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Abstract—Speech Recognition is a widely studied topic for 
high-resource languages like English and Mandarin. A 
plethora of publications exist that study the performance of 
several recognition methods for these languages. However 
differences in phonetics, accent, language model, etc 
between any two different languages demand for a study of 
speech recognition methodologies and components 
separately for each language. In this paper, we present a 
comparative study of popular speech recognition methods 
for Nepali, a low-resource Indo-Aryan language. We 
describe our approach to building the phonetic dictionary 
and present our findings for DNN and GMM based 
techniques with speaker adaptation on 50K vocabulary 
speech recognition task. 
  
Index Terms—Nepali speech recognition, automatic speech 
recognition, Nepali speech processing, Nepali phonetic 
dictionary 
 

I. INTRODUCTION 

Most modern speech recognition systems, with the 
exception of end-to-end models, consist of three main 
components, namely – acoustic model, lexicon and 
language model. Time-domain samples of speech signal 
are divided into overlapping windows of certain time 
period. The set of samples contained in a window is 
called a frame. A preprocessing step extracts a feature 
vector that captures phonetic characteristics for each 
frame. Mel Frequency Cepstral Coefficients (MFCC), 
Linear Predictive Coding (LPC) and Perceptual Linear 
Prediction (PLP) are the most widely used feature 
extraction methods in speech recognition. The job of the 
acoustic model is to transform this sequence of feature 
vectors into a sequence of phones that represents the 
utterance. Most commonly applied technique for speech 
recognition is the Hidden Markov Model (HMM). In 
HMM, a phone, or a triphone is represented by a state in 
the usual Markov model that cannot be directly observed. 
A mixture of gaussians can be used to model each state of 
the HMM. Such a model is called a Gaussian Mixture 
Model (GMM) which was the dominating method for 
four decades until Deep Neural Networks (DNN) took 
over. DNNs have shown to outperform GMM on various 
benchmarks due to its ability to learn models for data 
lying on or near non-linear manifold [1]. A basic block 
diagram of speech recognition system is shown in Fig. 1. 
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Figure 1.  Simplified block diagram of automatic speech recognition 

system. 

Performance of the model can be significantly 
increased by applying speaker adaptation techniques in 
feature space, called normalization and/or model space, 
known as adaptation. In speech recognition, a speaker is a 
general concept for different signal conditions that 
accounts for sources of variability in input features, thus 
affecting the model’s performance. Normalization 
modifies feature vector to better fit the trained model 
while adaptation techniques modifies the trained model 
parameters to better fit the test speaker feature vector. 
Commonly used normalization techniques include 
Cepstral Mean and Variance Normalization (CMVN) [2], 
Vocal Tract Length Normalization (VTLN) [3], feature 
based Maximum LIkelihood Linear Regression (fMLLR). 
Various normalization techniques have been studied in 
[4]. Model space transformation includes affine 
transformation of model parameters using Maximum 
Likelihood Linear Regression (MLLR) [5], Maximum A 
Posteriori (MAP) estimation [6] and eigen voices. A 
survey of adaptation techniques can be found in [7]. 

Moreover, basic Maximum Likelihood training can be 
improved by the use of Maximum Mutual Information 
Estimation (MMIE). Inter-class variability can also be 
improved by Linear Discriminant Analysis (LDA) that 
transforms feature vectors to components along the axis 
where the gaussians can be better discriminated. 

In this paper, many of the aforementioned approaches 
and their combinations have been evaluated for GMM 
models and DNN models. This paper has been organized 
into four major sections. Section II studies phonetic 
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characteristics of Nepali language and builds up Nepali 
lexicon. Section III describes the GMM-HMM and DNN-
HMM acoustic modeling techniques along with training 
methodologies. Section IV describes several speaker 
adaptation and sequence discriminative methodologies 
used for performance improvement. Section V describes 
all the experimental setup for all the models. Section VI 
tabulates results and presents a discussion on them. 
Section VI provides conclusions regarding the 
experiments and methodology. All the experiments were 
carried out in Kaldi toolkit [8]. Training scripts were 
adapted from the example scripts found in the toolkit. 

II. NEPALI PHONOLOGY 

Nepali language has 11 distinct vowels (6 oral and 5 
nasal) and 33 consonants. IPA tables for the vowels and 
consonants are shown in Tables I and II respectively. For 
computational purposes, these IPA symbols were 
represented by APRABET like characters. Since no prior 
work was available on LVCSR for Nepali language, 
phonetic dictionary was built from scratch. Nepali, being 
a phonetically written language, can be transcribed by 
rules in most of the cases. A grapheme to phoneme 
converter was built based on letter to phone 
correspondences and schwa deletion rules. 

Finally, the most common 50,000 words were selected 
from the General Corpus Nepali Monolingual written 
corpus [10] which consists of 1,400,000 words collected 
opportunistically from various sources such as the 
internet webs, newspapers, books, publishers and authors. 

III. ACOUSTIC MODELING 

A. Hidden Markov Model 
The most common modeling to speech signal is the 

Hidden Markov Model (HMM). HMM treats a speech 
signal as composed of a sequence of elementary units 
called phones. The transition between adjacent phones is 
assumed to follow the Markovian process, i.e. the current 
state holds all the information about the entire history of 
the process. To account for the co-articulation 
phenomenon in speech signal, i.e. the dependence of 
speech features on the phone immediately before and 
after the current phone, tri-phone is usually considered a 
state of the HMM. The parameters of a HMM is the state 
transition probability and the output probability density. 
For a given HMM with state transition between state i 
and state j 𝜆 = (𝐴,𝐵) where 𝐴 = 𝑎11. . . 𝑎𝑖𝑗. . .𝑎𝑁𝑁  is the 
transition probability matrix and 𝐵 = 𝑏𝑖(𝑜𝑡) is a sequence 

of observation likelihoods. Estimation of the HMM 
parameters is done through the Baum-Welch algorithm 
which is a special case of Expectation-Maximization 
Algorithm. 

B. Gaussian Mixture Model 
The emission probability density of the HMM states 

can be modeled using a mixture of gaussians. This model 
is termed as Gaussian Mixture Model (GMM). GMM is a 
sum of a number of d-dimensional gaussians which 
represents the probability density of the corresponding 
phone. Here, d is the dimension of the feature vector. For 
a GMM based HMM, estimating the emission probability 
translates to finding mean vector 𝜇𝜇 and covariance matrix 
𝛴 for the mixture of gaussians. 

C. Deep Neural Networks 
Deep Neural Networks have been proved to learn 

much better models of data than GMM models [1]. The 
reason lies in the strength of DNNs to learn 
representations of data points that lie on or near a non 
linear manifold. DNNs with many layers of hidden units 
and a very large output layer needed to accomodate all 
tied triphone states of the HMM. As such, DNNs 
essentially become multiclass classifier that takes as input 
the feature vector and outputs at each output unit the 
probability 𝑝𝑗 of the given data point being in the class 𝑦𝑗 
that corresponds to the triphone state 𝑗.  

D. WFST Framework 
Speech recognition stack contains an acoustic model, 

lexicon and a language model. Each component can be 
efficiently modeled by using a Weighted Finite State 
Transducer (WFST). Composition of these components 
results in a big graph of HMM states that encodes all the 
information about lexicon and grammar or language 
model. More concretely, let 𝐺  denote the grammar 
transducer that maps from word sequence to word 
sequence i.e. input to the state of transducer is a word and 
the output is the same word weighted by its probability of 
occurrence in the given context. Let 𝐿 denote the 
pronunciation lexicon that takes in phone sequence and 
outputs a sequence of words, 𝐶  be the context 
dependency transducer that converts context independent 
phones to context dependent and 𝐻 denote the HMM set 
which is the closure of union of individual HMM. The 
integrated transducer results from the composition and 
determinization of the compositions as in (1). 

 N = det(H ∘ det(C ∘ det(L ∘ G))) (1) 
 

TABLE I.  CONSONANTS IN NEPALI LANGUAGE [9] 
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TABLE II.  VOWELS IN NEPALI LANGUAGE [9] 

 

IV. MODEL AND FEATURE SPACE IMPROVEMENTS 

A. Speaker Adaptation 
1) Maximum likelihood linear regression 
There has been an extensive use of linear transforms 

for both training and adaptation of HMM based speech 
recognition systems. Linear transforms can be used for 
applications such as decorrelation of feature vectors and 
constrained adaptation of acoustic models to speakers. 
Maximum Likelihood Linear Regression uses linear 
transformation on the model parameters, means and 
variances, to adapt to a given speaker [5]. When applying 
MLLR, new mean vectors �̂�𝜇  and covariance matrices 𝛴� 
are calculated, which can be implemented with either 
common global parameters or individual parameters for 
each state.  

  𝜇𝜇=𝐖𝐖𝜇𝜇+𝐛𝐛=𝐀𝐀𝜉𝜉 (2) 

where 𝑾 is transformation matrix applied to mean vector, 
𝑏 the bias vector, 𝐴 = [𝑊𝑏], 𝜉𝜉 = [𝜇𝜇 𝟏]. 

 Σ� = 𝐋𝐁𝐋𝑇  (3) 

where 𝐿is Choleski factor of 𝛴. 

 Σ� = 𝐁Σ𝐁𝑇  (4) 

And in both cases 𝐵 is the transformation matrix to be 
obtained. 

2) Speaker adaptive training 
Speaker Adaptive Training (SAT) annihilates the inter-

speaker variability and phonetic variation of the training 
population. Given a set of 𝐵 speakers and their 
corresponding adaptation cepstra 𝑋𝑖  for 1 ≤ 𝑖 ≤ 𝐵, SAT 
optimizes the maximum likelihood criterion on a per 
speaker basis as: 

  arg 𝑚𝑎𝑥
Θ,𝐶𝑖

 ∏  𝐵
𝑖=1 𝑝(𝐶𝑖(Xi) ∣ Θ)  (5) 

where the individual speaker-dependent transforms 𝐶𝑖 
and the model parameters 𝛩 = (𝜇𝜇1, . . . , 𝜇𝜇𝑁 ,𝛴𝑖 , . . . . ,𝛴𝑁 are 
jointly estimated. This optimization is done in a two step 
process, first estimating transforms 𝐶𝑖 and second, 
retraining the model 𝛩 . Such a two step process is 
iterated several times in E-M manner. 

3) Feature-based MLLR 
Feature-based MLLR (fMLLR) [13] which is also 

known as constrained MLLR applied to feature space 
applies adaptation transform to input feature vectors 
rather than model parameters . It is used to normalize 
features to better fit the speaker. It has proved to be 
highly effective as a method for unsupervised adaptation 
to a new speaker or environment. Following affine 
transform is applied to the feature vector. 

 𝐱𝐱� = 𝐀𝐀𝐱𝐱 + 𝐛𝐛   (6) 

where 𝑥 is the feature vector, 𝐴 is the transformation 
matrix and 𝑏 is the bias vector. 

 𝐱𝐱=𝐖𝐖𝜉𝜉 (7) 

where 𝑊 = [𝐴  𝑏] and 𝜉𝜉 = [𝑏 1]. 

B. Other Optimization Techniques 
1) Linear discriminant analysis 
Linear Discriminant Analysis is used as dimensionality 

reduction technique with good class-separability and 
reduce computational costs. LDA projects a feature space 
(n-dimensional) onto a smaller subspace 𝑘 (where 
𝑘 ≤ 𝑛 − 1 ) while maintaining the class-discriminatory 
information by computing eigenvectors from data and 
collecting them in scatter-matrices (i.e., in-between-class 
scatter matrix and within-class scatter matrix). The idea is 
to find a projection of the data where the variance 
between the classes is large compared to the variance 
within the classes. Under assumptions of Gaussian class 
distribution and a common with-in class covariance 
matrix this can be stated formally as finding a projection 
matrix 𝜃 that maximizes the quotient 

  𝐽(𝜃) = 𝑑𝑒𝑡 (𝜃Σ𝑏𝜃𝑇)/𝑑𝑒𝑡 (𝜃Σ𝑤𝜃𝑇)  (8) 

where 𝛴𝑏  is the between-class covariance matrix and 
𝛴𝑤  is the common within-class covariance matrix. 

2) Delta, delta-delta 
A common method for extracting information about 

such transitions is to determine the first difference of 
signal features, known as the delta of a feature and the 
second difference is known as the delta-delta. To 
calculate the delta coefficients, the following formula is 
used: 

  𝑑𝑡 = ∑  𝑁
𝑛=1 𝑛(𝑐𝑡+𝑛−𝑐𝑡−𝑛)

2∑  𝑁
𝑛=1 𝑛2

 (9) 

where 𝑑𝑡 is a delta coefficient, from frame 𝑡  computed in 
terms of the static coefficients to 𝑐𝑡−𝑁. A typical value for 
𝑁 is 2. Delta-Delta coefficients are calculated in the same 
way as detlas. Speech recognition systems conventionally 
append delta and double-delta cepstral features to static 
cepstral features. Delta-cepstral features capture dynamic 
speech information and improve ASR recognition 
accuracy, they are not robust to noise and reverberation. 

3) I-vectors 
I-vectors is used for low-dimensional representation of 

the input speech signal that captures the speaker- and 
channel-dependent variations [14]. The total variability 
matrix is composed of speaker and session variability 
simultaneously. Each factor of the i-vectors control the 
Eigen dimension of this matrix. The i-vector computation 
can be viewed as a probabilistic compression used to 
reduce speech-session super-vectors dimension. The 
speaker and channel dependent supervector 𝑀 is 
projected into the total variability space as follows 

 𝑀 = 𝑚 + 𝑇𝑤 (10) 

where 𝑚 is the mean super-vector of Universal 
Background Model (UBM), 𝑇  is the total variability 
matrix and 𝑤 is the resulting i-vector. 
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4) Sequence discriminative training 
Unlike Maximum Likelihood Estimation (MLE) that 

tries to model the density of HMM state, discriminative 
training approaches speech recognition as a sequence 
classification problem by directly trying to maximize the 
probability of output class label given the acoustic input. 
Maximum Mutual Information Estimation (MMIE) and 
Minimum Phone Error (MPE) training criterion are 
described below. MMIE aims to directly maximize 
probability of word sequence given the observations [15]. 
Let 𝑂𝑢 = 𝑜𝑢1, . . . , 𝑜𝑢𝑇𝑢 be the sequence of observations 
and 𝑊𝑢 be the sequence of words corresponding to 
utterance 𝑢, then the MMI criterion is given by: 

  𝐹𝑀𝑀𝐼 = ∑  𝑢 log 𝑝(𝐎𝑢∣𝑆𝑢)𝑘𝑃(𝑊𝑢)
∑  𝑤 𝑝(𝐎𝑢∣𝑆𝑢)𝑘𝑃(𝑊)

 (11) 

where 𝑆𝑢 = {𝑠𝑢1, . . . . , 𝑠𝑢𝑇𝑢  is the sequence of HMM 
states corresponding to 𝑊𝑢 and 𝑘 is the acoustic scaling 
factor. Denominator gives the total likelihood of the data 
given all possible word sequences. Computing of the 
denominator is done by generating latices, and summing 
over all the words in the lattice. 

While maximizing MMIE, objective function 
minimizes the expected sentence error. State level 
Minimum Bayes Risk (sMBR) and Minimum Phone 
Error (MPE) work on state level and phone level 
respectively. They are designed to miniize error 
corresponding to the state or phone labels. 

  𝐹𝑀𝑀𝐼 = ∑  𝑢 log ∑  𝑤 𝑝(𝐎𝑢∣𝑆)𝑘𝑃(𝑊)𝐴(𝑊,𝑊𝑢)
∑  𝑤′ 𝑝(𝐎𝑢∣𝑆𝑢)𝑘𝑃(𝑊′)  (12) 

where 𝐴(𝑊,𝑊𝑢) is the phone or state transcription 
accuracy of sentence 𝑊 given reference sentence 𝑊𝑢. 

V. EXPERIMENTS 

The experiment was conducted in two stages. First, a 
baseline GMM-HMM model was selected from models 
built with different speaker adaptation and optimization 
techniques. Second a DNN model was trained using the 
labels generated by the baseline GMM-HMM model for 
all training data. the 48k vocabulary dictionary created 
from the aforementioned process was used as the lexicon. 
Open sourced data found on [16] appended with nearly 
60 hours of read speech data collected at Paaila 
Technology [17] was used to build the speech corpus. For 
training the baseline model, only the first source was used 
that consisted of nearly 150 hours of speech data 
comprising 158k utterances. The corpus was split into 
training and test set in 8:2 ratio. A subset of the data was 
created for evaluation of the performance of the model on 
varying data size. The subset consisted of 80 hours of 
speech data. 

A. Baseline Model 
Using the 3-gram language model, first a simple mono-

phone model was trained to create alignments of phones 
with corresponding labels. This is necessary because 
acoustic models require phones to frame correspondence. 
Training utterances usually consist of a sequence of 
phones and a sequence of frames whose lengths are not 

equal. Better alignments are generated by cascading tri-
phone models with larger number of parameters (number 
of tri-phone states and number of gaussians) for the 
ultimate baseline model. 

Several models were created using different training 
methodologies. Feature and model space transformations 
were applied using Delta-Delta, MLLT and LDA. Using 
raw MFCC features a triphone model was trained using 
alignments generated by a monophone model. Using 
alignments created by the triphone model, first, a triphone 
model with 5500 tied-states and 90000 gaussians was 
trained using delta-delta features. In the second 
experiment, features transformed with LDA and MLLT 
were used to train a second model referred to as LDA-
MLLT in this paper. And lastly, a combination of speaker 
adaptive training with feature transformation using Delta-
LDA-MLLT was used to train the final model, referred to 
as SAT-LDA-MLLT. Each training was carried out in the 
two subsets of data. The Baseline Model was obtained by 
applying speaker adaptation via SAT with a 40-
dimensional feature vector obtained from Delta-Delta and 
transformed with LDA. 

B. DNN Model 
The baseline GMM-HMM model produces labels for 

each frame of the input speech vector to the 
corresponding state in the HMM. This labeled frame is 
used as a training example to train the DNN model which 
will be able to predict the state of HMM given the input 
feature vector. Here we train three distinct models whose 
training recipes are available in the Kaldi toolkit. We call 
them DNN-sMBR [18], DNN-Pnorm [19], and DNN-
TDNN-LSTM [20] respectively based on the architecture 
and training methodologies for these models. The three 
models are described as follows. 

1) DNN-sMBR 
For this model, a 40-dimensional feature is extracted. 

The features include MFCC-LDA-MLLT-fMLLR with 
CMN. The features are used to pre-train a Deep Belief 
Network using Contrastive Divergence with 1-step of 
Markov Chain Monte Carlo sampling (CD-1) [21]. Then 
a DNN is trained to classify frames into triphone-states 
using mini-batch Stochastic Gradient Descent (SGD). 
Finally sMBR sequence-discriminative training with 
input dimension of 440, output dimension of 2816, 
starting learning rate of 0.008 and no hidden layers is 
done to train the neural network in order to jointly 
optimize for the whole sentence. 

2) DNN-Pnorm 
This model is basically a feed forward neural network 

with pnorm non-linearity as the activation function. For 
this model, same 40-dimensional feature vector, i.e. 
MFCC (spliced)-LDA-MLLT-fMLLR with CMN used in 
the DNN-sMBR, is used. Another key feature in training 
this model is that rather than using vanilla SGD, a 
preconditioned SGD described in [19] is used in training. 
Details regarding the model and its training is provided in 
[22]. In summary, we train the neural net using pnorm 
where p=2 with input dimension of 2400 and output 
dimension of 300. The network consists of 4 hidden layer 
and is trained for 8 epochs where the learning rate 
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decreases from 0.02 to 0.004. Then for the extra 4 epochs 
the learning rate remains constant. 

3) DNN-TDNN-LSTM 
Unlike previous models that uses a feed-forward 

network which cannot capture temporal difference 
between the frames, this model is composed of recurrent 
units that can model long term temporal dependency. 
Speech being a sequential input signal, sequential models 
have shown to outperform feed-forward networks in 
many speech recognition tasks. 

Data for training this model is obtained by changing 
the speed of original data by a factor of 0.9, 1 and 1.1 
along with the volume. LDA-MLLT and diagonal 
Universal Background Model (UBM) is applied to the 
MFCC features of the perturbed data. We then train 
ivector extractor, modify speaker info, extract ivectors 
and then align with fMLLR-lats. fMLLR transformation 
is applied as in [23]. We then train the neural net with i-
vector input dimension of 100, output dimension of 3352. 
The network consists of 7 TDNN layers and 3 LSTM 
layers trained for 4 epochs with initial effective learning 
rate of 0.001 and final effective learning rate of 0.0001. 
As we are using a lattice-free model, it reduces the size of 
HCLG graph which helps in faster decoding. 

VI. RESULTS AND DISCUSSION 

A. Baseline Model 
Table III shows word error rates obtained for different 

combinations of speaker adaptation and feature vector 
optimization. Finally a combination of SAT, LDA and 

Delta-Delta with 5500 tri-phone states and 90000 
gaussians was used as a baseline GMM-HMM model for 
training DNN model. It was observed that using features 
transformed with LDA and MLLT brought about around 
15% relative improvement over the model trained with 
delta-delta features. Further application of speaker 
adaptive training produced a 12.2% additional relative 
improvement. So finally, the model trained using features 
transformed with LDA and MLLT trained with speaker 
adaptive training was selected as the baseline model. 

B. DNN Models 
Table IV shows the performance of the three models 

trained on 200 hours speech corpus. The speech corpus 
consisted of the 150 hours of open-sourced data coupled 
with 50 hours of speech corpus collected at Paaila. 
Alignments obtained from the application of the baseline 
model SAT-LDA-MLLT on the training data was used to 
train the three models. While DNN with pnorm non-
linearity activations, DNN-Pnorm, resulted in a lighter 
model with faster decoding, it performed the worst of all. 
With RBM pretraining and using constrained MLLR 
features, the feed forward network performed very close 
to the LSTM based model. Finally, it was observed that 
recurrent neural networks outperformed the feed forward 
networks for the large vocabulary task. This is suggestive 
of the temporal dependence of sequence of phones which 
could be traced back to their origin where a meaningful 
utterance has a sequence of words which in themselves 
have rich temporal dependence. 

 

TABLE III.  WER FOR DIFFERENT GMM-HMM MODELS 

 

TABLE IV.  WER ON DIFFERENT DNN MODELS 

 
 

VII. CONCLUSION 

We have presented experiments with GMM-HMM and 
DNN-HMM systems with different training 
methodologies and optimization techniques on a 200 
hours read speech corpus. Best performing GMM-HMM 
model - model trained with speaker adaptive training on 
features transformed with LDA and MLLT - was used as 
a baseline for the DNN-HMM model. DNN model using 
TDNN-LSTM units performed better than merely feed-
forward networks. But performance of DNN with RBM-

pretraining was comparable to the LSTM based model. 
Accuracy obtained for these models might alter with 
different test set which are very different from the 
training set used. 

Future work on Nepali speech recognition should focus 
on incorporating spoken speech as it is very different 
from read Nepali speech. Also, use of end-to-end 
approaches may be explored in the future. Due to high 
phone to letter correspondence in Nepali, there is a good 
chance of much better performance with end-to-end 
models that can predict sequence of letters directly from 
speech features or raw speech data. 
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