the 

manifold Pn of symmetric positive definite matrices as the 

backbone and appends a cascade of Riemannian 

autoencoders to it in order to enrich the information flow 

within the network. Experiments on the tasks of emotion 

recognition, hand action recognition and human action 

recognition demonstrate a favourable performance 

compared to state of the art methods. 

VI. 3D DATA PROCESSING 

The work [47] proposes a novel algorithm for 

geometric disentanglement (separate intrinsic and 

extrinsic geometry) of 3D models, based on the 

fundamental theorem for surfaces. They describe surface 

features via a combination of conformal factors and 

surface normal vectors and propose a convolutional mesh 

autoencoder based on these features. The conformal 

factor defines a conformal (angle-preserving) 

deformation between two manifolds. The algorithm 

achieves state-of-theart performance on 3D surface 

generation, reconstruction and interpolation tasks (see Fig. 

5). 

 

 

Figure 4. Image editing with FLAME [42]. 

The authors of [48] propose an approach for learning 

generative models on manifolds by minimizing the 

probability path divergence. Unlike other continuous 
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flow approaches, it does not require solving an ordinary 

differential equation during training. Furthermore, it 

scales well also for high dimensions. 

In [49] a method for rotation (pose) estimation of 3D 

objects from point clouds and images is presented. For 

this, they propose a novel manifold-aware gradient in the 

backward pass of rotation regression that directly updates 

the neural network weights. 

The work [50] introduces intrinsic neural fields, a 

novel and versatile representation for neural fields on 

manifolds. Intrinsic neural fields are based on the 

eigenfunctions of the Laplace-Beltrami operator, which 

can represent detailed surface information directly on the 

manifold. Furthermore, they extend neural tangent kernel 

analysis to manifolds for better insight into the spectral 

properties of neural fields. 

VII. NONLINEAR DIMENSION REDUCTION 

Many real world high-dimensional datasets are 

actually lying in a low-dimensional manifold (manifold 

hypothesis). Nonlinear dimensional reduction algorithms 

project high-dimensional data onto such a low-

dimensional manifold, while trying to preserve distance 

relationships in the original high-dimensional space as 

good as possible. 

Classical approaches for nonlinear dimension 

reduction are Isomap, Local Linear Embedding (LLE) 

and Laplacian Eigenmaps (see the survey in [51]). In 

recent years, more powerful approaches like t-SNE, 

UMAP, TriMAP and PaCMAP have emerged [52]. From 

these, PaCMAP seems to preserve best both the global 

and local structure of the high-dimensional data. 

In [53], the h-NNE algorithm is proposed, which is 

competitive with t-SNE and UMAP in quality while 

being on order of magnitude faster. The significant 

runtime advantage is possible as h-NNE avoids solving 

an optimization problem and relies on nearest neighbor 

graphs instead. 

For measuring the intrinsic dimension of a data 

distribution, in [54] a method is presented based on recent 

progress in likelihood estimation in high dimensions via 

normalizing flows. 

 

 

Figure 5. Generated 3D models with the geometric disentanglement 

algorithm from [46]. 

The SpaceMAP algorithm introduces the concept of 

equivalent extended distance, which makes it possible to 

match the capacity between two spaces of different 

dimensionality [55] (see Fig. 6). Furthermore, 

hierarchical manifold approximation is performed based 

as real-world data has often a hierarchical structure. 

The DIPOLE algorithm proposed in [56] corrects an 

initial embedding (e.g. calculated via Isomap) by 

minimizing a loss functional with both a local, metric 

term and a global, topological term based on persistent 

homology. Unlike more ad hoc methods for measuring 

the shape of data at multiple scales, persistent homology 

is rooted in algebraic topology and enjoys strong 

theoretical foundations. 

 

 

Fig. 6. Comparison of classic nonlinear dimension reduction methods 

with SpaceMAP [53]. 

VIII. OPEN SOURCE SOFTWARE PACKAGES 

The Python packages Geomstats [57, 58], geoopt [16] 

and Pymanopt [59] provide implementation of the 

standard operators (norm, distance, exp, log, retraction, 

parallel transport etc.) for commonly used manifolds like 

S
n
, Pn, SO(n), SE(n), Gr(n,p) and St(n,p). 

Geomstats and geoopt support also more exotic 

manifolds like Birkhoff polytope [60], stereographic 

projection model, Kendall’s shape space [44, 45], 

Poincare polydisc or hyperbolic space. Furthermore, 

geoopt provides optimizers like SGD or Adam and the 

sampling from a probability distribution on the manifold, 

whereas Geomstats provides Frechet mean estimators, 

K−means, and principal component analysis. 

Theseus [61] provides differentiable optimizers 

(GaussNewton, Levenberg-Marquardt) and solvers (dense 

and sparse versions of Cholesky and LU) as well as the 

manifolds SO(3) and SE(3) which are often used in 3D 

data proc3essing, robotics and kinematics. The 

differentiability of the optimizers/solvers makes it 

possible to include them into a neural network layer or 

loss function. 

IX. CONCLUSION 

Manifold learning is a novel research field in deep 

learning which aims to overcome the Euclidean space 

restriction of standard neural networks. This work 

provides an introduction into the key concepts of 

manifold learning.  

An overview of important manifold learning 

algorithms is given for several application fields in 

multimedia (similarity search, image classification, 

synthesis & enhancement, video analysis, 3D data 

processing and nonlinear dimension reduction) and we 

furthermore describe available open source software 

frameworks. 
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