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Abstract—Wave Field Synthesis is a method producing 

sound that uses arrays of closely placed speakers. This 

creates an unique challenge for distributed playback 

systems. Because of clock frequency drift, the playback 

must constantly be corrected via interpolation and shifting 

in time of the played stream. In this paper a new approach 

to network based audio playback synchronization is 

presented, that makes heavy use of the PTP network time 

synchronization protocol and ALSA Linux audio subsystem. 

The software does not need any specialized hardware and 

can approximate precisely how the playback stream should 

be interpolated via a set of statistical indicators. The 

evaluation shows that the difference between two devices 

playing audio using the presented system is under 10 μs for 

99 % of the time, which fully satisfies the requirements of 

Wave Field Synthesis. The system was compared to other 

network audio synchronization systems available currently: 

NetJack2, RAVENNA and Snapcast, all of which had from 

10 to 50 times higher differences between two devices than 

the presented system.  

 

Index Terms—network, signal processing, audio, 

synchronization, linux 

 

I. INTRODUCTION 

Audio synchronization across separate devices is a 

well-understood problem in distributed playback systems. 

Due to small differences between quartz oscillators used 

in clocks driving digital to analog conversion on different 

devices, audio playback speeds are unequal [1]. Even if a 

track playback was to be started simultaneously on two 

separate devices, the track position would drift apart in 

time. Additionally changes in temperature and humidity 

influence the frequencies at which the quart oscillators 

oscillate which further complicates the problem as the 

difference between devices cannot be calculated once, 

rather it’s a constantly changing value. This phenomena 

makes it necessary to alter the signal continuously to 

compensate for the differences between devices’ clocks. 

Usually the compensation employed consists of jumping 

forwards or backwards in the playback stream. The 

precision can be further improved by resampling the 

signal to obtain sub-sample playback stream offset. Care 

must be taken not to change the stream offset too abruptly 

as not to introduce perceptible artifacts. 
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To calculate how the stream needs to be altered to be 

played back synchronously, timing information is 

transferred, usually in the form of timestamps alongside 

sample packets and a master clock from which the 

timestamps were taken. 

Currently available software solutions for linux do not 

fully utilize the timing information from the stream and 

the timing information available from the linux audio 

device drivers and as such are unable to perform 

synchronization with high precision. 

In this paper a fully software-based synchronization 

system capable of achieving precision high enough to 

allow its use in advanced task such as Wave Field 

Synthesis is proposed and evaluated. 

II. BACKGROUND 

Fundamentally there exist three principles of spatial 

sound reproduction. These include binaural audio, 

stereophony and sound field reconstruction [2]. Currently 

only stereophony has solutions for inter-device audio 

synchronization that are used in consumer audio systems 

for multi-room playback or “home cinema” and 

professional audio network distribution systems. The 

usual approach for sound field reconstruction is to use a 

single device that has a specialized audio card capable of 

outputting tens of channels at once. This solution, 

although not requiring synchronization has the downsides 

of cost and availability of these specialized audio cards as 

well as a difficulty in easy speaker array expansion. If an 

expansion to more speakers than the audio card has 

channels is required it is necessary to replace the whole 

card with exceptions of specialized cards capable of 

being driven by an external clock source. 

Multi-room playback does not require very high 

precision of synchronization due to big distances between 

speakers. In typical setups differences between speakers 

in the same room on the order of milliseconds are 

completely acceptable and with speakers being in 

different rooms the differences between speakers can be 

on the order of tens of milliseconds or even larger 

depending on the rooms’ separation. 

Professional audio does require sample-accurate 

synchronization, however it is only in the digital domain 

where this requirement is necessary as there is no need to 

either record or play the sound with precision on the 

order of microseconds, it is however strictly necessary 

not to introduce any more offset between streams further 
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on the signal processing path. Thanks to this it is possible 

to freely process the streams and send them over the 

network without the problem of desynchronization. 

Currently the most widely deployed open standard for 

network audio is AES67 [3], which makes use of the PTP 

protocol [4] to distribute media clock as well as the RTP 

protocol to distribute audio signal and timing information. 

Wave Field Synthesis has specific requirements for 

precise synchronization because of short distances 

between speakers. Usually all of the speakers in the 

system are driven by the same audio device, thus 

synchronization is not required. However if a system 

consisting of many independent devices connected via a 

network were to be constructed, higher degree of 

synchronization than in the previous cases would be 

necessary. In a system where speakers are spaced 1.5 cm 

apart the time the sound travels this distance in 43.7 μs, 

so ideally the difference between the adjacent devices 

playback position should be lower than half of this time. 

III. PIWFS SYNCHRONIZATION SYSTEM 

PiWFS (as in Raspberry Pi Wave Field Synthesis) is a 

project aiming to create a distributed networked Wave 

Field Synthesis system from Raspberry Pi devices. One 

of its elements is the synchronization system which 

ensures that the audio streams received are being played 

simultaneously on all devices. Fig. 1 represents an 

overview of systems broad architecture, elements of 

which will be subsequently described. 

Figure 1.  PiWFS system architecture (NIC – network interface 
controller, HW clock – hardware clock). 

The physical system consists of multiple “slave” 

devices that play audio synchronously connected in a 

single Local Area Network and another device that serves 

as a PTP Grandmaster – a timing source to which slave 

devices are synchronized. Both the slave devices and the 

PTP grandmaster run PTP software stack which uses 

timing information obtained from device’s clocks and 

NIC drivers to synchronize all system clocks via the LAN 

connection. 

It is important to recognize that only the system clock 

in the operating system is being corrected and thus 

synchronized, as it is not possible to change the 

frequency of the hardware clock, which is just a simple 

quartz oscillator. This means that it is necessary to run the 

PTP software while the system is working as without 

constant correction the clocks would drift apart. 

Additionally variations in temperature and humidity can 

have and impact of the oscillator’s stability and frequency, 

which in turn reduce the precision of synchronization. 

The ALSA library [5] provides an interface to the 

audio card via the ALSA audio driver. The part of the 

library that is important to the functioning of the system 

is the status information. PiWFS software is able to 

request the driver to take a snapshot of the card current 

status that contains the time that status was obtained. The 

library returns time 𝑡𝑆 taken from the system clock which 

is being actively synchronized with PTP software. 

Additionally the status contains the value of “delay” – 𝐷 

(as called in the documentation), which corresponds to 

the amount of frames still in the audio buffer. This 

information is vital to estimate the time 𝑡𝑝 the next frame 

inserted into the card’s buffer will be played which can 

be calculated 𝑡𝑝 = 𝑡𝑆 + 𝐷𝑇𝑓 , where 𝑇𝑓  is the amount of 

time it takes to play a single frame. 

The value of the time returned by the ALSA library 

has low accuracy because of the sensitivity of the PTP 

software to network jitter. It is thus necessary to use an 

averaging scheme to reduce the temporal noise. The 

system uses several different techniques to improve the 

precision of obtained data. The overall structure of the 

system consists of a loop that reads a block of audio 

samples, processes it, and sends it to the audio card. 

The system needs to be able to perform processing on 

blocks of audio data in a shorter amount of time than it is 

required by the audio card to play them. This requirement 

helps to avoid “underruns” – situations in which the 

audio card runs out of frames in the buffer while playing. 

Thus the system has some amount of additional time, 

which is used by the software to constantly request status 

values from the driver as to get as many data points as 

possible. The result of this operation is an array of status 

times [𝑡𝑆0, … , 𝑡𝑆𝑁) as well as an array of respective delays 

[𝐷0, … , 𝐷𝑁), where 𝑁 is the amount of times the status 

was requested from the audio card. 

After obtaining the status arrays the systems estimates 

the time 𝑇𝑓. In the beginning the value of 𝑇𝑓 is assumed to 

be equal to 
1

𝑓𝑠
, where 𝑓𝑠 is the sampling rate of the audio 

being played. Subsequently 𝑇𝑓  is estimated as a moving 

median of 𝑘 last estimated values: 

𝑇𝑓 = median
𝑘

(
1

𝑀𝑁
∑ ∑

𝑡𝑆𝑛 − 𝑡𝑆𝑚′

𝐷𝑚′ + 𝐿′ − 𝐷𝑛

𝑀

𝑚=0

𝑁

𝑛=0

) (1) 

Here, 𝐷𝑚′ and 𝑡𝑆𝑚′ are elements of 𝑀 -sized array of 

delays and status times obtained before the previous 

block of samples was played. Similarly 𝐷𝑛  and 𝑡𝑆𝑛  are 

delays and status times obtained before the current block 
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of samples. 𝐿′ is the length of the previous sample block 

(i.e. the amount of frames in it). 

Having obtained 𝑇𝑓  the time the next frame inserted 

into the ALSA buffer will be played 𝑡𝑝 is calculated as 

follows: 

𝑡𝑝 =
1

𝑁
∑(𝑡𝑆𝑛 + 𝐷𝑛𝑇𝑓)

𝑁

𝑛=0

 (2) 

Subsequently the current desynchronization value 𝑑𝑐 is 

calculated 

𝑑𝑐 =
𝑡𝑝 − 𝑡0

𝑇𝑓
− 𝑛𝑟  (3) 

where 𝑡0  is the time the playback of the whole track 

should have started, while 𝑛𝑟  is the number of the next 

frame that will be read from the played track (i.e. the 

frame after the frame that was inserted at the end of the 

previous block). The value of 𝑡0  is provided externally 

and is identical for every device. As can be easily 

concluded 
𝑡𝑝−𝑡0

𝑇𝑓
 will be the amount of frames that would 

have been played before the next sample inserted into the 

ALSA buffer will be. 

Finally a moving ordinary least squares linear 

regression is applied to 𝑘 last estimated values of the time 

the next frame inserted into the buffer will be played 

since the start of playback 𝑡0𝑝 = 𝑡𝑝 − 𝑡0  and 𝑘  last 

estimated values of the sum of current correction and 

desynchronization 𝑐𝑑 = 𝑐𝑛 + 𝑑𝑐: 

𝛽𝑑 =
∑ 𝑡0𝑝𝑖𝑖 𝑐𝑑𝑖 −

1
𝑘
∑ 𝑡0𝑝𝑖𝑖 ∑ 𝑐𝑑𝑖𝑖

∑ 𝑡0𝑝𝑖
2

𝑖 −
1
𝑘
(∑ 𝑡0𝑝𝑖𝑖 )

2
 (4) 

𝛼𝑑 =
1

𝑘
∑𝑐𝑑𝑖
𝑖

−
𝛽

𝑘
∑𝑡0𝑝𝑖
𝑖

 (5) 

Having calculated the parameters of regression two 

precise final values are obtained the jump 𝑗 and the ratio 

𝑟  which are the whole and the fractional parts of the 

approximated via regression value of desynchronization 

𝑑𝑎: 

𝑑𝑎 = 𝛼𝑑 + 𝛽𝑑𝑡0𝑝 (6) 

𝑗 = ⌊𝑑𝑎 − 𝑐𝑛⌋ (7) 

𝑟 = 𝑑𝑎 − 𝑐𝑛 − 𝑗 (8) 

Correction 𝑐𝑛  is a value that starts at zero and is 

increased or decreased by adding to it the value of the 

jump 𝑗 at the end of processing every block 𝑐𝑛 = 𝑐𝑛−1 +
𝑗, i.e. it’s the sum of all previous values of 𝑗. 

After the calculation the actual correction of the played 

stream is performed by shifting it 𝑗  samples and then 

further shifting it the 𝑟 fraction of a sample by resampling 

it using a sum of sinc functions: 

𝑏𝑜[𝑖) = ∑ 𝑏𝑓

𝑖+2𝑞+1

𝑙=𝑖

[𝑙)
sin(𝜋(𝑟 + 𝑖 + 𝑞 − 𝑙))

𝜋(𝑟 + 𝑖 + 𝑞 − 𝑙)

𝑖 = 0,… , 𝐿.

 (9) 

Here, 𝐿 is the length of the interpolated output block 

𝑏𝑜 that is sent to the audio driver, while 𝑏𝑓 is a block of 

length 𝐿 + 2𝑞 + 1 taken from the input stream, shifted by 

𝑗 − 𝑞  to take additional edge samples required for the 

interpolation. The amount of precision i.e. the number of 

summed sinc functions is controlled via the 𝑞 parameter. 

IV. EXPERIMENTS 

A. Methodology 

The tests were performed on a setup consisting of two 

Raspberry Pi 3B devices (referred from now on to as 

“slaves”) with JustBoom AMP Zero pHat attachments, a 

computer serving as a PTP Grandmaster running linuxptp 

and a computer serving as an audio source and a 

measurement capture, all connected to the same local 

network switch (see Fig. 2). The JustBoom AMP Zero 

pHat is a device consisting of a digital to analog 

converter as well as a class D amplifier, it is attached to 

the Raspberry PI via GPIO pins and, thanks to the 

provided driver, shows up as an audio card in the system. 

 

Figure 2.  Measurement setup. 

A Hantek 6022BE oscilloscope was chosen as a 

measurement device, because of the possibility of 

continuous two channel sample acquisition with high 

samplerate. A voltage output from left channels of both 

of the slaves was acquired continuously with sampling 

frequency of 1 MHz for a duration of one hour during 

which the same signal was played on the slaves, 

coordinated by the synchronization system. The signal 

played was a sum of 40 Hz, 400 Hz and 4 kHz sines. 

An offset between signals was measured by finding the 

argument for which the cross-correlation function 

between the two signals (𝑠1 ⋆ 𝑠2)[𝑛)  reaches maximal 

value. The signals were divided into blocks of length 𝐿 to 

get a discrete function 𝑜[𝑚)  describing the offset over 

time. 

𝑜[𝑚) = | argmax
𝑚𝐿≤𝑛≤(𝑚+1)𝐿

(𝑠1 ⋆ 𝑠2)[𝑛]| (10) 

International Journal of Signal Processing Systems Vol. 9, No. 3, September 2021

19©2021 Int. J. Sig. Process. Syst.



In the following measurements 𝐿 was chosen to be 
1

20
 

of the sampling frequency i.e. 50000 samples. 

B. Systems 

Three systems were measured besides PiWFS. As, as 

of the time of writing this paper, there does not exist any 

system for linux that is especially created to satisfy the 

requirements of speakers placed close to each other such 

as in wave field synthesis, two professional audio 

systems and one multiroom audio system were chosen. 

Jack2 [6] is currently the standard professional audio 

software for linux which implements the jack protocol 

used for communication between software clients and the 

jack server. It can be used over a network (the network 

part of the software is called NetJack2) where a single 

master device will take care of synchronization of some 

amount of slave devices. As the slaves are synchronized 

to the master network clock they cannot simply playback 

the samples received on a local audio device which has a 

separate clock. Jack2 ships with two different solutions: a 

module called audioadapter, and two jack clients: alsa_in 

and alsa_out (for input and for output accordingly) both 

of which can feed the local audio device with samples 

from the media clock by interpolation. Additionally there 

is an external solution called Zita-Ajbridge [7] which 

provides two jack clients as well, but claims greater 

precision. All three solutions were compared and Zita-

AJbridge was chosen to be used in the experiment as it 

provided the best synchronization. 

RAVENNA is a company selling AES67-compatible 

devices. It created a linux ALSA driver capable of 

receiving and transmitting AES67 streams [8]. To control 

the driver, open source aes67-linux-daemon software was 

used [9], as the software provided by RAVENNA is not 

available for ARM devices such as Raspberry Pi. This 

system does not provide solution to resample the 

synchronized stream to playback it on the device. To 

solve this Jack2 with Zita-AJbridge was used again, this 

time synchronized on the AES67 PTP media clock, 

The final system that was tested was Snapcast [10] 

which is a multiroom audio system claiming to provide 

“perfectly synchronized audio”. It consists of a single 

source streaming audio to some amount of slaves that 

play it back. 

C. Results 

Fig. 3 presents a chosen at random and downsampled 

fragment of the measurement. As the measurement has a 

sampling frequency of 1 MHz witch chunk size (1) set to 
1

20
 of it the resulting sampling frequency of the offset plot 

is 50 kHz and additionally the data was gathered over a 

period of one hour the full plot would be completely 

unreadable. 

To present the results clearly, it was decided to prepare 

a percentile plot, that shows the chance of an offset being 

lower than a given value (see Fig. 4). 

From the first plot the general characteristics of how 

the different systems behave can be inferred. Both the 

PIWFS and NetJack2 systems tend to a single value with 

PiWFS values being close to 0 μs and NetJack2’s to 

40 μs. It can be also noticed that PiWFS’s changes are 

more abrupt, with sharper “spikes” while NetJack2 

correction is more gradual. RAVENNA’s offset values 

create a pattern of low frequency high amplitude 

oscillations around the 0 μs point of the plot, the 

amplitude of the oscillations reaches over 100 μs on the 

chosen fragment which suggests system’s low stability. 

Snapcast’s pattern of offset values doesn’t change 

smoothly as the others in this comparison, rather as the 

offset reaches over some “threshold” value the software 

then introduces a change in the playback speeds to correct 

it until another lower “threshold” is reached and the 

software stops the correction. This creates the saw-like 

pattern that can be seen on the plot. It can be noticed that 

the center point of the saw pattern is close to the 200 μs 

value. 

 

Figure 3.  A fragment of the offset (10) measurement between slaves. 

 

Figure 4.  A percentile plot of the offset (10) between slaves. 

As can be seen from the percentile plot, tested systems 

present a wide range of offset values most probable to 

appear. The worst synchronization is achieved by the 

Snapcast software with less than 1 % chance of it’s value 

being lower than 100 μs and a 64 % chance of it’s value 

being lower than 200 μs. 

The second worst system is the RAVENNA AES67 

implementation which has around 4 % chance to be 

worse than snapcast, with a 7 % chance of the offset 

being lower than 10 μs, a 62 % chance of it being lower 

than 100 μs and a 92 % chance of it being lower than 

200 μs. NetJack2 is not much better, however it is more 
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stable, with the offset varying less. This also means that it 

has a 20 % of the offset being higher that of RAVENNAs. 

This system has less then 1 % chance of the offset being 

lower than 10 μs, 80 % chance of it being lower than 

40 μs and 99.5 % chance of it being lower than 100 μs. 

PiWFS system is by far the most stable and the most 

precise in this experiment. It has around 20 % chance of 

the offset being lower than 1 μs, a 40 % chance of the 

offset being lower than 2 μs and a 99 % chance of the 

offset being lower than 10 μs. In the experiment the 

maximal offset the system reached was 13 μs. 

V. CONCLUSION 

All three of the available systems can be used for their 

intended purposes, however they do not fulfill the 

requirements of Wave Field Synthesis. The offset 

measured was much larger than 20 μs for most of the 

measurement time. Additionally two of the systems 

RAVENNA and Snapcat show very poor synchronization 

stability. 

The system presented in this paper has very high 

synchronization accuracy, fully fulfilling the 

requirements for a closely spaced speaker array, allowing 

constructing such arrays by connecting separate network 

linux devices. 

In further studies the amount of distortion introduced 

by the different systems can be measured and it’s 

influence of the wave field perception evaluated. The 

amount of devices measured can be increased to see how 

the system handles a large array of speakers, which 

would require special multichannel high-samplerate 

acquisition devices. The quality of the actual wavefield 

can be evaluated by measuring the pressure created by the 

array with a microphone matrix. And finally a 

measurement on different devices can be done to ensure 

the system can provide adequate synchronization even on 

different hardware (for example different Raspberry Pi 

versions or audio cards). 
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