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Abstract—Electromyography (EMG) signals are muscles 

signals that enable the identification of human movements 

without the need of complex human kinematics calculations. 

Researchers prefer EMG signals as input signals to control 

prosthetic arms and exoskeleton robots. However, the 

proper algorithm to classify human movements from raw 

EMG signals has been an interesting and challenging topic 

to researchers. Various studies have been carried out to 

produce EMG-based human movement classification that 

gives high accuracy and high reliability. In this paper, the 

methods used in EMG signal acquisition and processing are 

reviewed. The different types of feature extraction 

techniques preferred by researchers are also discussed, 

including some combination and comparison of feature 

extraction techniques. This paper also reviews the different 

types of classifiers favored by researchers to recognize 

human movements based on EMG signals. The current 

applications of EMG signals are also reviewed.   

 

Index Terms—classification, electromyography, feature 

extraction, human movement 

 

I. INTRODUCTION 

When muscles are contracted, electrical currents are 

generated. These currents are known as 

Electromyography (EMG) signals. The evaluation of 

EMG signals allows analysis of neuromuscular activities, 

without the need of complex human kinematics 

calculations. Hence, EMG signals are widely used by 

researchers to study human motions or to analyse 

muscular disorders.  

Over the years, EMG-based human movements 

classification had become an interesting and challenging 

topic to researchers. EMG signals can be collected from 

muscles via electrodes. There are two ways to acquire 

EMG signals from human muscles: (i) needle electrodes 

where EMG signals are acquired invasively and (ii) 

surface electrodes where EMG signals are acquired non-

invasively. The non-invasive way is more preferred by 

researchers. The invasive way requires advice and 

guidance from professionals, and could be painful and 

uncomfortable since the needle needs to be inserted into 
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the muscle [1]. A report regarding recommendations on 

surface EMG signals acquisition with the title “Surface 

EMG for Non-Invasive Assessment of Muscles 

(SENIAM)” is published and widely used by researchers 

[2]. The report provides recommendations regarding the 

type, shape, size, materials of electrodes, and also skin 

preparation, inter-electrode distance and the placement of 

electrodes.  

EMG signals are weak and contaminated with noises. 

Noises are present in the signals even during the 

acquisition stage. Examples of noises that pollute the 

EMG signals are ambient noise, inherent noise, motion 

artifact and inherent instability [3]. The presence of 

noises affects the analysis of the EMG signals, and will 

have an impact on the accuracy in the classification of 

human movements. Proper signal amplification, 

processing and filtering are required before further 

analysis of the EMG signals can be carried out for pattern 

classification. Therefore, a lot of research studies has 

been carried out on topics regarding EMG signal 

processing, filtering and analysis that can lead to high 

accuracy in human movement classifications.  

The focus of this paper will be on the reviewing of the 

different kinds of methodologies regarding EMG signal 

acquisition, processing, feature extracting and 

classification that are preferred by researchers over the 

past years. Besides, a review regarding the current 

applications of EMG signals is also discussed.  

II. EMG SIGNAL ACQUISITION 

The placement of electrodes during EMG signals 

acquisition is an interesting topic. Two common types of 

electrode placement techniques are observed in research 

studies: dense sampling approach and precise anatomical 

positioning approach. For dense sampling approach, no 

specific muscle location is pointed out. Instead, 

electrodes are equivalently placed around the limb. For 

precise anatomical positioning approach, electrodes are 

positioned precisely at the main activity spot of those 

chosen muscles. The muscles are usually selected based 

on the movements of interest in which the research study 

aims to classify.  
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It is observed that, for EMG-based classification 

related to hand gestures, researchers mostly preferred to 

use the dense sampling approach for EMG signal 

acquisition. In [4]-[6], the teams used an eight electrodes 

MYO armband for EMG signals acquisition. The MYO 

armband is placed at the forearm to collect EMG signals 

for the classification of hand gestures. In [4], 37 subjects 

participated in this study regarding the classification of 

seven varieties of hand gestures. The best classification 

accuracy achieved is 93% via k-Nearest Neighbor (kNN). 

The research study presented by [5] managed to classify 

three types of hand gestures with a recognition accuracy 

that is greater than 90%. In [6], the EMG signals are 

collected from 21 subjects to analyse the classification of 

one hand gesture. The average classification result is 

around 99%. The research study carried out by [7] 

acquired EMG signals through electrodes located at the 

lower elbow. The EMG signals collected are used to 

classify two hand gestures: grasp and release. The 

classification accuracy reported by the team is around 

92% to 94%.  

For studies related to movement of a specific finger or 

the joint of the upper limb, it is spotted that the precise 

anatomical positioning approach is more preferred by 

researchers. In [8], EMG signals are collected from the 

extensor digitorum communis to study the classification 

regarding the extension of three fingers: index, middle 

and ring. The classification rate reported in the study is 

more than 90%. In [9], EMG signals are gathered from 

the biceps to study the classification of elbow joint. The 

highest classification accuracy achieved by the team is 

around 96.4%. Similarly, the authors of [10] acquired 

EMG signals from the biceps to evaluate the 

classification of elbow joint flexion to control a prosthetic 

arm. In another study regarding the classification of wrist 

joint movements, the authors selected the flexor carpi 

radialis, flexor carpi ulnaris, extensor carpi ulnaris and 

extensor long thumb muscles for the classification of 

wrist flexion, extension, abduction and adduction [11]. In 

[12], palmaris longus and extensor digitorum are chosen 

to classify the flexion of the thumb, pointer finger, middle 

finger and hand grasp. The highest classification rate 

achieved in the study is around 92.64%. However, there 

are also cases where the precise anatomical positioning 

approach is used to acquire EMG signals for gesture or 

posture based classification. In [13], the flexor carpi 

radialis muscle is selected for EMG signal acquisition for 

the classification of eight hand postures. The 

classification accuracy achieved is around 81.2%. In 

another study, EMG signals are collected from the flexor 

carpi ulnaris and extensor carpi radialis, longus and 

brevis to classify three hand gestures [14]. 

III. EMG SIGNAL CONDITIONING AND PROCESSING

Raw EMG signal is naturally weak and contaminated 

with noise. Noises exist even during the signal acquisition 

stage. Raw EMG signal has an amplitude that is around 0 

to 10 mV [15]. EMG signal has frequency that is between 

10 and 500 Hz. According to [16], the main energy of 

EMG signal stands between 50 and 150 Hz. One of the 

common methods to remove noises from EMG signals is 

through signal amplification and filtering. However, 

proper care should be taken into consideration during the 

amplification and filtering process to reduce signal 

distortion in order to prevent the removal of useful 

information from the signal.  

Researchers often prefer to use an instrumentation 

amplifier with a large Common Mode Rejection Ratio 

(CMRR) to remove the background noises from EMG 

signals. These background noises are common mode 

signals that reach the electrodes simultaneously and 

hence can be rejected via instrumentation amplifier. 

Although the elimination of common mode noises is 

performed at the amplification stage, EMG signals can 

also be polluted with noises caused by motion artifacts, 

power lines as well as those at the electrode-skin junction. 

Therefore, signal filtering is required. The frequencies of 

these noises are lower than 20 Hz. Hence, a band-pass 

filter to remove frequency components that are lower 

than 20 Hz and higher than 500 Hz are recommended 

[17], [18]. However, it is also discovered that several 

research studies proposed band-pass filter with different 

band-pass frequencies. The use of the notch filter to 

eliminate power line noise at 50 Hz is also commonly 

seen in research studies [14], [19].  

The study conducted to analyse the capability of 

Support Vector Machine (SVM) and k-Nearest Neighbor 

(kNN) to recognize the three types of hand gestures 

utilized a 15 Hz to 500 Hz band-pass filter and a notch 

filter for signal filtering at 50 Hz [14]. The authors of 

[20]-[22] applied a 10 Hz to 500 Hz band-pass filter for 

the removal of unwanted noises from the EMG signals. 

The study on angle estimation of wrist movement via 

EMG signals described in [11] utilized the Bessel type 

filter in the EMG module to remove noises that are 

outside the ranges of 25 Hz and 500 Hz before 

rectification is performed to the signal. In [23], an EMG 

sensor is developed, where a band pass filter is utilized to 

filter unwanted signals outside the range of 90Hz to 450 

Hz. Besides, a notch filter is also applied to reject 

common mode noise.  

IV. FEATURE EXTRACTION AND CLASSIFICATION

The extraction of features is an important step in EMG 

signal classification. Hence, it is important to select the 

correct method to extract useful information from the 

processed EMG signals so as to increase the classification 

accuracy of EMG signals. There are numerous kinds of 

feature extraction techniques that have been used or 

proposed by researchers over the years. These feature 

extraction methods that are widely preferred by 

researchers are sorted into three categories: time domain, 

frequency domain as well as both time and frequency 

domain.  

Although the statistical properties of EMG signal are 

always changing over the time, time domain features are 

still more preferred by researchers. This is because when 

compared to frequency domain features, computation of 

time domain features are less complex [24]. Among the 

well-known types of time domain extraction methods that 
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are preferred by researchers are Mean Absolute Value 

(MAV), Simple Square Integral (SSI), Root Mean Square 

(RMS), Waveform Length (WL), Zero Crossing (ZC), 

Auto-Regressive Coefficients (AR), Mean Absolute 

Value Slope (MAVS), Integrated Absolute Value (IAV), 
Variance (VAR), Signal Length (SL), Difference of Mean 

Absolute Value (DMAV) and Integrated EMG (IEMG). 

Fast Fourier Transform (FFT) is one type of technique 

that converts EMG signals into the frequency domain 

[25]. Features of the frequency domain have been 

commonly obtained according to the statistical 

parameters of the Power Spectral Density (PSD). 

Examples of frequency domain features are Mean 

Frequency (MNF), Median Frequency (MDF), Peak 

Frequency (PKF), Mean Power (MNP), Power Spectrum 

Ratio (PSR) and Frequency Ratio (FR).  

Human movements can be classified via recognition of 

EMG patterns that are formed from features extracted 

from processed EMG signals. Most of the EMG based 

research studies preferred classifiers that can be trained 

with sample patterns. Among the common classifiers 

preferred by researchers are k-Nearest Neighbor (kNN), 

Artificial Neural Network (ANN), Convolutional Neural 

Network (CNN), Deep Neural Network (DNN), and 

Support Vector Machine (SVM).  

In [10], a trans-humeral patient has successfully 
controlled the flexion of the elbow joint of a prosthetic 

arm based on RMS features extracted according to the 

EMG data collected via the biceps muscle. [26] combined 

the AR model and ANN in their methodology to classify 

six kinds of finger movements. EMG signals are collected 

from four subjects. The classification rate achieved by the 

proposed system is more than 77% for each subject. [27] 

used the wavelet transform technique to extract features 

from EMG signals to classify five finger movements via a 

DNN. The proposed method led to an average of 96.7% 

recognition rate. In another study, valuable features are 

obtained through EMG data collected from four subjects 

via Discrete Wavelet Transform (DWT) to classify three 

kinds of hand movements. The average classification rate 

of the experiment is reported to be 93.25% [28]. The 

study carried out by [21] applied ANN to classify six 

types of forearm movements based on EMG feature 

patterns extracted from Hilbert Huang Transform. 

Subject-specific ANN are trained and tested individually 

using EMG samples from the same subject, collected 

from both the right and left hand. The overall average 
accuracy of the EMG data acquired from the right hand 

(86.2%) is slightly higher in comparison to the left hand 

(85.8%). Nevertheless, no evaluation of data among any 

individual has been carried out in the study.  

There are also various studies that utilized multiple 

time domain features for EMG classification. The study 

conducted by [29] applied five types of time domain 

features, namely MAV, SSC, RMS, SL and ZC, to 

classify the flexion and extension of the elbow joint, 

pronation and supination. The authors managed to 

classify the four movements of eight subjects with an 

average accuracy of 91.78% via ANN. The study 

conducted by [30] described the control of a bionic hand 

via four types of hand poses identification. The team 

extracted four features (WL, SSC, MAV and ZC) from 

the EMG signals of 13 subjects. The team managed to 

achieve 80% and 94% accuracy from the classification of 

WL and MAV features via kNN for offline and online 

experiment respectively. However, the classification 
result of this study is subject-specific as the EMG 

samples utilized in both training and testing are from the 

same subject.  

Besides, there are also research studies that utilized 

multiple features for classification, but at the same time, 

utilized Principal Component Analysis (PCA) to lessen 

the feature to improve recognition rate. [13] extracted 16 

time domain features from the EMG data collected from 

15 subjects, aimed to classify eight types of hand postures. 

PCA is applied to reduce the 16 features into three 

principal components. The team managed to achieve 

81.2% classification rate via ANN. [5] presented a 

sensor-assisted EMG data acquiring system that aimed to 

classify three hand gestures. A total of 48 features are 

produced during signal processing. Similarly, PCA is 

applied to select 14 features for classification. The 

maximum average classification achieved via SVM is 

more than 90%. The authors in [31] assessed the 

performance of two classifiers, namely Linear 

Discriminant Analysis (LDA) and Multinomial Logistic 

Regression (MLR) to recognize eight types of upper limb 
movements that are related to the shoulder joint. A total 

of 26 time domain features and 10 frequency domain 

features are extracted from the EMG signals to form a 

feature vector with a dimension of 288. Then, PCA is 

performed for feature reduction. It is reported that the 

LDA and MLR managed to achieve classification 

accuracy of 88.8% and 91.8% respectively.  

In [20], various features are combined into groups to 

identify the best combination of feature groups that can 

enhance the performance of the EMG based classifier to 

manipulate the prosthetic hand in real-time. Five feature 

groups are formed from nine time domain features to 

classify six hand movements. The team concluded that 

the feature group with MAV, SSC, ZC and WL is the best 

combination when classification is done with Simple 

Logistic Regression (SLR) classifier, where 91.1% of 

accuracy is achieved for healthy subjects and 73.2% is 

achieved for trans-radial amputees.  

Comparison of classifiers to identify the optimal 

classifier is also one of the interesting areas in EMG 

signal classification. In [9], both kNN and SVM classifier 
are used to distinguish the flexion of the elbow joint. Four 

time domain features are obtained from the EMG signals 

collected from 10 subjects. The capability of the kNN 

(96.4%) is better in comparison to the SVM classifier 

(85%). Similarly, [4] analysed the performance of the 

kNN and SVM classifier in recognizing seven hand 

gestures of 37 participants. Both classifiers are used to 

classify feature patterns that are concatenated into a 

feature matrix. The classification accuracy of the kNN 

and SVM classifier is 93% and 83% respectively. 

However, the study conducted by [14] showed that the 

recognition ability of SVM is better than kNN. Seven 

EMG features collected from five subjects while 

performing three hand gestures are obtained via the time 
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domain approach. The EMG features are analysed 

separately. The SVM classified all EMG features better 

than the kNN.  

In [32], the authors compared four types of classifier 

and four types of feature extraction techniques to classify 
five hand movements via EMG signals acquired from six 

subjects. Four time domain features are extracted from 

the raw EMG signals via MAV, RMS, variance and SSI 

techniques. These EMG features are classified using the 

Support Vector Machine (SVM), Naïve Bayes (NB), k-

Nearest Neighbor (k-NN) and Random Forest (RF). From 

the outcomes presented in the study, the combination of 

SVM with MAV and RF with RMS show the highest 

classification accuracy, which is around 98%.  

The study conducted by [12] compared three types of 

classifier, namely ANN, Radial Basis Function (RBF) 

and Learning Vector Quantization (LVQ). The 

performances of these three classifiers are further studied 

in details. The ANN is tested with different number of 

hidden neurons; the RBF classifier with Gaussian 

function is tested with different spread values; while the 

LVQ classifier is evaluated by varying the number of 

competitive neurons. All three classifiers are trained to 

recognize five types of movements based on EMG 

signals collected via two electrodes channels from two 

selected muscles. The classification rate of the ANN with 
10 hidden neurons is the highest, which is approximately 

93%. The average classification accuracy achieved by the 

RBF classifier with 0.7 spread value is around 84%. The 

LVQ with 28 competitive neurons has the best 

recognition rate, where the classification rate achieved is 

89%.  

In the study of [8], an approach is introduced to 

improve the Back-Propagation (BP) algorithm of the 

ANN for the recognition of three finger movements. A 

correction factor is assigned to the hidden layer to enlarge 

the input sensitivity to speed up the time required for the 

training to escape the local minimum point. The proposed 

method is validated with EMG signals collected from one 

male and one female subject, where the AR model is used 

to extract features for classification. The experiment 

result shows that the classification rate attained via the 

improved BP neural network is greater than 90%, which 

is better than the classification rate of a normal BP neural 

network.  

V. APPLICATIONS OF EMG SIGNALS

Over the years, EMG signals have been applied in 

various applications, such as rehabilitation therapy, 

power-assist exoskeleton and prosthetic hand control, 

robotic manipulator control, personal authentication, 

automated diagnosis of neuromuscular diseases as well as 

ergonomics studies.  

In rehabilitation, robot or exoskeleton has been 

introduced to help patients to carry out the required 

movement therapy. During the treatment, these robots or 

exoskeletons are designed to passively help the patients 

to move their limbs with the aid of actuators. In [33], a 7-

DOF upper-limb exoskeleton, known as ETS-MARSE, is 

designed for passive rehabilitation therapy. The controller 

of the ETS-MARSE monitors the EMG signals of the 

wearer continuously during the therapy and offers help if 

the controller detects that the wearer is incapable of 

performing the necessary motion. The study conducted 

by [34] not only utilized EMG signals to control a robotic 
arm, but also implemented an Internet-of-Things system 

that enables real-time remote control applications such as 

switching on or off a light bulb, fan or electric heater via 

EMG-based hand gestures recognition.  

Researchers have been using EMG signals in the 

diagnosis of neuromuscular diseases, including myopathy, 

DPN disorder and amyotrophic lateral sclerosis diseases. 

This method of diagnosis allows neuromuscular diseases 

to be done automatically and more accurately as 

compared to diagnosis through human eyes. In [35], the 

team proposed an automated diagnosis of myopathy 

through EMG data recognition. EMG data obtained from 

the biceps brachii are analysed via various feature 

extraction techniques and later classified via ANN 

classifier. The method introduced by the team is able to 

discriminate EMG signals among healthy subjects and 

myopathy patients, with an encouraging result, where 

87% classification accuracy is achieved. A method on 

EMG-based automated diagnosis of amyotrophic lateral 

sclerosis diseases is proposed by [28]. The combination 

of continuous wavelet transform and SVM classifier is 
used to distinguish EMG signals between healthy and 

unhealthy subjects. The proposed method managed to 

distinguish 93.75% of the samples correctly. 

Since the intention of human movements can be 

determined by analyzing the EMG data gathered from the 

muscles, researchers have been proposing and 

introducing approaches regarding the manipulation of 

human-assistive robotics, such as powered exoskeleton, 

prosthetic arm and bionic hand, via EMG signals. In [36], 

the team proposed the use of a 4-channel EMG signals to 

distinguish six types of hand gestures for the actuation of 

prosthetic drive. The classification outcomes of the EMG 

signals are used as control signals to trigger the DC 

motors designed to mimic the intended movements. The 

team of [10] reported the successful control of an 

artificial arm model developed to demonstrate elbow 

flexion after interpreting the intention of the amputee via 

EMG signal of the biceps muscle. An EMG-based upper-

limb exoskeleton for power assist is developed in [37]. 

The team constructed an EMG-angle model via BPNN to 

recognize RMS features extracted from the EMG signals 
collected from four muscles. The results achieved by the 

team indicated that predicting the intention of the wearer 

through EMG signal analysis could manipulate the 

exoskeleton in real time.  

Researchers have also proposed a EMG-based personal 

authentication. In [38], EMG signals are acquired from a 

proposed 2-channel EMG module to detect a specific 

hand gesture. A total of 100 samples are collected from 

10 subjects. Five feature extraction techniques are used to 

extract useful patterns from the EMG samples. The usage 

of an ANN to recognize the EMG patterns is proposed in 

the methodology. The outcomes obtained via the 

proposed method proved the feasibility of EMG-based 

4©2022 Int. J. Sig. Process. Syst.

International Journal of Signal Processing Systems Vol. 10, No. 1, March 2022



personal authentication, where a 95% recognition rate is 

achieved.  

EMG signals are also used in ergonomics study. The 

authors in [39] conducted a study on the evaluation of 

occupational injuries based on EMG signals. Ten subjects 
are invited to participate in the study. The EMG signals 

from the biceps brachii are collected from the participants 

while performing a specific task that is suspected to cause 

Musculoskeletal Disorder (MSD). The team concluded 

from their study that the frequency domain features 

obtained from the EMG data are able to give more 

information, but time domain features perform better in 

classification. In another study, the posture comfort of the 

firefighter is assessed via EMG approach [40]. EMG 

signals are acquired while the firefighter performs certain 

postures that are common during firefighting activities to 

evaluate the comfort level of the postures. The research 

results can act as a reference on operating posture for 

firefighter to follow and practice to avoid discomfort 

during firefighting operations. 

VI. CONCLUSION 

The classification of EMG signals to predict human 
movements allows the control of the prosthetic arm and 

exoskeleton robot to be done based on the intention of the 

human operator. Current research studies focused more 

on selecting the appropriate feature extraction techniques 

and classifiers to improve classification accuracy. 

Various research studies have proposed the use of more 

than one feature extraction techniques. Researchers have 

also been finding appropriate combination of feature 

extraction approaches that could further enhance the 

classification accuracy. The types of classifiers that are 

most preferred by researchers are kNN, SVM and ANN. 

Comparison between the performances of different 

classifiers has been carried out in several studies.  

From the studies reviewed, most of the studies only 

focus on classifying small amount of human movements. 

The number of subjects participating in the studies is also 

small. The number of EMG samples should be increased 

to enlarge the database that allows more comparison 

between subjects to be done so as to upsurge the 

reliability of the research outcomes. There are also 

studies without inter-subject comparison. Although the 
accuracy achieved is high, the suitability of the proposed 

algorithm for generic applications cannot be justified. 

Besides, the EMG data used in most research studies are 

not published. Researchers have proposed different 

methods, but these methods cannot be compared since the 

EMG data used in their studies are different. The amount 

of EMG data used in each study should be enlarged to 

increase the reliability of a proposed algorithm.  
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