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Abstract—Information fusion techniques are at high interest 
with the increase in dimensionality of the data being 
handled. They are applied in different applications, such as 
in the biomedical domain. This paper proposes an 
information fusion model that predicts the occurrence of 
ARDS using vital signs. This model uses features fusion 
based on the belief functions theory. Different linear and 
nonlinear parameters are first extracted from the signals, 
and a parameters selection procedure is proposed to select 
only pertinent parameters. These parameters are then used 
to construct mass functions in the belief functions 
framework. Afterwards, the prediction is performed in real-
time by combining all the constructed mass functions. 
Results present the effectiveness of the belief theory 
predicting ARDS using the MIMIC II public database.   
 
Index Terms—acute respiratory distress syndrome, belief 
functions theory, features fusion, linear and non-linear 
parameters 
 

I. INTRODUCTION 

Interest in information fusion has rapidly increased in 
the last decade, especially for biomedical applications. 
One of these applications is the monitoring of the health 
state of patients based on the recorded physiological data 
[1]-[3]. The data fusion can be performed on different 
levels, that are data, decision and feature level fusion [4]. 
Feature fusion has demonstrated its effectiveness and 
advantage over data and decision fusion techniques. It 
consists of extracting hidden features that characterize 
each source data and then a single model that combines 
these features and classifies them is determined. 

Research does not cover all the serious pathologies that 
can affect the health and the autonomy of patients. One of 
the neglected health condition is the Acute Respiratory 
Distress Syndrome (ARDS) [5], [6]. ARDS is a fatal lung 
condition characterized by insufficiency of gas exchange 
with the blood and may lead to death [7]. It is diagnosed 
using the ratio of the partial pressure of oxygen PaO2 to 
the fraction of inspired air FiO2. A severe or moderate 
ARDS is diagnosed if PaO2/FiO2<200 mmHg [8]. Having 
a slow recovery, ARDS patients often develop 
neuromuscular weakness and neuropsychiatric problems 
that delay the ability to return to normal life routine by 
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months or permanently in some cases [9], [10]. This 
paper aims to predict the occurrence of ARDS using a 
feature fusion model. 

Several feature extraction methods exist in literature to 
extract parameters from raw data. Parameters can be 
linear or non-linear in both temporal and frequency 
domains [11]. Even though features are more informative 
indicators than raw data, noisy and overlapping set of 
features can distort the performance of a good classifier. 
Hence, the selection of a proper set of features becomes 
an essential step in feature fusion before performing the 
feature combination [12], [13]. Among all the techniques 
used to address this fusion problem, the theory of belief 
functions presented by Shafer [14] has attracted 
significant attention due to its effectiveness in combining 
information and dealing with imperfect evidence. 

The use of the belief functions theory for the problem 
of information fusion was first presented in 1981 [15] and 
then applied in [16]-[19]. In contrast to the Bayesian 
theory, the belief functions theory allows each source to 
contribute information in different levels of detail. A 
priori probabilities are only assigned when an information 
is provided. In fact, it allows an explicit representation of 
total ignorance by assigning the entire mass to the frame 
of discernment. In addition, a new evidence is attributed 
to a source observation using conditioning rules. Then, 
the evidences provided from different sources are 
combined using one of the combination rules from [20]. 
The conditioning rules, also known as discounting, follow 
from those described by Mercier in [21]. 

The main objective of this paper is to develop a 
surveillance model that relies on features extraction and 
belief functions theory to predict the occurrence of ARDS 
in real-time. This is done by analyzing physiological 
signals from the subjects. Different linear and nonlinear 
parameters are extracted from the signals. Then, a 
selection procedure is handled in order to select only 
pertinent parameters and thus enhance the performance. 
Finally, the parameters are transformed to a measure of 
evidence, known as mass functions that represent the 
state of beliefs about a given state. These mass functions 
are discounted and combined by the belief functions 
theory. 

This paper is organized as follows: Section 2 first 
presents the parameters extraction procedure, and then 
describes the belief functions model. Section III 
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illustrates the obtained results that are interpreted in 
Section IV. Finally, Section V presents a summary of the 
paper and proposes some perspectives. 

II. METHODS

The model proposed in this paper is a real-time 
approach that monitors the ongoing health state of 
patients using their physiological signals. Let us consider 
a subject 𝑠 having I recorded physiological signals. Then, 
𝑥𝑠,𝑖(𝑙) denote these signals recorded at the time 𝑙, with 
𝑖 ∈  𝐼 and a segment of these signals going from time 𝑎 
to time 𝑏  is defined by 𝑥𝑠,𝑖(𝑎:𝑏).  The proposed model 
takes as input the recorded signals in real-time 𝑡 , 
𝑥𝑠,𝑖(1: 𝑡) , and gives as output a decision whether the 
subject is going to develop ARDS. Thus, two classes of 
subjects are defined as follows, 

�+1,  ARDS, including subjects who will develop ARDS,
−1, "non − ARDS", including subjects not developing ARDS.

In the following, a detailed description of the
parameters extraction is provided. Then, the belief 
functions theory is described. Finally, the parameters 
selection procedure is presented as well as the 
optimization of the model's characteristics. 

A. Parameters Extraction
As mentioned previously, different linear and non-

linear parameters are extracted from the segments 
𝑥𝑠,𝑖(𝑡 − 𝜏 + 1: 𝑡) in real-time 𝑡. The linear parameters are 
the mean (𝜇), the standard deviation (𝜎), the skewness 
(𝑆𝑘 ) and the kurtosis (𝐾𝑡 ). The nonlinear parameters 
include the sample entropy (𝑆𝑎𝑚𝑝𝐸𝑛) and both factors 
from the detrended fluctuation analysis ( 𝐷𝐹𝐴1  and 
𝐷𝐹𝐴2 ). These parameters are described and extracted 
from the signals in our previous work in [11]. 
Furthermore, we propose a new extraction of nonlinear 
parameters from the recurrence quantification analysis 
(RQA). 

The RQA studies the recurrences of a dynamical 
system presented by its phase space trajectory. The phase 
space is a multi-dimensional space that illustrates all 
possible states of a system [22]. It is constructed by time-
lagged copies of the initial signal using a time delay 𝑡𝑑 
and an embedding dimension 𝑀. Generally, 𝑡𝑑 and 𝑀 are 
estimated using the average mutual information [23] and 
the algorithm of the false nearest neighbors [24], 
respectively. Then, the M-dimensional phase space is 
projected into a 2-dimensional illustration, known as the 
recurrence plot (RP) [25]. This latter is shown by a square 
matrix with elements corresponding to times at which a 
state is repeated. Different parameters can be extracted 
from the recurrence plot, such as the recurrence rate 
(𝑅𝑒𝑅𝑎) which is the percentage of recurrence points in an 
RP and the entropy ( 𝐸𝑁𝑇𝑅 ) of the probability 
distribution of its diagonal line lengths. 

Since abnormalities are better detected within short 
segments, we propose in this paper to consider a fixed 
window of length 𝜏  taken at the end of the segments 
𝑥𝑠,𝑖(𝑡 − 𝜏 + 1: 𝑡) . An optimization procedure is 

performed in the following to find the optimal value of 𝜏. 
Let 𝑝𝑠,𝑗(𝑡), 𝑗 ∈  𝐽, be the set of parameters extracted at 
time 𝑡 from all the segments 𝑥𝑠,𝑖(𝑡 − 𝜏 + 1: 𝑡), 𝑖 ∈  𝐼, of 
a subject 𝑠 . When dealing with people's health, it is 
evident that normal is a relative state and each patient 
interacts differently for a new situation. Thus, a 
normalization of the extracted parameters is proposed in 
this work. It consists of computing the ratio of the 
extracted parameter in real-time 𝑝𝑠,𝑗(𝑡) to the parameter 
of an initial segment assumed to be normal 𝑝𝑠,𝑗

(0). In the
following 𝑝𝑠,𝑗 will denote the normalized parameters.  

B. Belief Functions Theory
In this section, we review the basic concepts of the

belief functions theory and present related functions. The 
theory of belief functions has been developed by 
Dempster [20] and Shafer [14]. It is often interpreted as 
an extension of the Bayesian theory of probabilities. The 
belief functions theory assigns an evidence for each of the 
subsets of the total set of states, rather than for each of the 
individual states as the Bayesian theory does. Moreover, 
the functions of the belief theory allow one to attribute a 
confidence measure to an event being observed. This is 
represented by discounting rules performed on the 
provided information. In the following, the basic concept 
of the theory of belief functions is defined, as well as the 
specific notations used in this paper. 

1) Main concept
Given the previously described problem, the belief

functions theory operates on a frame of discernment 
𝛺 that consists of the possible states of subjects,  𝛺 =
 {+1,−1}. The set of all possible subsets of 𝛺 is defined 
by 2𝛺 , 

2𝛺 =  � ∅, {+1}, {−1}, {+1,−1}� 

The ∅ represents the impossibility, where the state of 
the subject is neither “+1” nor “-1” and {+1,−1} 
represents the ambiguity, that is the states of “+1” and “-1” 
are so close and the decision is difficult to be generated. 

The belief functions rely on the modeling of the 
evidence provided from each extracted parameter. This 
modeling is represented by a mass function for each 
parameter 𝑗, denoted by 𝑚𝑗(∙) [26]. Therefore, the mass 
function 𝑚𝑗(𝜔, 𝑠, 𝑡) is the measure of the belief attributed 
to the subset 𝜔 ∈  2𝛺  for a subject 𝑠 at time 𝑡. The mass 
functions satisfy the following conditions 

�
mj(ω, s, t) →  [0,1], for ∀ ω ∈  2Ω ,

mj(∅, s, t)  =  0,
∑ mj(ω, s, t)ω ∈ 2Ω   =  1.

(1) 

In order to create the mass functions, we propose to 
use the distributions of parameter values for each class. 
To do this, we consider a training set of subjects; then we 
select the last segments of the signals of length 𝜏 for an 
ARDS subject to extract the parameters and segments 
from the beginning of the signals for non-ARDS subjects. 
This is due to the fact that the instability of ARDS 
subjects is included in the last part of their signals 
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preceding the occurrence of ARDS; whereas, the stability 
is best guaranteed in the beginning of the recordings for 
non-ARDS subjects. Then, for each parameter 𝑗 , 
probability distribution functions are estimated for ARDS 
parameter values only to represent {+1} , non-ARDS 
parameter values for {−1}  and both sets to define the 
total subset {+1,−1} distribution. We add the latter set of 
classes to allow the modeling of ambiguity. The 
distribution functions are denoted by 𝑄𝑗,𝜔(∙)  for 
parameter 𝑗  according to non-empty subset 𝜔 ∈  2𝛺 . 
Then, the mass functions for a new given parameter 
𝑝𝑠,𝑗(𝑡) at the real-time 𝑡 is written as follows: 

 mj(ω, s, t) =  
Qj,ω�ps,j(t)�

∑ Qj,ω′�ps,j(t)�ω′∈2Ω  
,ω ∈  2Ω ,ω ≠ ∅  (2) 

2) Discounting 
The discounting operation considers the reliability of 

the information provided from each source [27]. It is 
necessary when working with real data, especially in the 
case of biomedical signals. This rule transforms the mass 
functions into less informative ones according to the 
degree of reliability of each parameter. In this work, the 
contextual discounting is performed because it considers 
the reliability of every parameter according to each state 
[21], [28]. Let 𝛼𝑗,{+1} and 𝛼𝑗,{−1} be the discounting rates 
of a parameter 𝑗 according to the states “+1” and “-1”, 
respectively. Then, the discounted mass functions 
 𝛼  𝑚𝑗(∙) becomes 

 

⎩
⎪
⎨

⎪
⎧

 α mj({+1}, s, t)  =  (1 −  αj,{−1}) mj({+1}, s, t),
 α mj({−1}, s, t)  =  (1 −  αj,{+1}) mj({−1}, s, t),
 α mj(Ω, s, t) = mj(Ω, s, t) + αj,{−1}mj({+1}, s, t)

+ αj,{+1}mj({−1}, s, t),
 α mj(∅, s, t) = 0                                                          

  (3) 

 

 
Figure 1.  An example for computing the discounting rates. 

The discounting rates  𝛼𝑗,𝜔 , 𝜔 =  {+1} or  𝜔 =  {−1} , 
are estimated in this paper from the distribution functions 
𝑄𝑗,𝜔(∙) as follows 

  αj,ω = ∫ Qj,ω(p)dp 
Dj,ω

 (4) 

where 𝐷𝑗,𝜔 = {𝑝 |𝑄𝑗,𝜔(𝑝) <  𝑄𝑗,𝜔′(𝑝),∀ 𝜔′ ∈ 2𝛺 ,𝜔′ ≠
𝜔}.  In other words, 𝛼𝑗,𝜔  is computed for all parameter 
values where a 𝑄𝑗,𝜔′(𝑝) for any subset 𝜔′ ≠ 𝜔 is higher 
than the actual distribution 𝑄𝑗,𝜔(𝑝). Fig. 1 illustrates an 

example of the estimated probability distribution for 
ARDS subjects in red straight line, the one for non-
ARDS subjects in blue dashed line and the one of all 
subjects in black straight line. It also presents the 
computation of the error rates for the states of {+1} in 
yellow and of {−1} in blue. 

3) Combination 
The mass functions can be combined to yield a new 

mass function 𝑚(∙), by a combination rule. The classical 
one is the Dempster's rule of combination [20], also 
named orthogonal sum, noted by 𝑚⊕(∙) and defined by: 

 m⊕(ω, s, t) =
∑ ∏  α mj(ω′(j),s,t)j∈J
∩ω′

(j)
=ω

1−K
 (5) 

with 𝐾 =  ∑ ∏  α mj(𝜔′(𝑗), s, t)𝑗∈𝐽∩𝜔′(𝑗)=∅
. 

𝐾 is a normalization term that measures the degree of 
conflict between the mass functions. 𝐾 = 1 corresponds 
to total contradiction between mass functions; whereas 
𝐾 = 0 implies the absence of conflict. This combination 
rule leads a more informative mass intersecting all 
modeled information. 

4) Decision making 
Finally, a decision is made on the health state of a 

subject 𝑠 using the pignistic transformation defined by: 

 𝐵𝑒𝑡𝑃(𝜔, 𝑠, 𝑡) =  ∑ 𝑚⊕�𝜔′,𝑠,𝑡�
|𝜔′|𝜔′∈ 2𝛺,𝜔 ⊆𝜔′ ,∀𝜔 ∈  𝛺 (6) 

In this transformation, the masses of the subsets are 
injected in the masses of singletons. Thus, the mass of 
{+1,−1} subset is divided between {+1} and {−1}. Then, 
the state having the highest mass is selected at time 𝑡. 

Since the analysis is performed in real-time, an alert 
can be generated from the first positive decision or after a 
succession of positive decisions. In the latter case, a 
threshold must be defined as being the needed number of 
successive positive decisions to generate ARDS alert. 
Therefore, an optimization of this threshold is proposed 
in this paper to find the optimal successions of positive 
decisions. Different values of possible successive positive 
decisions are considered and the performance indexes are 
computed from a training dataset. Then, the threshold that 
gives the higher performance is selected. 

The performance indexes are the sensitivity (𝑆𝑒) and 
the specificity (𝑆𝑝), also known as the true positive rate 
and the true negative rate, respectively. They are 
computed as follows 

𝑆𝑒 =  Number of correctly identified ARDS subjects
Total number of ARDS subjects

𝑆𝑝 =  Number of correctly identified non−ARDS subjects
Total number of non−ARDS subjects

C. Parameters Selection 
The high dimensionality of the input data to the model 

increases the time of computations and may decrease the 
performance of the model. Hence, the selection of the 
proper set of features is an essential step in feature fusion 
models. In this work, a ranking of the parameters is 
proposed based on the discounting rates, also called error 
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rates, estimated from the distributions functions and then 
a sequential forward selection is performed [29]. 

Hence, all the parameters are ranked by computing the 
mean of the conditional error rates 𝛼𝑗 =  (𝛼𝑗,{+1}  +
 𝛼𝑗,{−1})/2. Then, the selection procedure starts from the 
top ranked parameter, thus having the lowest error rate, 
and adds sequentially one parameter at a time. This 
procedure stops whenever an added parameter shows a 
decrease in the performance. 

III. RESULTS 

A. Materials 
In order to validate the proposed model, the multi-

parameter intelligent monitoring of intensive care II 
(MIMIC II) database is considered [30], [31]. It is a 
publicly available database collected over a seven years 
period in intensive care units. It contains mainly two 
types of data sets: the monitor waveforms and the clinical 
data. First, the clinical database was considered to select 
ARDS and non-ARDS subjects. ARDS subjects start with 
a ratio of PaO2/FiO2>200 mmHg then this ratio decreases 
to less than 200 for at least 12 hours; whereas non-ARDS 
subjects have PaO2/FiO2>200 mmHg over the recordings 
length. Then, the selected subjects are matched to the 
waveform database, and their signals are selected. Four 
time series are considered for each subject, that are the 
heart rate (HR), the respiratory rate (RR), the arterial 
oxygen saturation (SpO2) and the mean airway blood 
pressure (MABP). These time series have a sampling 
frequency of one sample per minute. 

 
Figure 2. An example of the four signals for (a) an ARDS subjects and 

(b) a non-ARDS subjects. 

Among the selected ARDS subjects, all the subjects 
that started their time series records after ARDS 
diagnosis or ended their records before ARDS diagnosis 
are excluded from the study. This leads to 50 ARDS 
subjects and 135 non-ARDS subjects. In order to obtain a 
more accurate model, the number of ARDS and non-
ARDS subjects has to be equivalent. Thus, the non-
ARDS group is reduced leading to 50 non-ARDS 
subjects. Fig. 2 illustrates an example of the extracted 
time series for an ARDS subject in (a) and a non-ARDS 
subject in (b), where the x-axis presents the time in 
minutes. The validation of the model is performed using a 
5-fold cross validation repeated 10 times. 

B. Statistical Analysis 
In this section, a statistical analysis is performed to 

identify parameters that show significant difference 
between ARDS and non-ARDS groups. For each type of 
parameters for each signal, values were compared 
between both groups using the two-sample F-test from 
Matlab 2017. A parameter is considered significantly 
different between the two groups if the p-value<0.05. 
Table I presents the significant parameters for each signal 
type. 

TABLE I.  THE MOST SIGNIFICANT PARAMETERS FOR EACH TYPE OF 
SIGNALS 

Signal Parameters 

HR 𝜇, 𝑆𝑘,𝐾𝑡, 𝑆𝑎𝑚𝑝𝐸𝑛,𝐷𝐹𝐴1,𝑅𝑒𝑅𝑎,𝐸𝑁𝑇𝑅 

RR 𝜎, 𝑆𝑘,𝐾𝑡, 𝑆𝑎𝑚𝑝𝐸𝑛,𝐷𝐹𝐴1,𝑅𝑒𝑅𝑎,𝐸𝑁𝑇𝑅 

SpO2 𝜎, 𝑆𝑘,𝐾𝑡, 𝑆𝑎𝑚𝑝𝐸𝑛,𝐷𝐹𝐴1,𝐷𝐹𝐴2 𝑅𝑒𝑅𝑎 

MABP 𝑆𝑘,𝐷𝐹𝐴1,𝐷𝐹𝐴2 𝑅𝑒𝑅𝑎 

TABLE II.  PERFORMANCE OF THE BELIEF MODEL OVER TRAINING 
AND TEST SETS 

Model’s phase Training set Test set 
 Se (%) Sp (%) Se (%) Sp (%) 
BF without 
discounting, nor 
selection 

67.5 65 58 60 

BF without 
discounting 

65 75 47.5 72.5 

Complete BF model 68 75.5 62 66 

 

C. Performance of the Model 
In this section, the complete belief functions model is 

tested on the selected subjects by performing 5-fold cross 
validations. Then, a comparison is made between the 
different phases of the proposed model, such as the 
selection of parameters and the discounting. Table II 
presents the results of each of the model's phases over 
both training and testing sets. When considering all the 
parameters for the construction and the combination of 
mass functions, sensitivities of 67.5% and 58% and 
specificities of 65% and 60% are obtained respectively 
over the training and test sets. The parameter selection 
phase has enhanced the specificity but decreased the 
sensitivity with (Se = 65%, Sp = 75%) over the training 
set and (Se = 47.5%, Sp = 72.5%) over the test set. finally, 
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the discounting of mass functions lead to a sensitivity of 
68% and a specificity of 75.5% for the training set and Se 
= 62%, Sp = 66% for the test set. 

IV. DISCUSSION 

This paper presents a model for the prediction in real-
time of ARDS from time series data. The proposed model 
is based on the extraction of parameters and the belief 
functions theory. The time series data are the heart rate, 
the respiratory rate, the peripheral arterial oxygen 
saturation and the mean airway blood pressure. Different 
linear and non-linear parameters are extracted, such as 
mean, standard deviation, skewness, kurtosis, sample 
entropy, both factors of the detrended fluctuation analysis, 
the recurrence rate and the entropy from the recurrence 
quantification analysis. The MIMIC II database was 
considered to validate the proposed model. 

Identifying a pathology can be done using just one 
signal [32], but most of the serious diseases occur with 
concurrent abnormalities in multiple physiological signals 
[1]. Despite the intense research on ARDS, there remains 
a lack of the characterization of this condition using 
features. ARDS is associated in its development with 
many cardiovascular and pulmonary complications, such 
as abnormal tension or blood pressure, abnormal heart 
beat, deficiency in oxygen delivery and abnormal 
respiration [33]-[35]. Therefore, the extracted signals are 
the heart rate that represent the heartbeat, the respiratory 
rate that reflects any abnormalities in respiration, the 
peripheral arterial oxygen saturation that measures the 
oxygen levels in the blood and the mean airway blood 
pressure that reflects the tension. 

Hence, in this paper, different linear and nonlinear 
parameters are extracted from the time series data. Each 
of these parameters reflects the presented characteristics 
in the signals. Linear parameters provide information on 
the general distributions of the data. For instance, the 
standard deviation reflects the cyclic components that are 
responsible on the variability in the segments [36]. The 
skewness reflects the acceleration and deceleration 
capacity of the time series according to the sign of the 
skewness [37]. The kurtosis measures the concentration 
of the data around the mean [13]. However, nonlinear 
parameters measure hidden features in the segments. The 
sample entropy measures the amount of complexity in the 
data. The detrended fluctuation analysis measures the 
roughness of signals [38]. The RQA parameters measures 
the similarity in time in the signals. As shown in the 
statistical test, there exist different linear and nonlinear 
parameters that show significant difference between both 
groups. 

From the obtained results, the reduction of the number 
of parameters, by performing a selection procedure, 
improved the specificity of the model. This way only 
parameters having low error rates are included in the 
model and the combination that presents the best local 
accuracy is considered. Then, the inclusion of the 
conditional reliability of each source has led to an 
enhancement in the accuracy of the model over the 
training and the test sets. 

V. CONCLUSION 

This paper proposes a model based on belief functions 
theory to predict ARDS in real-time. Noninvasive vital 
signs are included in the study for the reason of the 
facility of their acquisition and the link between these 
signals and the risk factors associated with ARDS. Linear 
and non-linear parameters are extracted since they can 
provide information about the properties of a signal more 
than the signal itself. The belief functions model 
considers imprecision and unreliability of information 
sources. It assigns masses to each subset according to 
each parameter. Then, these masses are discounted and 
combined according to a measure of confidence of each 
parameter. This model is then extended to reduce the 
dimension of the input by performing a parameter 
selection procedure. This model has achieved high 
performances in both ARDS and non-ARDS groups. 

Further work must be done to extract more parameters 
from the time series data. Moreover, it would be 
interesting to establish the relationships between the 
changes in time series and the cardiovascular mechanism. 
A further study on the belief functions model will also be 
done, to propose a new learning algorithm for the 
construction of mass functions. 
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