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Abstract—In order to improve the performance of matching 
pursuit algorithm, we propose a Parallel Matching Pursuit 
algorithm to decompose phonocardiogram sounds of long 
duration. The main goal is to demonstrate the performance 
of the Parallel Matching Pursuit algorithm (PMP) 
compared with traditional iterative matching pursuit 
algorithm to decompose normal and pathological heart 
sounds of Phonocardiogram (PCG) using a Gabor 
dictionary. This architecture is implemented in open source 
Java SE 8 using a concurrency library, which is able to 
reduce computational cost using multi-threading until 83 % 
compared with traditional Matching Pursuit. Java language 
is widely used in the creation of web components and 
enterprise solutions so based on this point the main idea of 
this research is to set the base to implement Parallel 
Matching Pursuit algorithm (PMP) on web platforms 
focused on the monitoring of heart to sounds. This 
implementation allows exploring and applying iterative 
algorithms or sparse approximation which require 
processing long audio signals with low processing time.  
 
Index Terms—Matching pursuit, gabor dictionary, parallel 
processing, heart sounds, sparse approximation 
 

I. INTRODUCTION 

Noncommunicable diseases, principally cardiovascular 
diseases, are one of the main causes of 80% of all deaths 
in the Region of the Americans [1]. Having monitoring 
tools that allow detecting pathological sounds signals 
might reduce the risk of death. The cardiac auscultation 
(listening heart sounds using a stethoscope) through 
different devices offers the possibility to recover 
Phonocardiogram signals (PCG) to be processed using 
different processing methods. Motivated by processing 
the heart sounds and sparse decomposition of signals, this 
study aims to set the base for creating PGC monitoring 
tools using Parallel Matching Pursuit algorithm (PMP) 
algorithm on web components to ease access by different 
platforms on the cloud.  

The Matching Pursuit (MP) is an iterative greedy 
algorithm aimed at finding a sparse combination of 
waveforms called atoms which extract high level signal 
features; these atoms belong to a redundant dictionary of 
functions [2]. The decomposition of signals over a family 
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of functions localized both in time and frequency have 
been studied to find a sparse representation of signals in 
several applications [2]. 

The first challenge is to make the MP tractable to 
process signals of long duration. Exists different studies 
about MP algorithm and how to make them tractable and 
fast like Matching Pursuit Tool Kit (MPTK) [3], however 
its implementation on monitoring platforms is limited. 
The MP algorithm has shown its efficiency to represent 
an audio signal as a combination of waveform for several 
goals i.e., detection, segmentation and denoising [4], [5]. 

The iterative algorithm demands a high computational 
cost if we want to process long duration signals. 
Minimizing the performance time has been already 
studied proposing different variants to this algorithm [6]. 
Some techniques to improve the performance of iterative 
algorithms like MP focus on proposing concurrent 
solutions aimed at real-time processing and modeling 
signals [7], [8]. To improve the performance and decrease 
the response time the selection of the dictionary plays an 
important role to find the best approximation with 
minimal iteration number of MP.  

The MP algorithm has a disadvantage. The accuracy of 
constructed approximations depends on a suitable 
dictionary of functions. Incrementing the number of 
functions into the dictionary allows improving the 
sparsity but at the same time increases the time and 
computing complexity. The choosing of time-frequency 
atoms might get different properties in the decomposition 
of the signal.  

The decomposition of phonocardiogram signals using 
MP and dictionary Gabor has been studied achieving 
good results in segmentation and denoising of this kind of 
signals considering the minus number of functions into 
the selected dictionary [9], [10].  

The implementation of MP due its computational costs 
has been considered too slow to be applied to real-life. 
Motivated for this limit we propose a Parallel Matching 
Pursuit algorithm (PMP) implemented in Java to 
minimize the processing time of heart sounds signals. 

The main goal of this article is to explain the 
architecture implemented in detail to achieve a better 
performance of MP algorithm using multi-thread in Java 
SE 8 in order to decompose heart sounds like a 
combination of Gabor waveforms. 
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In this study we present a Parallel Matching Pursuit 
algorithm (PMP) implemented in Java SE 8. This paper is 
organized as follows: Section II describes the traditional 
Matching Pursuit algorithm. Section III shows the Gabor 
dictionary used to extract characteristics of heart sounds 
signals. Section IV describes our main contributions i.e. 
Parallel Matching Pursuit algorithm (PMP) to accelerate 
the response time to find the best approximation of 
normal and pathology heart sounds. Section V shows the 
experimental results comparing the sequential MP 
algorithm with Parallel MP. Finally, section VI presents 
the main conclusions and future work for this paper. 

II. MATCHING PURSUIT ALGORITHM 

Matching Pursuit (MP) is an iterative greedy algorithm 
that decomposes a signal x(t) into a sparse combination of 
waveforms that extract main characteristics of the signal 
x(t). The decomposition is achieved by projecting the 
signal x(t) over a redundant dictionary of functions 
D={g(t)} called atoms. Finally the signal x(t) can be 
reconstructed through the sum of I optimal atoms and 
residual term 𝑅ூ(𝑡)as  

 𝑥(𝑡) = ∑ 𝛼
ூ
ୀଵ 𝑔(𝑡)  + 𝑅ூ(𝑡)  (1) 

Whit energy conservation equation 

  ||𝑥||ଶ = ∑ 𝛼
ଶூ

ୀଵ + ||𝑅ூ(𝑡)||ଶ  (2) 

 where g(t) and 𝛼 are the i-th optimal atoms and 
coefficient respectively. The MP algorithm decomposes 
the residual 𝑅ூ(𝑡) by projecting over D, before the first 
iteration the residual correspond to the signal x(t), i.e., 
𝑅(𝑡)  =  𝑥(𝑡).  The optional match is selected. See 
Algorithm 1 (step 5). This procedure is repeated each 
time until the number of iterations 𝐼  or the desired 
threshold has been reached. The best approximation 
𝑦𝑓𝑖𝑡(𝑡) is obtained from the sum of functions 𝑔(𝑡) that 
are chosen to be the best match its residues each iteration 
𝑖.  

 

Step 
Algorithm 1. Traditional Matching Pursuit 

 

1 Input: x(t); D ={g(t)} 

2 output: yfit(t) 

3 r(t) = x(t) 

4 repeat 

5  

6  

7  

8  

9 Until the desired threshold or I iteration has been reached. 

 
The MP depends of chosen the optimal atoms among 

all functions into 𝐷 =  𝑔(𝑡). 

We suppose the atom 𝑔ఊ𝜖 𝐷 . The vector x can be 
decomposed into  

 𝑥 =<  𝑥, 𝑔ఊ > 𝑔ఊ +  𝑅𝑥  (3) 

where Rx is the residual vector after approximating x in 
direction of 𝑔ఊ . The vector 𝑔ఊ is orthogonal to Rx, 
hence 

||𝑥||2 =| < 𝑥, 𝑔ఊ > |ଶ  + ||𝑅௫||ଶ 

In order to minimize || Rx||, we must find the 
𝑔ఊ𝜖 𝐷 such as | < 𝑥, 𝑔ఊ > |  is maximum. See 
Algorithm 1 (step 5). 

The suit selection of dictionaries to find a 
representation sparse prove that the norm of the residual 
𝑅௫  decays exponentially reaches the desired threshold 
with the minimum number of iterations. 

III. TIME-FREQUENCY GABOR DICTIONARY 

The decomposition over family of functions belongs to 
the dictionary, well localized in time and frequency has 
been studied for different searchers to find particular 
properties in different kinds of signals. Window Fourier 
transform, wavelet transform are examples of time-
frequency signal decomposition. 

A good selection of dictionaries is important to achieve 
the most sparsity using MP. The nature and features of 
signals to process is the first step to select the adequate 
dictionary i.e., if the waveform of 𝑥(𝑡) is similar to the 
waveforms in the dictionary, incrementing the absorption 
of energy by each optimal atom. The size of the 
dictionary is another factor we need to consider to control 
process time in each iteration of the MP algorithm. 

Gabor waveforms are obtained by dilating, translating, 
and modulating a mother window w(t), which is generally 
real-valued, positive and of unit norm ∫ |𝑤(𝑡)|ଶ𝑑𝑡 = 1  

 𝑔ఊ(𝑡) =
ଵ

ඥ(௦)
𝑤(

௧ି௨

௦
)𝑒ଶక(௧ି௨) (4) 

where 𝑠 is used to control the width of waveform 
envelope, the time displacement 𝑢 is used to specify the 
temporal location and the 𝜉 is the frequency, see Fig. 1.  

 
Figure 1. Gabor atom with 𝑠 =128, 𝜉 = 3 and 𝑢 =128. 
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We consider 𝛾 = (𝑠, 𝑢, 𝜉) as element of the set 𝛤. The 

factor 
ଵ

ඥ(௦)
 normalize to 1 the norm 𝑔ఊ(𝑡) centered in 𝑢. 

The energy of 𝑔ఊ(𝑡) is concentrated in the neighborhood 
of 𝑢  and the size is proportional to 𝑠 , and its Fourier 
transform 𝑔ఊ(𝜔) is centered at frequency  𝜉 with a 

dispersion in frequency of the order of 
ଵ

௦
 , [11]. These 

three components are enough to creating the dictionary or 
family of functions to decompose the signal 𝑥(𝑡) which 
align with its structure and properties. 

The Gabor dictionary is the set 𝐷 = {𝑔ఊ  𝜖 𝛤 =

 𝑅ା 𝑋 𝑅ଶ} of Gabor atoms with scale 𝑠 > 0, time location 
𝑢 𝜖 𝑅 and frequency 𝜉 𝜖 𝑅 . 

We have elaborated a test using Gabor dictionaries to 
decompose phonocardiogram sounds. We found that 
Gabor functions can model PCG heard sounds very well 
at detection and segmentation [9]. The good selection of 
𝛾 = (𝑠, 𝑢, 𝜉) might decompose the normal heart sounds 
(S1, S2) using a minimum number of atoms of Gabor. 

The Fig. 2 shows a Gabor dictionary with 16 atoms 
considering 𝑠 = 128, 𝜉 =  3 for different temporal 
locations u. 

 
Figure 2. Gabor atom with 𝑠 = 128, 𝜉 = 3 and 𝑢 =  [124 − 140].  

IV. PARALLEL MATCHING PURSUIT ALGORITHM 

In this section we describe our main contribution 
Parallel Matching Pursuit algorithm (PMP). The group 
and block concepts were added to traditional MP 
algorithms to divide concurrently the performance of 
classical MP. 

The first step consists in segmenting the signal x(t) 
using a size window wlen = 256 samples i.e., we create a 
different block 𝑏 of x(t) with the same size (256 samples), 
see Algorithm 2, step 5-7. 

In the creation of our dictionary 𝐷 = (𝑔ఊ(𝑡))ఊఢ௰ ,we 
define Gabor atoms with scale parameter s= 256 i.e., 𝐷 =
(𝑔ఊ(𝑡))ఊୀ(ଶହ,௨,క)ఢ௰. Our studies using Gabor atoms with 
s= 256 have reported a good sparsity with the MP 
algorithm for PCG signals 11025 Hz [9]. For 
computational convenience we only use atoms with 
length of powers of two, additional we use FFT (Fast 
Fourier transform) to find the best frequency each block, 

for this reason is convenient keep power of two in the 
definition of scale parameter 𝑠 for the all atoms into 𝐷, 
see Algorithm 2, step 9.  

The second step consists in creating groups 𝜃 to apply 
the traditional MP algorithm to each group 
𝑧 simultaneously. The number of groups 𝑧 depends on the 
number of the available threads 𝜌  in the system. Each 
thread executes a specific task MP task over a particular 
group, see Algorithm 2, step 15.  

 

Step 
Algorithm 2. Parallel Matching Pursuit (PMP) 

 

1 Input: x[n], wlen = 256, 𝜌 = 6 

2 output: yfit[n] 

3 r[n]= x[n] 

4 𝜏 = length(x[n]) / wlen 

5 repeat j 

4 ip = 1 + j * wlen 

5 fp= wlen + j*wlen 

6 𝑏 [n] = r(ip : fp) 

7 end until j= 𝜏 

8 repeat i 

9  𝝃𝒋 =  𝑭𝑭𝑻(𝒃𝒋 [𝒏]) 

10  repeat z 

11  ip2=z*sec 

12  fp2= sec + z*sec -1 

13  𝜃௭ =  {𝑏ଶ [𝑛],  𝜉ଶ;  𝑏ଶାଵ [𝑛],  𝜉ଶାଵ; . . .. 

13  𝑏ଶାଶ [𝑛],  𝜉ଶାଶ; . . .  ;  𝑏ଶ [𝑛] , 𝜉ଶ} 

14  end until z = 𝜌 

15 yAprox[n]=MP_task (𝜃௭) 

16 r[n] = r[n]-yAprox[n] 

17 yfit[n] = yfit[n] + yAprox[n] 

18 end until i =I 

 
Each block 𝑏 is treated as a signal to process using the 

traditional MP algorithm. MP decomposes a signal in a 
sum of waveforms belongs to dictionary, in each block 
𝑏the family of functions in D is built using the frequency 
𝜉 that correspond with a specific block, see Algorithm 3. 
The group 𝜃௭ is constituted of a set of blocks 𝑏 where a 
group is executed as a task by thread. This approach 
allows minimizing the number of atoms in the dictionary 
to be considered in each block. 
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Step 
Algorithm 3. MP_task function 

 

1 Input:  𝜽𝒛 

2 output: yAprox 

3 𝒃𝒋,𝜉𝒋
=getblocks( 𝜽𝒛) 

4  repeat j 

5  D=createDictionary(𝜉

); 

6  𝑔 = 𝒂𝒓𝒈𝑴𝒂𝒙 |  < 𝑏 , 𝐷 >| 

7  𝛼 = < 𝑏 , 𝑔 > 

8  r = r + 𝛼 * g 

90  yfit = yfit + r 

10 until all blocks 𝒃𝒋,has been reached 

 
The number of Gabor atoms in the dictionary in each 

block depends of the length of the block, in this particular 
case we define the length block 𝑤𝑙𝑒𝑛 =256 that 
correspond with the length of Gabor atoms , therefore we 
can apply the inner product among a specific block and 
Gabor atoms belong to a dictionary. To make sure 
optimal atoms is selected we create a redundant 
dictionary with the parameter displacement 𝑢 =
[1,2,3, . . .256]. Every block performs 256 inner products 
for the one iteration of the traditional MP algorithm. 
Consequently, the number of atoms in the dictionary 
implemented in each block corresponds to 256. 

The PMP algorithm basically encapsulate the 
traditional, matching pursuit dividing the signal to 
process 𝑥(𝑡)  in blocks of the same size and generate 
groups to implement a concurrent process and execute the 
MP to each block simultaneously.  

The last step focuses on concatenating the best 
approximation in each block for all groups in the system 
for each iteration of MP. The detail of this method can be 
appreciated in Fig. 2. 

 

 
Figure 3. Detail of PMP architecture for 1 thread applying the block 

and group concepts. 

Typically each group contains a number of blocks 
which depends on the number of the size of the signal 
𝑥(𝑡). The whole PMP algorithm is described in the form 
of pseudo code in Algorithm 2. In addition, Fig. 4 shows 
a complete perspective of the normal heart sound signal 
using the PMP algorithm. 

 

 
Figure 4. Parallel Matching Pursuit algorithm implementing multi-

threading architecture. 

A stopping criteria was added to the PMP algorithm 
and was fixed in 𝐼 = 10 iterations. Fig. 5 shows the 
absorption of energy 𝐴𝐸 in percentage in function of 
number of iteration. The 99 % of absorption of energy 
was achieving with 10 iterations of PMP as in 

 𝐴𝐸 =
|ிூ்|మ∗ଵ %

||మ   (5) 

The architecture of PMP allows to keep the number of 
iterations independently of the size of the signal to 
process due that the PMP algorithm encapsulate the 
traditional MP i.e., apply inner product between each 
block 𝑏 and its dictionary.  

 
Figure 5. Absorption of energy in function of number of iterations of 

PMP algorithm for heart sound signal. 

V. EXPERIMENTAL RESULTS 

In order to illustrate the results, we have applied the 
PMP algorithm to different heart sounds signal which 
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include normal and pathological sounds. The signals were 
samples 11,025 Hz available in WAV format. We applied 
the same signals to evaluate the performance time using 
traditional MP and PMP implemented in Java. 

1) Parameters of the PMP algorithm  
In the present work we applied the PMP algorithm to 

decompose the heart sounds signals into time- frequency 
Gabor atoms. The dictionaries created for each block 
consist of 1 block with the following [window length, 
window shit, FFT size] parameter to build a Gabor 
dictionary (in number of samples): [256,0,256]. The 
target of the PMP algorithm was fixed to 𝐼 = 10 
iterations.  

2) Evaluation 
The implementation of our algorithm was performed 

using Java SE 8 and utility classes commonly useful in 
concurrent programming (package java.util.concurrent). 
The computation was performed on intel 5. The test was 
carried out using the PMP algorithm and traditional MP 
to test the performance of booth solutions. 

We selected normal heart sounds, sampled 11025 Hz. 
with duration of 4.33 seconds. We fixed the number of 
iterations in 10 getting 98% absorption energy from the 
reconstructed signal. Table I illustrates the results using 
𝜚 = 6  threats in the PMP algorithm to decompose 
Normal heart sounds signal (S1). 

TABLE I. RESULTS OF DECOMPOSITION OF NORMAL HEART SOUND 
SIGNAL USING MP AND PMP ALGORITHM 

 Iteration Algorithm 
Processing time 

(Seg) 
Absorption of 

energy 

1 10 PMP  1.95 99% 

2 10 MP 13.1 99% 

 
From Table I, we can appreciate that the processing 

time in the PMP algorithm is seven times faster than the 
traditional MP algorithm. With 10 iterations in both 
algorithms we get 99% of absorption energy. Fig. 6 
shows the main cardiac cycle event of normal heart sound 
signal (S1). 

 
Figure 6. Main cardiac cycle event of Normal Split S1. 

We apply the same approach to decompose a heart 
sound signal that corresponds with a diastolic rumble. 
This sound was sampled 11025 Hz. with duration of 5.33 
seconds. Both traditional MP and PMP proposed 
algorithms were evaluated in terms of the processing time 
achieving 99% of absorption energy with 𝐼 = 10 
iterations. See Table II, The number of threats in PMP 
was fixed to 𝜚 = 6 . The Fig. 7 shows the main cycle 
cardiac of diastolic rumble signal. 

TABLE II. RESULTS OF DECOMPOSITION OF DIASTOLIC RUMBLE 
SIGNAL USING MP AND PMP ALGORITHM 

 Iteratio
n 

Algorithm 
Processing time 

(Seg) 
Absorption of 

energy 

1 10 PMP  1.97 99% 

2 10 MP 12.48 99% 

 

 
Figure 7. Main cycle cardiac of diastolic rumble signal. 

All the simulations carried out using the dataset of the 
different PCG, see Table III. The PCG signals were 
sampled at 11,025 Hz available in WAV format. 

TABLE III. DATASET OF PCG SIGNALS USED TO DECOMPOSE SIGNALS 
USING TRADITIONAL MP AND PMP ALGORITHMS 

 Heart sound signal 
Duration time 

(seg) 
Main cycle 

number  

1 Normal Split S1 4.30 4 

2 Normal Split S2 4.30 4 

3 S3 4.30 4 

4 S4 4.30 4 

5 Early systolic murmur 4.30 4 

6 Late systolic murmur 4.30 4 

7 Opening Snap 4.30 4 

8 Diastolic rumble 4.30 4 

9 Ejection click 4.30 4 
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We present the results in processing time and 
absorption of energy using traditional matching pursuit 
and PMP proposed algorithm for different PCG signals of 
the Table III.  

TABLE IV.  RESULTS OF DECOMPOSITION OF DIASTOLIC RUMBLE 
SIGNAL USING MP AND PMP ALGORITHM 

 Heart sound Algorithm 
Processing 
time (Seg) 

Absorption 
of energy 

1 S2 PMP  2.00 98% 

2 S2 MP 13.05 98% 

3 S1 PMP  1.95 99% 

4 S1 MP 13.10 99% 

5 Opening snap PMP  2.01 99% 

5 Opening snap MP 14.67 99% 

6 Late_Systolic_Murmur PMP  2.14 99% 

6 Late_Systolic_Murmur MP 14.10 99% 

7 Early_Systolic_Murmur PMP  2.20 99% 

7 Early_Systolic_Murmur MP 14.34 99% 

8 Diastolic_Rumble PMP  1.97 99% 

8 Diastolic_Rumble MP 12.48 99% 

9 Ejection_Click PMP  2.01 99% 

9 Ejection_Click MP 14.56 99% 

10 S3 PMP  2.12 99% 

10 S3 MP 13.35 99% 

11 S4 PMP  14.23 99% 

11 S4 MP 2.17 99% 

 
We evaluate the PMP algorithm with heart sound of 

long duration which was acquired using a sampling 
frequency of 11025 Hz and 16 bit per sample and are 
stored in WAV format. We can appreciate from Table IV 
that the PMP algorithm finds a sparse representation for 
all heart sounds with processing time that correspond 
15 % over the processing time of the classic MP 
algorithm. 

Table V shows the results obtained in terms of 
processing time for different heart sounds using 
traditional MP and PMP algorithms considering long 
duration signals for several individuos. We can validate 
that even when the duration of the signal is different, the 
percentage of processing time is reduced by 83% using 
the PMP algorithm.  

The dataset was obtained from Performance 
Evaluation of Heart Sounds Biometric Systems on an 
Open Dataset [12]. 

TABLE V. DATASET OF PCG SIGNALS USED TO DECOMPOSE SIGNALS 
USING TRADITIONAL MP AND PMP ALGORITHMS 

 Individuos Algorithm 
Processing time 

(Seg) 
Duration of 
signal (Seg) 

1 Female PMP  25.87 70 

1 Female MP 169 70 

2 Female PMP 26.13 70 

2 Female MP 170 70 

3 Female PMP 21.95 60 

3 Female MP 146 60 

4 Female PMP 11.11 30 

4 Female MP 71.14 30 

5 Female PMP 10.81 30 

5 Female MP 71.10 30 

6 Male PMP 9.9 26.78 

6 Male MP 64 26.78 

7 Male PMP 26,19 70 

7 Male MP 167.62 70 

8 Male PMP 26.32 70 

8 Male MP 168.79 70 

9 Male PMP 26.22 70 

9 Male MP 168.22 70 

10 Male PMP 26.86 70 

10 Male MP 169.61 70 

11 Female PMP 11.83 32.13 

11 Female MP 76.32 32.13 

12 Male PMP 10.61 29.07 

12 Male MP 69.81 29.07 

VI. CONCLUSION 

We have proposed an efficient parallel matching 
pursuit algorithm to decompose heart sound signals using 
Gabor dictionaries. The PMP algorithm showed high 
performance, achieving a reduction of processing time in 
83% compared with traditional matching pursuit 
algorithm. We evaluated the performance of PMP for 
different normal and pathological PCG signals. Both 
traditional MP and PMP algorithms were developed on 
java platform. The implementation on java platform will 
allow creating monitoring solutions taking advantage of 
different open source technologies and at the same time 
implement sparse algorithms to detect, separating of 
sources or extraction of main components of heart sound 
signals on cloud platforms. We believe that this algorithm 
can be used as the base for other applications such as 
heart sound classification. In the future we plan to 
improve the performance of PMP using other techniques 
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of concurrency. The experimental results show that the 
PMP implementation can decrease the computation cost 
than the traditional MP algorithm. We consider that it is 
possible to minimize the number of atoms in each block 
and improve the processing time by PMP algorithm. 
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