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Abstract—Multivariate analysis methods have been widely 
applied to functional Magnetic Resonance Imaging (fMRI) 
data to reveal brain activity patterns and decode brain 
states. Among the various multivariate analysis methods, 
the multivariate regression models that take high-
dimensional fMRI data as inputs while using relevant 
regularization were proposed for voxel selection or decoding. 
Although some previous studies added the sparse 
regularization to the multivariate regression model to select 
relevant voxels, the selected sparse voxels cannot be used to 
map brain activity of each task. Compared to the sparse 
regularization, the Euler’s Elastica (EE) regularization that 
considers the spatial information of data can identify the 
clustered voxels of fMRI data. Our previous study added 
EE Regularization to Logical Regression (EELR) and 
demonstrated its advantages over the other regularizations 
in fMRI-based decoding. In this study, we further developed 
a multivariate regression model using EE in 3D space as 
constraint for voxel selection. We performed experimental 
tests on both simulated data and real fMRI data to 
investigate the feasibility and robustness of EE regression 
model. The performance of EE regression was compared 
with the Generalized Linear Model (GLM) and Total 
Variation (TV) regression in brain activity detection, and 
was compared with GLM, Laplacian Smoothed L0 norm 
(LSL0) and TV regression methods in feature selection for 
brain state decoding. The results indicated that EE 
regression possessed better sensitivity to detect brain 
regions specific to a task than did GLM and better spatial 
detection power than TV regression. Moreover, EE 
regression outperformed GLM, LSL0 and TV in feature 
selection.   
 
Index Terms—fMRI, decoding, feature selection, Euler’s 
elastica, multivariate regression 
 

I. INTRODUCTION 

Functional Magnetic Resonance Imaging (fMRI) is a 
noninvasive imaging technology that can reveal the 
neural mechanism underlying various cognitive processes 
by measuring the Blood-Oxygen-Level Dependent 
(BOLD) signal in the brain [1]-[3]. For fMRI data, it is 
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very important to identify the voxels (features) that are 
relevant to each task because there are many irrelevant 
voxels that do not respond to the task. Therefore, 
voxel/feature selection is critical to both the estimation of 
activity patterns and the brain state decoding.  

Conventionally, the univariate statistical methods have 
been widely applied to fMRI data to reveal the activated 
regions and select the useful voxels for brain state 
decoding. Among various univariate methods, the 
Generalized Linear Model (GLM) on a voxel-by-voxel 
basis is the most popular for estimating activity patterns 
and selecting the task-relevant voxels [4]-[7]. All 
univariate methods for voxel selection treat each voxel 
independently and does not consider the interaction 
among voxels.  

In contrast to the univariate methods, multivariate 
methods are gaining increasing attention in fMRI data 
analysis. Some multivariate data-driven methods, such as 
independent component analysis, principal component 
analysis and partial least square, have been widely 
applied to identify task-related voxels or networks from 
fMRI data [8], [9]. Moreover, recursive feature 
elimination [10] and searchlight [11] algorithms have 
been applied to voxel selection of fMRI data.  

Recently, multivariate regression models that take 
high-dimensional fMRI data as inputs have been used for 
voxel selection or decoding. Some regularizations should 
be added to the multivariate regression models to 
stabilize the estimation of regression coefficients and 
prevent overfitting, An iterative sparse representation-
based method [12] and a SCoRS (survival count on 
random subsamples) method that used the L1 norm as the 
regulation [13] were proposed for voxel selection of 
fMRI data. In our previous study, we proposed a fast 
feature selection method that is based on a smoothed L0-
norm using a Laplacian kernel (LSL0) [14]. Moreover, 
sparse logistic regression using a combination of L1 and 
L2 norm regularization was proposed to automatically 
select relevant voxels for the classification of fMRI data 
[15]. However, the above regulations did not consider the 
spatial structure of the image.  

The spatial structure of the fMRI data is useful to the 
estimation of the multivariate regression model because 
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the voxels that respond to the external stimuli are 
generally distributed in clusters [16]-[18]. Michel et al. 
proposed an approach for regularized prediction based on 
Total Variation (TV) [19] that is mathematically defined 
as the norm of the image gradient regularization and 
demonstrated that TV regularization is well suited to the 
purpose of brain mapping while being a powerful tool for 
brain decoding. In our previous study, we added Euler’s 
Elastica (EE) that is based on both the gradient and the 
curvature of images to Logical Regression (LR) model 
for fMRI-based decoding and demonstrated that EE 
regularized LR (EELR) showed better decoding 
performance than LR with TV regularization and LR with 
sparse regularization [20]. Although our previous study 
demonstrated that sparse regularization can be used to 
select sparse relevant voxels [14], the brain activity maps 
that are relevant to each task cannot be obtained by the 
selected sparse voxels. Because EE regularization 
considered the spatial information of data and showed 
better performance than TV regularization in fMRI-based 
decoding [20], it is essential to further investigate how to 
apply EE regularization to select relevant voxels and 
obtain brain activity mapping of a task.  

In this study, we developed a multivariate regression 
model using EE in 3D space as constraint for voxel 
identification. To stabilize the estimation of weights, EE 
constraints on the weights were added to the multivariate 
regression model to obtain the solution with EE energy 
minimization. We investigated the performance of EE 
regression method from two aspects. First, the estimated 
weights were used to identify the brain regions that were 
activated by each task. The performance of EE regression 
was compared with GLM using both the simulated and 
real fMRI data. Second, we selected the voxels with high 
weights as the important features and inputted the 
features to the support vector machine (SVM) to decode 
the brain states. The decoding accuracies of EE 
regression were compared with the other feature selection 
methods that include TV regression, LSL0, and GLM 
using both simulated and real fMRI data. The results 
demonstrated that EE regression is more sensitive to 
detect the regions that are specific to a task than GLM 
and exhibited better classification accuracy than the other 
feature selection methods in most cases.  

II. THEORY 

We proposed EE regularized multinomial logistic 
regression (EELR) algorithm in 3D voxel space for multi-
class classification in our pervious study [20]. Because 
the theory of EE regularization was described in our 
previous study, we only introduced EE regularized 3D 
linear regression (EE regression) for voxel selection of 
fMRI data. 

The 3D linear regression model in voxel space can be 
expressed in (1): 

 𝑦 = 𝑥 ⋮ 𝑤 (1) 

In this model, 𝑥ϵRT×V1×V2×V3  is 4D observed fMRI 
data, y = {𝑦1,𝑦2, … ,𝑦𝑇} ∈ 𝑅𝑇 is the reference function of 
a task, and 𝑤 ∈ RV1×V2×V3  is a 3D weight matrix. 

𝑉1,𝑉2 𝑎𝑛𝑑 𝑉3 are the number of voxels in the three spatial 
dimensions respectively. The operation ⋮ is defined as a 
kind of sum of production between 𝑥 and 𝑤 satisfying (2). 

 yt = ∑ ∑ ∑ xijkt ∗ wijk
V3
k=1

V2
j=1

V1
i=1  (2) 

where 𝑡 ∈ [1, … ,𝑇] represents time point. 
We performed numerical discretization in 3D space 

using the method in [20] for EE regression model. The 
task of EE regression method is to find a solution 
𝑤 ∈ 𝑅𝑉1×𝑉2×𝑉3 for (1) that best fits the regression model 
and has EE energy minimization. In the discrete space, 
the solution of EE regression can be obtained by solving 
the optimization problem in (3) [21], [22]. 

 min∫ �a + b �∇ ∙ ∇u
|∇u|

�
2
� |∇u|Ω + η

2
‖y − x ⋮ u‖2 (3) 

where 𝛺  represents the discrete 3D voxel space, 𝑢 
represents the 3D weight matrix, and 𝛻 ∙ 𝛻𝑢

|𝛻𝑢|
 represents 

the curvature, the parameters 𝑎, 𝑏 are related to the elastic 
energy and the ratio between them controls the 
connectivity and smoothness of the level lines, and 𝜂 is 
the penalty of the loss function of the regression model 
[22]. 

The minimization of (3) is equivalent to the 
minimization problem (4) [20, 23]. 

 minv,u,m,p,n ∫ (a + b|∇ ∙ n|2)|p|Ω + η
2
‖y − x ⋮ v‖2 (4) 

where four variables 𝑣, 𝒑, 𝒎, and 𝒏 are introduced and 
satisfied (5). 

 v = u, p = ∇u, n = m, |p| = m ∙ p  (5) 

According to our previous study [20], the constrained 
minimization problem in (5) can be transformed into 
minimizing the augmented Lagrangian functional that is 
defined in (6). 

ℒ(𝑣,𝑤,𝒎,𝒑,𝒏; 𝜆1,𝝀𝟐, 𝜆3,𝝀𝟒) = ∫ (𝑎 + 𝑏(𝛻 ∙𝛺

𝒏)2) |𝒑| + 𝜂
2
‖𝑦 − 𝑥 ⋮ 𝑣‖2 + 𝑟1 ∫ (|𝒑| −𝒎 ∙ 𝒑)𝛺 +

∫ 𝜆1(|𝒑| −𝒎 ∙ 𝒑)𝛺 + 𝑟2
2 ∫ |𝒑 − 𝛻𝑤|2𝛺 + ∫ 𝝀𝟐 ∙𝛺

(𝒑 − 𝛻𝑤) + 𝑟3
2 ∫ (𝑣 − 𝑤)2𝛺 + ∫ 𝜆3(𝑣 − 𝑤)𝛺 +

𝑟4
2 ∫ |𝒏 −𝒎|2𝛺 + ∫ 𝝀𝟒 ∙ (𝒏 −𝒎)𝛺 + 𝛿ℛ(𝒎) (6) 

where 𝜆1,𝝀𝟐, 𝜆3 𝑎𝑛𝑑 𝝀𝟒 are Lagrange multipliers, and 
𝑟1, 𝑟2, 𝑟3 𝑎𝑛𝑑 𝑟4 are positive penalty parameters associated 
with Lagrange multipliers. The parameter 𝑟2 controls the 
amount of diffusion of 𝑤 . The parameters 𝑟3 𝑎𝑛𝑑 𝑟4 
control the closeness between 𝑣,𝑤 and 𝒏,𝒎, respectively.  

The problem of minimizing (6) can be transformed 
into the following five sub-problems (7-11) [20]. 

 ℰ1(v) = η
2 ∫ ‖y − x ⋮ v‖2Γ + ∫ r3

2
(v − w�k−1)2Ω + λ3v

  (7) 

ℰ2(w) = �
r2
2
�p�k−1 − ∇w�2

Ω
− λ2 ∙ ∇w 

 + r3
2
�v�k − w�2 + λ3(−w) (8) 
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 ℰ3(m) = δℛ(m) + r4
2 ∫ �n�k−1 − m�2Ω − λ4 ∙ m 

 −(r1 + λ1)m ∙ p�k−1 (9) 

ℰ4(𝒑) = ∫ �𝑎 + 𝑏�𝛻 ∙ 𝒏�𝒌−𝟏�2�𝛺 |𝒑| + (𝑟1 + 𝜆1)(|𝒑| −
𝒎� 𝑘 ∙ 𝒑) + 𝑟2

2
|𝒑 − 𝛻𝑤�𝑘|2 + 𝝀𝟐 ∙ 𝒑 (10) 

ℰ5(n) = ∫ b(∇ ∙ n)2Ω �p�k� + r4
2
�n − m�k�2 + λ4 ∙ n (11) 

The updates of Lagrange multipliers and the 
minimization of sub-problems (8-11) are performed in the 
same way as our previous study [20]. Because the 
minimization of sub-problem (7) of EE regression is 
different from that of EELR in our previous study [20], 
we present the solution of sub-problem (7) in the 
Appendix materials. 

III. MATERIALS AND METHODS 

In this section, two simulated experiments and a real 
fMRI experiment were conducted. The first simulated 
experiment was used to determine the optimal parameters 
of EE and TV algorithms and investigate the accuracy of 
weight estimation using both EE and TV models. The 
second simulated experiment is a human fMRI resting 
data-based simulation to investigate the feasibility of EE 
regression method in both the brain activity detection and 
the feature selection for decoding. Moreover, the real 
fMRI experiment was performed to verify the 
effectiveness and reliability of applying EE regression to 
identify relevant voxels from fMRI data. The 
performance of EE regression was compared with TV 
regression and GLM in the detection of brain activity, 
and compared with TV regression, LSL0 and GLM 
methods in the feature selection for decoding. 

Although there are seven parameters in EE regression 
algorithm, we set the parameters 𝑎, 𝑏, 𝑟1, 𝑟2, 𝑟4  as {𝑎 =
1, 𝑏 = 20, 𝑟1 = 1, 𝑟2 = 200, 𝑟4 = 300}  according to our 
previous study [20]. Moreover, we determined the 
optimal value of the parameters 𝜂 and 𝑟3 (𝜂 = 100, 𝑟3 =
60) by using the simulated data because the sub-problem 
ℰ1(𝑣) in equation (7) of this study is different from our 
previous study [20]. Meanwhile, the penalty weight λ of 
TV regression algorithm was optimized using the same 
simulated data as EE regression and was set to λ = 0.05. 
The same LSL0 algorithm as our previous study [14] was 
used in this study. All the codes of the LSL0 and EE 
regression algorithms were performed on MATLAB 
8.3.0.532 (R2014a). EE regression code was written 
based on the code of Tai’s study [23]. TV code was 
written based on the code of an open-source package 
(http://nilearn.github.io/decoding/space_net.html). 

A. Simulated 3D Experiment 
This simulated 3D experiment was conducted to 

determine the optimal parameters and explore the 
accuracy of weight estimation for EE and TV regression 
model. Moreover, the performance of the estimation 
accuracy of EE regression was compared with that of TV 
regression.  

1) Generation of simulated 3D data 
The simulated data in this experiment was generated in 

the same way as Michel’s study [19]. Each dataset was 
generated according to equation (12). 

 𝑦𝑡 = ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑡 ∗ 𝑤𝑖𝑗𝑘 + 𝑒𝑡𝑉3
𝑘=1

𝑉2
𝑗=1

𝑉1
𝑖=1  (12) 

where 𝑡 refers the 𝑡𝑡ℎ time point. The 𝑥𝑖𝑗𝑘𝑡  refers observed 
signal at  𝑡𝑡ℎ time point at the voxel (𝑖, 𝑗, 𝑘). The signal of 
each voxel was assumed as following Gaussian 
distribution, that is 𝑥𝑖𝑗𝑘𝑡 ~𝑁(0, 1). The 𝑤𝑖𝑗𝑘 represents the 
weights of the (𝑖, 𝑗, 𝑘) voxel. The 𝑦𝑡 refers the simulated 
target for the 𝑡𝑡ℎ time point. The error term 𝑒𝑡 ∈ 𝑁(0, 𝑟) 
is Gaussian noise whose standard deviation 𝑟 was varied 
to generate data with different signal-to-noise ratios (SNR) 
levels. The SNR value is calculated use (13). 

 SNR ≡ −20 log10 r2 (13) 

The simulated datasets with four SNRs levels (1, 2, 5, 
10dB) were generated in the simulation. Each SNR level 
contained 100 datasets and each dataset contained 100 
time points. The spatial size of each dataset is 12×13×14 
voxels. Two square Regions of Interest (ROI) (size 
5×5×5) were generated to simulate 3D weight vector. The 
weight of each voxel in ROIs was set according to the 
equation (14). 

 𝑤𝑖𝑗𝑘 = 𝑏 ∗ 𝑒𝑥𝑝 �
(𝑖−𝑐𝑖)2+�𝑗−𝑐𝑗�

2+(𝑘−𝑐𝑘)2

3
 � (14) 

where the point �𝑐𝑖 , 𝑐𝑗 , 𝑐𝑘� represents the center of ROI, 
and 𝑏 ∈ [−1, 1] represents the sign of the weights. The 
weights of the voxels outside ROIs were set to zero. The 
spatial distribution of the weights is shown in Fig. 1. For 
each dataset, the weights of 50% voxels that were 
randomly selected from each ROI were set to zero in 
order to simulate inter-dataset variability. 

 
Figure 1. Two-dimensional slices of the source of three-dimensional 

volume of simulated 3D experiment. 

2) Parameter optimization 
The simulated datasets with SNR equal to 5dB were 

used to determinate optimal values of the parameter 𝜂 and 
𝑟3  for EE and the parameter 𝜆  for TV. We let the 
parameter 𝜂  vary in the range {1,10,100,200,500} , 𝑟3 
vary in the range  {40,50,60,70,80} , and 𝜆  vary in the 
range {0.001,0.01,0.05,0.1,0.5}. As a result, there are 25 
parameter combinations of 𝜂  and 𝑟3  for EE regression. 
For each dataset with SNR equal to 5dB, EE regression 
with different parameter combinations (𝜂 and 𝑟3) and TV 
regression with different 𝜆  were applied separately to 
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estimate the weight of the regression model. Meanwhile, 
the error between the true and the estimated weight was 
calculated by using (15). 

 𝑒𝑟𝑟𝑜𝑟 = ‖𝑤�−𝑤‖22

‖𝑤‖22
 (15) 

where 𝑤�  is the estimated weight and 𝑤 is the true weight. 
The mean errors of all subjects’ datasets were calculated 
for each parameter combinations (𝜂 and 𝑟3) of EE model 
and each 𝜆  of TV model. The value that yielded the 
lowest error was selected as the optimal value for 𝜂, 𝑟3 
and 𝜆. The optimal values of 𝜂, 𝑟3 and 𝜆 were used in the 
following simulated and real fMRI experiments. 

3) Weight estimation 
After the optimal values of the parameters were 

determined, EE regression and TV regression using the 
optimal parameters were applied to the simulated datasets 
at the four SNR levels (1, 2, 5 and 10 dB) to estimate the 
regression weights. The datasets that were used in weight 
estimation are independent with the datasets that were 
used in parameter optimization. For each SNR level, the 
mean error of each method across 100 datasets was 
calculated. 

B. Human fMRI Resting Data-Based Simulation 
This simulation was designed to examine the 

performance of EE regression in brain activity estimation 
and feature selection. The activity patterns that were 
estimated by EE regression were compared with TV 
regression and GLM. Moreover, the classification 
accuracies of the SVM using the feature selection 
methods of EE regression, TV regression, LSL0 and 
GLM were compared. 

The simulated datasets used in this simulation were the 
same as those in our previous study [20]. We only 
described some major points of the simulated data and 
did not present the detailed data generation process in this 
study.  

1) Preprocessing 
The imaging parameters of the resting fMRI data and 

the participant information were presented in the previous 
study [20]. All the participants gave written constant form. 
The experiment was approved by the Institutional Review 
Board (IRB) of the State Key Laboratory of Cognitive 
Neuroscience and Learning in Beijing Normal University. 

The resting fMRI data of 12 participants underwent the 
motion correction and spatial normalization in SPM8 
(http://www.fil.ion.ucl.ac.uk/spm/). The normalized fMRI 
data were resliced into 3×3×4 𝑚𝑚3 voxels. 

2) Data generation 
The simulated datasets were generated based on the 

pre-processed resting fMRI datasets of 12 subjects. For 
each subject, three types of simulated datasets that 
included two-task dataset, four-task dataset and simulated 
dataset with corrupted regions were generated. The two-
task datasets and four-task dataset were used to compare 
the activation detection power of EE regression, TV 
regression and GLM as well as the decoding performance 
of SVM using EE regression, TV regression, LSL0 and 
GLM as the feature selection methods. Moreover, the 

datasets with corrupted regions was used to demonstrate 
the advantages of EE regression over TV regression. 

Each simulated dataset of each subject included two 
runs. For the two-task simulated datasets, the two tasks 
occurred in an ABBABAAB sequence in each run. The 
simulated datasets with corrupted regions included two 
tasks in each run. The ROIs that were activated by each 
task are shown in Fig. 3 (a-b). We suppose that the red 
ROIs were corrupted by larger noises than the yellow 
ROIs. For simplicity, the inter-subject variations and 
signal percent changes were not considered in the 
simulation. The signal percent change of the yellow ROIs 
was set to 2% while that of the red ROIs was set to 1.2% 
for all the subjects.  

3) Brain activity analysis 
For each subject, the linear drift was removed from 

each run using the spm_detrend function in SPM8 [24]. 
The time series of each voxel was normalized to zero 
mean and unit variance. 

EE regression, TV regression and GLM were applied 
to all the preprocessed two-task datasets of 12 subjects. 
For EE/TV regression, the reference function of each task 
that was derived from the task paradigm and the HRF 
was used as the vector y in equation (7). After the 
regression weight vector 𝑤 of each task was estimated by 
EE/TV regression, the weight vector was transformed 
into Z-scores.  

After weight estimation, one-sample T-test was applied 
to the weight vectors of all the subjects to test the voxels 
that significantly responded to each task. The voxel-wise 
threshold was set as 𝑝 ≤  0.001 . All statistical results 
were corrected by a topological false discover rate (FDR) 
method on peaks at an overall (corrected) alpha level of 
0.01. 

C. Real fMRI Experiment 
1) Subjects 
The real fMRI data used in this study were the same as 

our previous study [25]. For readability, only some main 
points were described here. The detailed imaging 
parameters can be found in the previous study [25]. 

Twenty-seven right-handed college participants 
including fifteen females and twelve males (aged 
22.67±2.96 years) from Beijing Normal University took 
part in the experiment. All participants gave written 
consent according to the guidelines that were set by the 
MRI center of Beijing Normal University. The 
experiment was approved by the Institutional Review 
Board (IRB) of the State Key Laboratory of Cognitive 
Neuroscience and Learning in Beijing Normal University. 

2) Experiment design 
Forty shapes with three disparity levels (+30 arcmin, -

30 arcmin and 0 arcmin) were used in the experiment. 
The whole experiment consisted of 120 stimuli with three 
different disparity levels. The zero disparity level (0 
arcmin) corresponds to zero disparity (ZD), the positive 
disparity level (30 arcmin) corresponds to uncrossed 
disparity (UD) and the negative disparity level (-30 
arcmin) corresponds to crossed disparity (CD). 
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The experiment used block design and included two 
runs. Each run contained three tasks that were viewing 
visual stimuli with CD, UD, and ZD levels. For each run, 
each task corresponded to four task blocks and twelve 24-
s task blocks alternated with twelve 12-s resting blocks. 
Each task block contained twelve stimuli with a specific 
disparity level. Each stimulus was presented 1.5 s and the 
inter-stimuli interval was 0.5 s. When the two continuous 
stimuli were different, participants were required to press 
the button with their right index finger in each task block. 
Otherwise, they were required to press the button with 
their left index finger. Participants were required to fixate 
a cross at the center of the screen in the resting blocks, 

3) Preprocessing 
The fMRI data were preprocessed using SPM8. The 

first three volumes of each run were removed from the 
data to remove the instability of the initial scanning. The 
functional images of each participant were first realigned 
and then spatially normalized into the standard MNI 
template. The voxel size of the normalized images was 
set to 3×3×4 𝑚𝑚3. 

4) Data processing 
The linear drift was removed from each run of each 

participant using the spm_detrend function in SPM8 [24]. 
The time course of each voxel was normalized to zero 
mean and unit variance. 

a) Brain activity analysis 
For each subject, the first run was used for brain 

activity analysis. EE regression and TV regression were 
applied in the same way as the simulated experiment to 
estimate the regression weight of each task. For GLM 
analysis, the four training runs of each subject were 
modeled in one regression model that included the three 
regressors (three tasks) and one constant term. For each 
method, one-sample T-test was applied to the weight of 
each task for a group of subjects to detect the brain 
regions that were significantly activated by each task 
after weight estimation. All statistical results were 
corrected by a topological false discover rate (FDR) 
method on peaks at an overall (corrected) alpha level of 
0.01. 

b) Feature selection and classification 
Two-fold cross-validation was performed to decode 

the brain states of the three tasks datasets. During the 
first/second fold, we used the first run as the 
training/testing data and the second run as the 
testing/training data. Four feature selection methods that 
included EE regression, TV regression, LSL0 and GLM 
were applied to the training data of each participant 
separately to identify the useful features for classification. 

EE regression, TV regression, LSL0 and GLM were 
applied to the training data to select the voxels relevant to 
each task in the same way as the simulated experiment. 
For the three/two-class classification, the union set of the 
selected voxels relevant to each of the four/three/two 
tasks constituted the final features of the training data. 

For each classification, the SVM classifier was trained 
using the selected features of the training data and was 
applied to each scan of the testing run to judge the types 
of visual stimuli viewed by each participant. The testing 

data used the same features as the training data. For each 
selection method, the mean accuracy of each 
classification across the twenty-seven participants was 
calculated. Moreover, the mean accuracy across the two 
folds was further calculated for each classification.  

IV. RESULTS 

A. Simulated 3D Experiment 
1) Parameter optimization 
Fig. 2 (a, b) shows the mean estimation error of EE 

regression and TV regression using different parameters. 
It shows that the mean error is minimum when the 
parameter𝜂, and 𝑟3were 100 and 60 respectively for EE 
regression and the parameter 𝜆  was 0.05 for TV 
regression. The simulated and real fMRI experiments in 
this study used the optimal values of parameters 𝜂, 𝑟3 and 
𝜆. 

2) Weight estimation 
The mean estimation error of EE and TV regressions at 

all the SNR levels are presented in Fig. 2 (c). It can be 
seen that EE regression yielded significantly lower 
estimation errors than TV regression at all SNRs. 

 

 

 
Figure 2. Results of Simulated 3D experiment. (a) The variation of 
estimation error with different parameters for EE regression. (b) The 

variation of estimation error with different parameters for TV regression. 
(c) The variation of estimation error with SNRs for EE and TV 

regression. 

B. Human fMRI Resting Data-Based Simulation 
Fig. 3 (c-f) shows the group-level activation patterns 

that were estimated by EE regression and TV regression 
for the simulated datasets with corrupted regions. It can 
be seen that EE regression detected both yellow and red 
regions in Fig. 3 (a-b) while TV regression only detected 
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the yellow regions in Fig. 3 (a-b) and failed to detect the 
red regions that were corrupted with high noises. 

 
Figure 3. (a-b) The ROIs of the simulated data with corrupted regions 

of the human fMRI resting data-based simulation. (c-f) The group 
activity pattern for the corrupted regions simulation. Group activity 

pattern of EE regression (e-d) and TV regression (e-f). 

C. Real fMRI Experiment 
1) Brain activity analysis 
Fig. 4 displays the group activation pattern of each task 

for EE regression, TV regression and GLM methods. The 
local maxima coordinates of the activation of EE and TV 
regression and GLM are reported in Table I. The 
activated areas in retinotopic areas V1, V2d, V3d, V3A, 
V7, V2v, V3v, V4v and LOC were identified using Caret 
atlas 
(http://brainvis.wustl.edu/wiki/index.php/Caret:Download
).  

For the CD task, EE regression mainly detected 
activity in the bilateral V2v, V3A, V3d, V7 and LOC. TV 
regression mainly detected activity in the bilateral V4v, 
V7 and LOC. GLM method mainly detected activity in 
bilateral V1, V2v, V3v, V4v, V7 and LOC.  

For the UD task, EE regression mainly detected 
activity in the bilateral V1, V3v, V3A, V7 and LOC. TV 
regression mainly detected activity in the bilateral V1, 
V4v and LOC. GLM method mainly detected activity in 
bilateral V1, V2v, V3v, V4v and LOC.  

For the ZD task, EE regression mainly detected 
activity in the bilateral V1, V2v, V3v, V4v, TV 
regression mainly detected activity in bilateral V4v and 
LOC. The GLM method mainly detected activity in 
bilateral V1, V2v, V3v and LOC.  

It can be seen that the activated regions of UD/CD 
showed little overlap with those of ZD for both EE 
regression and TV regression and large overlap for GLM 
method. Moreover, EE regression detected larger 
activated regions than TV regression. 

2) Feature selection and classification 
The accuracy of the two-class and three-class 

classifiers using the four voxel selection methods are 

shown in Fig. 5. It can be seen that EE regression showed 
the highest accuracy among the four feature selection 
methods in all cases. EE regression showed significantly 
higher accuracy than TV regression for CD vs. UD and 
CD vs. UD vs. ZD. EE regression showed significantly 
higher accuracy than LSL0 in most cases, except in the 
case of CD vs. UD. Moreover, EE regression showed 
significantly higher accuracy than GLM in most cases, 
except in the case of CD vs. UD. 

 
Figure 4. (a-i) The group activity pattern of stereoscopic fMRI 
experimental data. (a–c) Activated regions of each task for EE 

regression. (d–f) Activated regions of each task for TV regression. (g-i) 
Activated regions of each task for GLM. (j) The activated areas in 

retinotopic areas V1, V2d, V3d, V3A, V7, V2v, V3v, V4v and LOC of 
one subject. 

 
Figure 5. The classification accuracies of stereoscopic fMRI 

experiment. The classification accuracies using EE regression, TV 
regression, LSL0 and GLM feature selection methods. *p<0.1, 

**p<0.05. 

V. DISCUSSION 

In this study, we proposed EE regression method that 
incorporates EE constraints in 3D space into the 
multivariate regression model for fMRI data analysis.  
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TABLE I. ACTIVITY FOCI (MNI COORDINATES) OF EACH DISPARITY 
LEVEL DETECTED BY EE AND TV REGRESSION AND GLM 

Method Region BA 
Peak 

coordinate t-
value x y z 

EE 

CD 

Fusiform 
gyrus L 37 -21 -79 -6 7.39 

Superior 
occipital gyrus L 19 -21 -94 30 10.20 

Middle 
temporal gyrus L 39 -45 -70 10 7.39 

Occipital gyrus R 19 9 -85 6 6.78 
Superior 

occipital gyrus R 19 27 -88 30 10.26 

Middle 
temporal gyrus R 39 51 -58 6 9.61 

UD 

Occipital gyrus L 19 -9 -97 22 8.20 
Superior 

occipital gyrus L 19 -24 -91 30 8.81 

Middle 
temporal gyrus L 37 -48 -76 18 6.98 

Superior 
occipital gyrus R 19 18 -94 30 10.12 

Middle 
temporal gyrus R 37 48 -61 6 5.93 

ZD 
Superior 

occipital gyrus L 19 -15 -91 6 7.76 

Occipital gyrus R 18 9 -91 10 7.25 

TV 

CD 

Middle 
occipital gyrus L 37 -30 -79 10 8.27 

Middle 
occipital gyrus R 37 27 -79 6 10.17 

UD 

Middle 
occipital gyrus L 37 -33 -79 18 9.13 

Superior 
occipital gyrus R 19 36 -85 22 10.01 

ZD 

Middle 
temporal gyrus L 37 -42 -58 10 8.67 

Middle 
occipital gyrus L 19 -33 -76 6 7.82 

Middle 
temporal gyrus R 37 42 -49 14 7.90 

Middle 
occipital gyrus R 19 27 -79 6 9.45 

GL
M 

CD 

Superior 
occipital gyrus L 18 -15 -100 18 10.08 

Middle 
occipital gyrus L 19 -39 -82 18 8.26 

Occipital gyrus R 17 24 -79 2 11.11 
Middle 

temporal gyrus R 37 51 -67 2 9.63 

UD 

Occipital gyrus L 18 -12 -100 18 10.61 
Middle 

occipital gyrus L 19 -24 -79 2 8.47 

Middle 
temporal gyrus L 37 -51 -64 6 8.10 

Occipital gyrus R 19 15 -100 22 9.10 
Middle 

occipital gyrus R 19 33 -88 30 8.72 

Middle 
temporal gyrus R 37 48 -67 2 7.98 

ZD 

Superior 
occipital gyrus L 18 -12 -91 6 7.97 

Middle 
occipital gyrus L 19 -24 -82 2 8.60 

Occipital gyrus R 18 24 -79 2 9.70 

Middle 
temporal gyrus R 37 42 -67 2 7.21 

The robustness and feasibility of EE regression in 
detecting brain activity pattern and selecting feature for 
decoding was investigated. The results from the 
simulated data and real fMRI data demonstrated that EE 
regression tended to detect regions that are selective to 
each task and detect larger regions than TV regression. 
Moreover, classification based on the set of features 
selected by EE regression presented higher accuracy than 
TV regression, LSL0 and GLM in most cases.  

In the simulated 3D experiment, EE regression 
produced significantly lower estimation error of the 
weight than TV regression at all the SNR levels, which 
suggest that EE regression had better robustness to noises 
than TV regression (see Fig. 2 (c)). Fig. 3 (c-f) shows the 
group activation patterns estimated by EE regression and 
TV regression for the simulated datasets with corrupted 
regions. EE regression detects all the predefined regions 
while TV regression failed to detect the red regions with 
large noise in Fig. 3 (a-b). The virtue of EE model in (6) 
is that the regularization using EE energy [26], [27] 
penalizes the integral of the square of the curvature along 
edges. Consequently, the model can reconnect contours 
along large distances while recovering the curvature of 
objects. Moreover, image-inpainting researches also 
demonstrated reconnection of noise broken parts by EE 
model [28], [29]. As a result, under the role of EE 
constraint, EE regression model tended to recover all the 
activated voxels within a cluster although the noises 
corrupted some activated voxels. Our results further 
demonstrated that EE regularization had better robustness 
to noises than TV regularization, which is consistent with 
our previous study [20].  

For the real fMRI experiment, the activity patterns of 
the three disparity levels detected by GLM showed much 
larger overlap than those estimated by EE regression and 
TV regression (see Fig. 4). Moreover, EE regression 
detected activity in V3A, V3d, V3v, V7 and LOC for CD 
and UD instead of ZD, and TV regression detected 
activity in V4v and LOC for CD and UD instead of ZD. It 
was reported that V3A, V3d, V3v, V7 and LOC were 
relevant to the disparity processing, especially V3A and 
V7 [30]-[33]. In contrast to GLM, EE regression detected 
more regions relevant to the disparity processing for 
CD/UD. Moreover, EE regression detected stronger 
activation than TV regression for UD, CD and ZD. The 
results further suggested that EE regression tended to 
detect the regions that were relevant to each task and EE 
regression had stronger detection power than TV 
regression. 

In terms of brain state decoding, the classification 
accuracy of EE regression was higher than TV regression. 
LSL0 and GLM in most cases (see Fig. 5). The results 
may suggest that the features that were selected by EE 
regression contained more discriminative information 
than the other feature selection methods. Because EE 
regression, TV regression and LSL0 mainly selected the 
voxels that are relevant to each task rather than the voxels 
jointly participating in all tasks, EE regression, TV 
regression and LSL0 showed better decoding 
performance than GLM. However, there were large 
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differences between EE constraint and L0 constraint. 
LSL0 removes the correlated voxels and selects an 
extremely small number of discriminatory voxels with a 
sparse pattern. In contrast, EE regression keeps all the 
correlated and relevant voxels and revealed distributed 
clusters that were engaged in each task. Our results 
suggest that additional correlated voxels also carried the 
discriminative information and are helpful to the 
classification, which is consistent with some previous 
studies [15]. Moreover, EE regression considers the 
voxels of the whole brain in the analysis without any 
prior feature selection, whereas LSL0 requires the initial 
feature selection steps. In contrast to TV regression, EE 
regression considers more spatial information (the 
curvature of images) as regulations, which contributes to 
the better decoding performance of EE regression. 

EE regression algorithm includes three parameters 
(𝜂,𝑎 𝑎𝑛𝑑 𝑏) that are relevant to EE regression model and 
the four penalty parameters (𝑟1, 𝑟2, 𝑟3 𝑎𝑛𝑑 𝑟4 ) that are 
relevant to EE energy minimization function. Our 
previous demonstrated that the parameters 𝑎, 𝑏, 𝑟1, 𝑟2, 𝑟4 
can be set to the fixed value (𝑎 = 1,𝑏 = 20, 𝑟1 = 1, 𝑟2 =
200, 𝑟4 = 300)  [34]. Because the sub-problem ℰ1(v) of 
this study is different from our previous study [20], we 
reset the optimal value of the parameters 𝜂 and 𝑟3. In this 
study, the optimal values of the parameters 𝜂 and 𝑟3 were 
determined by the simulated experiments. Both our 
simulated and real fMRI experiments demonstrated that 
the optimal parameters (𝜂 = 100, 𝑟3 = 60) worked well 
in the fMRI data analysis. 

VI. CONCLUSIONS 

In this study, we demonstrated the feasibility and 
robustness of the multivariate regression using EE in 3D 
voxel space as constraint for fMRI data analysis. The 
performance of EE regression in brain activity analysis 
and feature selection were investigated using both 
simulated and real fMRI experiments. The results 
demonstrated that EE regression showed the better 
detection power than TV regression. Therefore, EE 
regression has the potential to become a powerful method 
to reveal the neural mechanism underlying various 
cognitive processes by selecting relevant voxels. 

APPENDIX 

A. Sub-problem of Minimizing ℰ1(𝑣) 
The minimization problem ℰ1(𝑣)  can be solved as 

regularized least squares problem using iteration method. 

 ℰ1(𝑣) = 𝜂
2 ∫ ‖𝑦 − 𝑥 ⋮ 𝑣‖2𝛤 + ∫ 𝑟3

2
(𝑣 − 𝑤�𝑘−1)2𝛺 + 𝜆3𝑣

  (16) 

We rewrite ℰ1(𝑣) in a new 2-D space as following: 

 ℰ1(𝑣1) = 𝜂
2 ∫ ‖𝐴 ∙ 𝑣1 − 𝑦‖2𝛤 + ∫ 𝑟3

2
(𝑣1 − 𝑤1�𝑘−1)2 +𝛺′

𝜆3𝑣1 (17) 

In the new space, the 3-D spatial space is mapped into 
1-D voxel space and the temporal space is left unchanged. 

Specifically, 𝛺′ ∈ 𝑅1  refers the 1-D voxel space, 
𝐴 ∈ 𝑅𝑇×(𝑉1×𝑉2×𝑉3)   refers fMRI data, 𝑣1,𝑤1 ∈
𝑅(𝑉1×𝑉2×𝑉3)×1 refers the mapped 𝑣 and 𝑢. 

We initial the iteration by assuming an ideal condition 
of  𝐴𝑇𝐴 = 𝐼. 

Based on 𝑤1�k−1, the minimizer of ℰ2(w) at (𝑘 − 1)𝑡ℎ 
iteration, we get minimization square solution of 𝐴 ∙
𝑤1

(0) = y. 

 𝑤1
(0) = 𝑤1�𝑘−1 + 𝐴𝑇(𝐴𝐴𝑇)−1�𝑦 − 𝐴 ∙ 𝑤1�𝑘−1� (18) 

Replacing 𝑦  with 𝐴 ∙ 𝑢1
(0) , the temporal integral 

becomes 

∫ ‖𝐴 ∙ 𝑣1 − 𝑦‖2𝛤 = �𝑣1 − 𝑤1
(0)�

𝑇
𝐴𝑇𝐴�𝑣1 − 𝑤1

(0)� (19) 

It should be noticed that in the voxel space 

 ∫ �𝑣1 − 𝑤1
(0)�

2

𝛺′ = �𝑣1 − 𝑤1
(0)�

𝑇
𝐼�𝑣1 − 𝑤1

(0)� (20) 

Using (3-5), the approximation of ℰ1(𝑣1)  can be 
formulated as 

 ℰ1′(𝑣1) = 𝜂
2 ∫ �𝑣1 − 𝑤1

(0)�
2

𝛺′ + ∫ 𝑟3
2
�𝑣1 − 𝑤1�𝑘−1�

2
𝛺′  

 +𝜆3𝑣1 (21) 

The minimizer of ℰ1′(𝑣1) is 

 𝑣1�(0) = 𝜂𝑤1
(0)+𝑟3𝑢1
𝜂+𝑟3

 (22) 

where 𝑢1 = 𝑤1�𝑘−1 − 𝜆3
𝑟3

. 
If the ideal condition of  𝐴𝑇𝐴 = 𝐼 is satisfied, we get 

the solution 𝑣�𝑘  by mapping 𝑣1�(0)  back into the 3-D 
spatial space. If not, the gradient descent method is 
applied to get the final solution. 

Inviting 𝑣1� = 𝑣1�(0) back to (2), we get (8). 

 ℰ1(𝑣1�) = 𝜂
2 ∫ ‖𝐴 ∙ 𝑣1� − 𝑦‖2𝛤 + ∫ 𝑟3

2
(𝑣1� − 𝑢1)2𝛺′  (23) 

We apply gradient descent method to find minimizer 
of ℰ1(𝑣1�). 

For 𝑗 = 1, … , 𝐽, we apply (9) and (10) 

 𝑣1
𝑗 = 𝑣1

𝑗−1 − 2−𝑗�𝐴𝑇𝐴𝑣1
𝑗−1 − 2𝐴𝑇𝑦 + 𝑣1

𝑗−1 − 2𝑢1�(24) 

 𝑣1
𝑗 = 𝑣1

𝑗 + 𝐴𝑇(𝐴𝐴𝑇)−1�𝑦 − 𝐴 ∙ 𝑣1
𝑗� (25) 

where the initial is set as 𝑣10 = 𝑣1�(0) , the minimizer 
is 𝑣1� = 𝑣1

𝐽. 
Finally, on the 𝑘𝑡ℎ  minimizing step, we get the 

solution 𝑣�𝑘  by mapping 𝑣1�  back into the 3-D spatial 
space. 
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