
Precise Inter-Device Audio Playback

Synchronization for Linux

Szymon Mikulicz
Department of Egineering, Mechanics and Robotics, AGH University of Science and Technology, Cracow, Poland

Email: mikulicz@agh.edu.pl

Abstract—Wave Field Synthesis is a method producing

sound that uses arrays of closely placed speakers. This

creates an unique challenge for distributed playback

systems. Because of clock frequency drift, the playback

must constantly be corrected via interpolation and shifting

in time of the played stream. In this paper a new approach

to network based audio playback synchronization is

presented, that makes heavy use of the PTP network time

synchronization protocol and ALSA Linux audio subsystem.

The software does not need any specialized hardware and

can approximate precisely how the playback stream should

be interpolated via a set of statistical indicators. The

evaluation shows that the difference between two devices

playing audio using the presented system is under 10 μs for

99 % of the time, which fully satisfies the requirements of

Wave Field Synthesis. The system was compared to other

network audio synchronization systems available currently:

NetJack2, RAVENNA and Snapcast, all of which had from

10 to 50 times higher differences between two devices than

the presented system.

Index Terms—network, signal processing, audio,

synchronization, linux

I. INTRODUCTION

Audio synchronization across separate devices is a

well-understood problem in distributed playback systems.

Due to small differences between quartz oscillators used

in clocks driving digital to analog conversion on different

devices, audio playback speeds are unequal [1]. Even if a

track playback was to be started simultaneously on two

separate devices, the track position would drift apart in

time. Additionally changes in temperature and humidity

influence the frequencies at which the quart oscillators

oscillate which further complicates the problem as the

difference between devices cannot be calculated once,

rather it’s a constantly changing value. This phenomena

makes it necessary to alter the signal continuously to

compensate for the differences between devices’ clocks.

Usually the compensation employed consists of jumping

forwards or backwards in the playback stream. The

precision can be further improved by resampling the

signal to obtain sub-sample playback stream offset. Care

must be taken not to change the stream offset too abruptly

as not to introduce perceptible artifacts.

Manuscript received June 15, 2021; revised August 27, 2021.

To calculate how the stream needs to be altered to be

played back synchronously, timing information is

transferred, usually in the form of timestamps alongside

sample packets and a master clock from which the

timestamps were taken.

Currently available software solutions for linux do not

fully utilize the timing information from the stream and

the timing information available from the linux audio

device drivers and as such are unable to perform

synchronization with high precision.

In this paper a fully software-based synchronization

system capable of achieving precision high enough to

allow its use in advanced task such as Wave Field

Synthesis is proposed and evaluated.

II. BACKGROUND

Fundamentally there exist three principles of spatial

sound reproduction. These include binaural audio,

stereophony and sound field reconstruction [2]. Currently

only stereophony has solutions for inter-device audio

synchronization that are used in consumer audio systems

for multi-room playback or “home cinema” and

professional audio network distribution systems. The

usual approach for sound field reconstruction is to use a

single device that has a specialized audio card capable of

outputting tens of channels at once. This solution,

although not requiring synchronization has the downsides

of cost and availability of these specialized audio cards as

well as a difficulty in easy speaker array expansion. If an

expansion to more speakers than the audio card has

channels is required it is necessary to replace the whole

card with exceptions of specialized cards capable of

being driven by an external clock source.

Multi-room playback does not require very high

precision of synchronization due to big distances between

speakers. In typical setups differences between speakers

in the same room on the order of milliseconds are

completely acceptable and with speakers being in

different rooms the differences between speakers can be

on the order of tens of milliseconds or even larger

depending on the rooms’ separation.

Professional audio does require sample-accurate

synchronization, however it is only in the digital domain

where this requirement is necessary as there is no need to

either record or play the sound with precision on the

order of microseconds, it is however strictly necessary

not to introduce any more offset between streams further

International Journal of Signal Processing Systems Vol. 9, No. 3, September 2021

17©2021 Int. J. Sig. Process. Syst.
doi: 10.18178/ijsps.9.3.17-21

on the signal processing path. Thanks to this it is possible

to freely process the streams and send them over the

network without the problem of desynchronization.

Currently the most widely deployed open standard for

network audio is AES67 [3], which makes use of the PTP

protocol [4] to distribute media clock as well as the RTP

protocol to distribute audio signal and timing information.

Wave Field Synthesis has specific requirements for

precise synchronization because of short distances

between speakers. Usually all of the speakers in the

system are driven by the same audio device, thus

synchronization is not required. However if a system

consisting of many independent devices connected via a

network were to be constructed, higher degree of

synchronization than in the previous cases would be

necessary. In a system where speakers are spaced 1.5 cm

apart the time the sound travels this distance in 43.7 μs,

so ideally the difference between the adjacent devices

playback position should be lower than half of this time.

III. PIWFS SYNCHRONIZATION SYSTEM

PiWFS (as in Raspberry Pi Wave Field Synthesis) is a

project aiming to create a distributed networked Wave

Field Synthesis system from Raspberry Pi devices. One

of its elements is the synchronization system which

ensures that the audio streams received are being played

simultaneously on all devices. Fig. 1 represents an

overview of systems broad architecture, elements of

which will be subsequently described.

Figure 1. PiWFS system architecture (NIC – network interface
controller, HW clock – hardware clock).

The physical system consists of multiple “slave”

devices that play audio synchronously connected in a

single Local Area Network and another device that serves

as a PTP Grandmaster – a timing source to which slave

devices are synchronized. Both the slave devices and the

PTP grandmaster run PTP software stack which uses

timing information obtained from device’s clocks and

NIC drivers to synchronize all system clocks via the LAN

connection.

It is important to recognize that only the system clock

in the operating system is being corrected and thus

synchronized, as it is not possible to change the

frequency of the hardware clock, which is just a simple

quartz oscillator. This means that it is necessary to run the

PTP software while the system is working as without

constant correction the clocks would drift apart.

Additionally variations in temperature and humidity can

have and impact of the oscillator’s stability and frequency,

which in turn reduce the precision of synchronization.

The ALSA library [5] provides an interface to the

audio card via the ALSA audio driver. The part of the

library that is important to the functioning of the system

is the status information. PiWFS software is able to

request the driver to take a snapshot of the card current

status that contains the time that status was obtained. The

library returns time 𝑡𝑆 taken from the system clock which

is being actively synchronized with PTP software.

Additionally the status contains the value of “delay” – 𝐷

(as called in the documentation), which corresponds to

the amount of frames still in the audio buffer. This

information is vital to estimate the time 𝑡𝑝 the next frame

inserted into the card’s buffer will be played which can

be calculated 𝑡𝑝 = 𝑡𝑆 + 𝐷𝑇𝑓 , where 𝑇𝑓 is the amount of

time it takes to play a single frame.

The value of the time returned by the ALSA library

has low accuracy because of the sensitivity of the PTP

software to network jitter. It is thus necessary to use an

averaging scheme to reduce the temporal noise. The

system uses several different techniques to improve the

precision of obtained data. The overall structure of the

system consists of a loop that reads a block of audio

samples, processes it, and sends it to the audio card.

The system needs to be able to perform processing on

blocks of audio data in a shorter amount of time than it is

required by the audio card to play them. This requirement

helps to avoid “underruns” – situations in which the

audio card runs out of frames in the buffer while playing.

Thus the system has some amount of additional time,

which is used by the software to constantly request status

values from the driver as to get as many data points as

possible. The result of this operation is an array of status

times [𝑡𝑆0, … , 𝑡𝑆𝑁) as well as an array of respective delays

[𝐷0, … , 𝐷𝑁), where 𝑁 is the amount of times the status

was requested from the audio card.

After obtaining the status arrays the systems estimates

the time 𝑇𝑓. In the beginning the value of 𝑇𝑓 is assumed to

be equal to
1

𝑓𝑠
, where 𝑓𝑠 is the sampling rate of the audio

being played. Subsequently 𝑇𝑓 is estimated as a moving

median of 𝑘 last estimated values:

𝑇𝑓 = median
𝑘

(
1

𝑀𝑁
∑ ∑

𝑡𝑆𝑛 − 𝑡𝑆𝑚′

𝐷𝑚′ + 𝐿′ − 𝐷𝑛

𝑀

𝑚=0

𝑁

𝑛=0

) (1)

Here, 𝐷𝑚′ and 𝑡𝑆𝑚′ are elements of 𝑀 -sized array of

delays and status times obtained before the previous

block of samples was played. Similarly 𝐷𝑛 and 𝑡𝑆𝑛 are

delays and status times obtained before the current block

International Journal of Signal Processing Systems Vol. 9, No. 3, September 2021

18©2021 Int. J. Sig. Process. Syst.

of samples. 𝐿′ is the length of the previous sample block

(i.e. the amount of frames in it).

Having obtained 𝑇𝑓 the time the next frame inserted

into the ALSA buffer will be played 𝑡𝑝 is calculated as

follows:

𝑡𝑝 =
1

𝑁
∑(𝑡𝑆𝑛 + 𝐷𝑛𝑇𝑓)

𝑁

𝑛=0

 (2)

Subsequently the current desynchronization value 𝑑𝑐 is

calculated

𝑑𝑐 =
𝑡𝑝 − 𝑡0

𝑇𝑓
− 𝑛𝑟 (3)

where 𝑡0 is the time the playback of the whole track

should have started, while 𝑛𝑟 is the number of the next

frame that will be read from the played track (i.e. the

frame after the frame that was inserted at the end of the

previous block). The value of 𝑡0 is provided externally

and is identical for every device. As can be easily

concluded
𝑡𝑝−𝑡0

𝑇𝑓
 will be the amount of frames that would

have been played before the next sample inserted into the

ALSA buffer will be.

Finally a moving ordinary least squares linear

regression is applied to 𝑘 last estimated values of the time

the next frame inserted into the buffer will be played

since the start of playback 𝑡0𝑝 = 𝑡𝑝 − 𝑡0 and 𝑘 last

estimated values of the sum of current correction and

desynchronization 𝑐𝑑 = 𝑐𝑛 + 𝑑𝑐:

𝛽𝑑 =
∑ 𝑡0𝑝𝑖𝑖 𝑐𝑑𝑖 −

1
𝑘
∑ 𝑡0𝑝𝑖𝑖 ∑ 𝑐𝑑𝑖𝑖

∑ 𝑡0𝑝𝑖
2

𝑖 −
1
𝑘
(∑ 𝑡0𝑝𝑖𝑖)

2
 (4)

𝛼𝑑 =
1

𝑘
∑𝑐𝑑𝑖
𝑖

−
𝛽

𝑘
∑𝑡0𝑝𝑖
𝑖

 (5)

Having calculated the parameters of regression two

precise final values are obtained the jump 𝑗 and the ratio

𝑟 which are the whole and the fractional parts of the

approximated via regression value of desynchronization

𝑑𝑎:

𝑑𝑎 = 𝛼𝑑 + 𝛽𝑑𝑡0𝑝 (6)

𝑗 = ⌊𝑑𝑎 − 𝑐𝑛⌋ (7)

𝑟 = 𝑑𝑎 − 𝑐𝑛 − 𝑗 (8)

Correction 𝑐𝑛 is a value that starts at zero and is

increased or decreased by adding to it the value of the

jump 𝑗 at the end of processing every block 𝑐𝑛 = 𝑐𝑛−1 +
𝑗, i.e. it’s the sum of all previous values of 𝑗.

After the calculation the actual correction of the played

stream is performed by shifting it 𝑗 samples and then

further shifting it the 𝑟 fraction of a sample by resampling

it using a sum of sinc functions:

𝑏𝑜[𝑖) = ∑ 𝑏𝑓

𝑖+2𝑞+1

𝑙=𝑖

[𝑙)
sin(𝜋(𝑟 + 𝑖 + 𝑞 − 𝑙))

𝜋(𝑟 + 𝑖 + 𝑞 − 𝑙)

𝑖 = 0,… , 𝐿.

 (9)

Here, 𝐿 is the length of the interpolated output block

𝑏𝑜 that is sent to the audio driver, while 𝑏𝑓 is a block of

length 𝐿 + 2𝑞 + 1 taken from the input stream, shifted by

𝑗 − 𝑞 to take additional edge samples required for the

interpolation. The amount of precision i.e. the number of

summed sinc functions is controlled via the 𝑞 parameter.

IV. EXPERIMENTS

A. Methodology

The tests were performed on a setup consisting of two

Raspberry Pi 3B devices (referred from now on to as

“slaves”) with JustBoom AMP Zero pHat attachments, a

computer serving as a PTP Grandmaster running linuxptp

and a computer serving as an audio source and a

measurement capture, all connected to the same local

network switch (see Fig. 2). The JustBoom AMP Zero

pHat is a device consisting of a digital to analog

converter as well as a class D amplifier, it is attached to

the Raspberry PI via GPIO pins and, thanks to the

provided driver, shows up as an audio card in the system.

Figure 2. Measurement setup.

A Hantek 6022BE oscilloscope was chosen as a

measurement device, because of the possibility of

continuous two channel sample acquisition with high

samplerate. A voltage output from left channels of both

of the slaves was acquired continuously with sampling

frequency of 1 MHz for a duration of one hour during

which the same signal was played on the slaves,

coordinated by the synchronization system. The signal

played was a sum of 40 Hz, 400 Hz and 4 kHz sines.

An offset between signals was measured by finding the

argument for which the cross-correlation function

between the two signals (𝑠1 ⋆ 𝑠2)[𝑛) reaches maximal

value. The signals were divided into blocks of length 𝐿 to

get a discrete function 𝑜[𝑚) describing the offset over

time.

𝑜[𝑚) = | argmax
𝑚𝐿≤𝑛≤(𝑚+1)𝐿

(𝑠1 ⋆ 𝑠2)[𝑛]| (10)

International Journal of Signal Processing Systems Vol. 9, No. 3, September 2021

19©2021 Int. J. Sig. Process. Syst.

In the following measurements 𝐿 was chosen to be
1

20

of the sampling frequency i.e. 50000 samples.

B. Systems

Three systems were measured besides PiWFS. As, as

of the time of writing this paper, there does not exist any

system for linux that is especially created to satisfy the

requirements of speakers placed close to each other such

as in wave field synthesis, two professional audio

systems and one multiroom audio system were chosen.

Jack2 [6] is currently the standard professional audio

software for linux which implements the jack protocol

used for communication between software clients and the

jack server. It can be used over a network (the network

part of the software is called NetJack2) where a single

master device will take care of synchronization of some

amount of slave devices. As the slaves are synchronized

to the master network clock they cannot simply playback

the samples received on a local audio device which has a

separate clock. Jack2 ships with two different solutions: a

module called audioadapter, and two jack clients: alsa_in

and alsa_out (for input and for output accordingly) both

of which can feed the local audio device with samples

from the media clock by interpolation. Additionally there

is an external solution called Zita-Ajbridge [7] which

provides two jack clients as well, but claims greater

precision. All three solutions were compared and Zita-

AJbridge was chosen to be used in the experiment as it

provided the best synchronization.

RAVENNA is a company selling AES67-compatible

devices. It created a linux ALSA driver capable of

receiving and transmitting AES67 streams [8]. To control

the driver, open source aes67-linux-daemon software was

used [9], as the software provided by RAVENNA is not

available for ARM devices such as Raspberry Pi. This

system does not provide solution to resample the

synchronized stream to playback it on the device. To

solve this Jack2 with Zita-AJbridge was used again, this

time synchronized on the AES67 PTP media clock,

The final system that was tested was Snapcast [10]

which is a multiroom audio system claiming to provide

“perfectly synchronized audio”. It consists of a single

source streaming audio to some amount of slaves that

play it back.

C. Results

Fig. 3 presents a chosen at random and downsampled

fragment of the measurement. As the measurement has a

sampling frequency of 1 MHz witch chunk size (1) set to
1

20
 of it the resulting sampling frequency of the offset plot

is 50 kHz and additionally the data was gathered over a

period of one hour the full plot would be completely

unreadable.

To present the results clearly, it was decided to prepare

a percentile plot, that shows the chance of an offset being

lower than a given value (see Fig. 4).

From the first plot the general characteristics of how

the different systems behave can be inferred. Both the

PIWFS and NetJack2 systems tend to a single value with

PiWFS values being close to 0 μs and NetJack2’s to

40 μs. It can be also noticed that PiWFS’s changes are

more abrupt, with sharper “spikes” while NetJack2

correction is more gradual. RAVENNA’s offset values

create a pattern of low frequency high amplitude

oscillations around the 0 μs point of the plot, the

amplitude of the oscillations reaches over 100 μs on the

chosen fragment which suggests system’s low stability.

Snapcast’s pattern of offset values doesn’t change

smoothly as the others in this comparison, rather as the

offset reaches over some “threshold” value the software

then introduces a change in the playback speeds to correct

it until another lower “threshold” is reached and the

software stops the correction. This creates the saw-like

pattern that can be seen on the plot. It can be noticed that

the center point of the saw pattern is close to the 200 μs

value.

Figure 3. A fragment of the offset (10) measurement between slaves.

Figure 4. A percentile plot of the offset (10) between slaves.

As can be seen from the percentile plot, tested systems

present a wide range of offset values most probable to

appear. The worst synchronization is achieved by the

Snapcast software with less than 1 % chance of it’s value

being lower than 100 μs and a 64 % chance of it’s value

being lower than 200 μs.

The second worst system is the RAVENNA AES67

implementation which has around 4 % chance to be

worse than snapcast, with a 7 % chance of the offset

being lower than 10 μs, a 62 % chance of it being lower

than 100 μs and a 92 % chance of it being lower than

200 μs. NetJack2 is not much better, however it is more

International Journal of Signal Processing Systems Vol. 9, No. 3, September 2021

20©2021 Int. J. Sig. Process. Syst.

stable, with the offset varying less. This also means that it

has a 20 % of the offset being higher that of RAVENNAs.

This system has less then 1 % chance of the offset being

lower than 10 μs, 80 % chance of it being lower than

40 μs and 99.5 % chance of it being lower than 100 μs.

PiWFS system is by far the most stable and the most

precise in this experiment. It has around 20 % chance of

the offset being lower than 1 μs, a 40 % chance of the

offset being lower than 2 μs and a 99 % chance of the

offset being lower than 10 μs. In the experiment the

maximal offset the system reached was 13 μs.

V. CONCLUSION

All three of the available systems can be used for their

intended purposes, however they do not fulfill the

requirements of Wave Field Synthesis. The offset

measured was much larger than 20 μs for most of the

measurement time. Additionally two of the systems

RAVENNA and Snapcat show very poor synchronization

stability.

The system presented in this paper has very high

synchronization accuracy, fully fulfilling the

requirements for a closely spaced speaker array, allowing

constructing such arrays by connecting separate network

linux devices.

In further studies the amount of distortion introduced

by the different systems can be measured and it’s

influence of the wave field perception evaluated. The

amount of devices measured can be increased to see how

the system handles a large array of speakers, which

would require special multichannel high-samplerate

acquisition devices. The quality of the actual wavefield

can be evaluated by measuring the pressure created by the

array with a microphone matrix. And finally a

measurement on different devices can be done to ensure

the system can provide adequate synchronization even on

different hardware (for example different Raspberry Pi

versions or audio cards).

CONFLICT OF INTEREST

The author declares no conflict of interest.

ACKNOWLEDGMENT

The author wishes to thank his thesis advisor

Bartłomiej Borkowski for his ongoing support through

the research. He thanks the advisor of the PiWFS

research team Paweł Pawlik for his help throughout the

project realisation. Last but not least he thanks his

colleagues from the PiWFS research team for their

involvement and hard work on their part of the project.

REFERENCES

[1] J. A. Barnes, “The measurement of linear frequency drift in
oscillators,” in Proc. 15th Ann. Precise Time and Time Interval

(PTTI) Appl. and Planning Meeting, Dec. 1983, pp. 551-582.

[2] S. Spors, H. Teutsch, and R. Rabenstein, “High-Quality acoustic
rendering with wave field synthesis,” in Porc. VMV, 2002, pp.

101-108.

[3] AES67-2018: AES Standard for Audio Applications of Networks-
High-Performance Streaming Audio-over-IP Interoperability,

Audio Engineering Society Inc., 2018.

[4] “IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems," in IEEE Std

1588-2008 (Revision of IEEE Std 1588-2002), 24 July 2008, pp. 1-

269.
[5] AlsaProject. Advanced Linux Sound Architecture (ALSA) project

homepage. [Online]. Available: https://www.alsa-

project.org/wiki/Main_Page
[6] JACK Audio Connection Kit. [Online]. Available:

https://jackaudio.org/
[7] F. Adriaensen, “Controlling adaptive resampling,” in Proc. Linux

audio Conference, Stanford, USA, 2012.

[8] MergingTechnologies. Ravenna-alsa-lkm—Bitbucket. [Online].

Available: https://bitbucket.org/MergingTechnologies/ravenna-
alsa-lkm/src/master/

[9] Bondagit. AES67 Linux Daemon. [Online]. Available:

https://github.com/bondagit/aes67-linux-daemon
[10] Snapcast. [Online]. Available: https://mjaggard.github.io/snapcast/

Copyright © 2021 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Szymon Mikulicz was born in Warsaw on the 9th of October 1995.
After finishing secondary education he moved to Cracow where he got

his Master degree in Acoustic Engineering on the AGH University of

Science and Technology in 2019. He then enrolled in an Phd
programme in mechanical engineering where he tries to combine

machine learning and signal processing.

International Journal of Signal Processing Systems Vol. 9, No. 3, September 2021

21©2021 Int. J. Sig. Process. Syst.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

