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Abstract—The article discusses the inhomogeneous point 
process intensity reconstruction for the case when a process 
is given by a realization of its discrete point set, samples, 
whose intensity of appearance is not known. The specificity 
of the problem under consideration is that a priori 
information is also assumed to be associated only with the 
registered data of previously analyzed similar processes - 
referred to in the paper as precedents. So, in the frames of 
the approach the reconstruction problem is posed as the 
statistical identification of the registered data with already 
observed precedents, rather than the traditional in statistics 
problem of hypothesis testing. The solution to the problem is 
proposed for the special class of point processes - Poisson 
Point Processes. Identification of the recorded PPP with one 
of the precedents stored in prepared database is implied up 
to a shift and scale transforms. The identification procedure 
synthesis and precedents database refill are considered in 
the frames of the maximum likelihood approach, whose 
implementation is carried out according to the principles of 
machine learning. The description of the point process 
registered and precedents are chosen as a mixture 
(superposition) of Gaussian components. Recurrent 
calculation of the log-likelihood function is structured in the 
form of EM-like algorithm adapted to the problem.    
 
Index Terms—inhomogeneous point process, Poison process 
intensity identification, machine learning, EM algorithm, 
Gaussian mixtures, effective computational schemes 
 

I. INTRODUCTION 

The main problem considered in the paper is 
associated with the statistical inference about the intensity 
of an inhomogeneous point process, whose realization is 
given as a set of discrete points (events) [1]. This problem 
is considered in relation to inhomogeneous Poisson 
process − a convenient and flexible tool for implementing 
imitation models and simulating real systems. It should 
be noted that although the Poisson process is a rather 
special case of general point processes − the simplest, 
maximally random process − the number of its 
applications is large today and continues to grow rapidly. 
As an example, we indicate such areas of Poisson 
processes applications as: astronomy [2], biology [3], 
ecology [4], seismology [5], telecommunications [6], etc. 
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As the number of applications is large, there is a great 
number of methods and approaches to Poisson process 
analysis and processing (including the above-mentioned 
problem). One of the first works dedicated to the analysis 
and estimation of Poisson process characteristics, its 
intensity are the papers of Cox [7], [8]. They are 
characterized by the systematic application of traditional 
statistical methods to the class of stochastic point 
processes. Several problems of evaluating the Poisson 
process intensities and comparing the intensities of 
several Poisson processes have been considered and 
solved. But it should be noted, that most problems were 
solved only for the case of homogeneous Poisson process. 
The inhomogeneous case analytically is greatly 
complicated, and therefore the problems of estimating the 
temporal dynamics of intensity where not practically 
considered by Cox (excluding the problem of trend 
estimation).  

Along with the development of computer technology, 
statistical methods began to acquire an algorithmic 
character and increasingly correspond to the principles 
and approaches of machine learning (the branch of 
modern computer science) [9], [10]. Several rather 
complicated problems were solved by combining 
computational power of modern computers and 
computing schemes of some algorithms (usually of recur-
rent type), developed during the last 20-30 years [11]. For 
example, several problems of estimating the Poisson 
process intensity, that widely use methods of machine 
learning are set forth in the book [12]. The author of the 
book considers parametric intensities and discusses 
approaches to estimating parameters depending on the 
type of the problem – either it is related to the estimation 
of the intensity of a single process or to superposition of 
the processes. It is noted that in the latter case the EM 
(expectation-maximization) algorithm for Gaussian 
mixtures is most effective. Several different approaches 
concerning the estimation of random intensities are 
presented in [1]. The author of the proceedings considers 
Poisson processes with random intensities as twice 
stochastic, or “Cox processes”, and proposes his own 
method for estimating the intensity based on the Monte 
Carlo method for Markov processes.  

In this paper, we also propose a new method for 
identifying the time dynamics of the intensity of 
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inhomogeneous Poisson process based on a certain 
variant of machine learning [13]. In accordance with the 
principles of statistical (machine) learning, the problem 
considered is posed as the statistical inference via already 
observed data, precedents [10], rather than the traditional 
statistics problem of parameters estimation. So, it is 
assumed that a finite set of precedents (examples) of 
Poisson process intensity (training set) has been observed, 
for each precedent some description has been formed and 
it is required to determine to which of the precedents 
observed should be attributed the newly registered 
inhomogeneous Poisson point process, given by a set of 
discrete points.  

II. MODEL 

To solve the problem discussed in the introduction in 
the spirit of the principles of machine learning, it is 
necessary to clearly define the corresponding initial 
assumptions. Let us define two main groups of 
assumptions. The first group concerns the characteristics 
of Poisson process used in the description of precedents 
as database entities. The second is related to the type of 
dependence of identified process and target precedent 
from the formed database in terms of specified precedent 
characteristics.   

Let us assume that each precedent is the intensity λk(t) 
of Poisson process, which is predefined for (0, T) time 
domain. We also assume that this intensity could be 
approximated by a superposition of Nk Gaussian 
components: 
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where Λk is the integral over (0, T) of intensity λk(t), pjk is 
the fraction of total intensity for j-th component, τjk, σjk 
are parameters of this component. Let us note, that Λk is 
also the parameter for Poisson distribution of total 
number n of representing consequent Poisson process 
points.  

The set of the above listed parameters fully describes 
intensity (1). However, for comparing the intensities not 
all of them are equally important. For example, the 
normalization parameter Λk , that determines the total 
“energy” of the process and does not affect the temporal 
intensity shape, is not important when comparing the 
intensities in shape. Therefore, let us exclude Λk from the 
set of parameters describing the mixture (1). As a result, 
the characteristics of each precedent are primarily the Nk 
− the number of constituent (1) components and then the 
Nk -sets of component parameters { pjk }, { τjk }, { σjk }. 
Thus, assuming Λk in (1) is equal to unity, we arrive at a 
description of the precedents – description that is 
probability distributions of a special type − Gaussian 
mixtures.  

Regarding the introduced precedents feature 
(parameter) space, we note the following. It is known that 
for a fixed total number n of Poisson process points, their 
time moments {t1, ..., tn} (without taking into account the 

order) are distributed as identical independent random 
variables with the probability distribution λk(t) (1) [12]. In 
this connection, the feature space can be interpreted as a 
space of parameters of Gaussian mixtures. This remark is 
not only of theoretical interest, but it also has an 
important practical significance. It is because within the 
framework of machine learning there are many effective 
algorithms that allow to find the maximum likelihood 
estimates of Gaussian mixtures parameters of the set of 
independent, identically distributed random points. This 
group of algorithms includes popular EM-like algorithms 
[11] that recursively refined parameters { pjk }, { τjk }, 
{ σjk }) during M step.  

Having determined the structure of the database of 
precedent descriptions and how it is formed from the 
implementation of discrete points based on EM-like 
algorithm, it is necessary to clarify the procedure of 
identification of the newly recorded process and the 
precedent from the database. Theoretically, it would be 
possible to assume that there are precedents in the 
database for all possible cases, so the description of the 
intensity of recorded Poisson process will coincide with 
the normalized version (1) of one of the precedents. Thus, 
if we form from the n discrete samples {t1, ..., tn} of the 
identified process (logarithmic) likelihood function for 
each (k-th) precedent:  
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than it would be possible to use the maximum likelihood 
(ML) principle to find the target precedent (K-th): 

( )}{maxarg ikk
tLK =  .  (3) 

III. METHOD 

Unfortunately, from the practical point of view, the 
above straightforward approach to identification is 
unlikely to be realized. Indeed, with this approach, for 
each shape of intensity (1) the shift in the origin of time, 
for example, will lead to a precedent different from the 
original one (with parameters {τjk} shifted to the constant). 
Considering this and a number of other reasons, we 
consider the identification of the recorded process and the 
target precedent from DB as a coincidence of their shapes 
up to affine time transformation (change in time origin on 
θ and change of time scale on s): 

0,  ),(~)( >∞<<∞−+ sθstt k θλλ . The log-likelihood 
function in this case should be rewritten as: 
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where ),( sapr θρ  is the a priori probability distribution 
of not related to the precedent’s parameters θ and s.  

In order to give the log-likelihood function (4) an 
appropriate form for the application of the EM algorithm, 
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in addition to the registration data {t1, …, tn}, we 
introduce the hidden variables {z1, …, zn}, where zi 
∈{1, ..., Nk} – the indicator of the i-th point belonging to 
the zi  component of the mixture. From this point of view 
p(t | θ, s, k) (4) is the marginal distribution of  t  from the 
joint distribution p(t, j | θ, s, k)  of the observed and 
hidden data. With this in mind, we rewrite (4) as follows:  
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The computational aspects associated with calculating 
Lk({ti}) (5) can be significantly complicated by the 
necessity of determination of sums for {zi} and integrals 
over θ, s. To avoid this complication, let us introduce the 
conditional distribution { zi }, θ, s (for given {ti}): 
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substitute it into Lk({ti}) (5), average the resulting 
expression over arbitrary distributions v({zi}), w(θ, s) and 
divide the result into two terms 
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The first term Fvw({ti}) in (7) is usually called the “free 
energy” and, with accuracy of averaging over v({zi}), w(θ, 
s) (and the "information" term <ln[v({zi})w(θ,s))]>), it is 
obtained from Lk({ti}) (5) by permuting the sum and 
integral with the operation of taking the logarithm. This, 
obviously, greatly simplifies the calculations. The second 
term in (7) is the Kullback-Leibler divergence of the 
distribution density p({zi}, θ, s | {zi}, k) with respect to 
v({zi})w(θ, s), which is always nonnegative and vanishes 
in the only case – if the first distribution coincides with 
the second. That is why Fvw({ti}) is always a bottom 
estimate of Lk({ti}), and this estimate is as better as the 
free energy is greater (or divergence is smaller). Based on 
the above analysis, we can formulate the following 
variational method of the likelihood function 
determination: 
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and equality is possible only in the case of factorization 
p({zi}, s, k |{ti}, k) with respect to the hidden variables {zi} 
and parameters θ, s. 

Solving the variational problem for the functional 
Fvw({ti}) (7) in the usual way (using the Lagrange 
multiplier method), we obtain the following system for 
optimal solutions:  
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where Σw and Σv  are the normalization constants 
(partition function). The system (9) can be simplified to: 
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and takes the final explicit form when  p(t, z| θ, s, k) is 
substituted into it from (5): 
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In a number of cases, with a suitable choice of 
ρapr(θ, s), system (11) can be reduced to (nonlinear) 
algebraic and for its solution well-known methods can be 
used. However, one can do otherwise: find a good 
(asymptotically) approximate solution using the fact that 
w(θ, s) in (11) has a narrow (~ 1/n) maximum at θm, sm, 
which can be found from the following equations: 
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The optimal parameters θm, sm (12) are easily 
computed if conditional distributions of the indicators V(ti, 
z) (11) are given for all {ti}. However, within the 
framework of the approximation in question 
w(θ, s)=δ(θ – θm, s – sm) these distributions can also be 
easily found: 
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Combining (12) and (13) into a common recurrence 
scheme with a counter of iterations r, we obtain the 
structure of the algorithm for finding v{zi} и w(θ,s) very 
similar to the structure of the EM algorithm: 
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where the abbreviation Sk = (ΘTk – ΘkTk)/Dk
2, which has 

the meaning of the scale factor in the case of intensities 
with weak overlapping of components (σk /Dk <1), is used. 

Substitution of the optimal v(r+1)({zi}) и w(r+1)(θ, s) (14) 
into the expression for the free energy Fvw({ti}) (7) after a 
series of transformations gives:  
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It follows from (15) that to calculate Fvw({ti}), and 
ultimately the likelihood functions Lk({ti}) (8), only the 
parameters θm, sm calculated at step M are needed. Of 
course, to calculate them, we need a series of auxiliary 
quantities Θk, Tk, …, Dk (12), which in turn are 
determined by the parameters of the model {pjk}, {τjk}, 
{σjk} and by the set of quantities {V(ti,  z)} calculated at 
step E. However, calculations in the explicit form of 
v(r+1)({zi}) and w(r+1)(θ, s) are not required in (14), they 
play only a conceptual role. Thus, the algorithm obtained 
is a constructive solution to the problem posed. 

IV. CONCLUSIONS 

In this paper a complete solution of the problem of 
temporal dynamics of Poison process intensity 
identification is presented. For the implementation of the 
solution, a computational scheme is proposed. This 
scheme is very close in structure to the popular in 
machine learning EM algorithm. Since many technical 
aspects of the computer implementation of EM 
algorithms are now well-developed [11], one can expect 
that the implementation of the proposed solution will be 
also quick and effective. 

ACKNOWLEDGMENT 

The authors wish to thank the Russian Foundation for 
Basic Research (RFBR). This work was supported by a 
RFBR grant N 18-07-01295. 

REFERENCES 
[1] R. P. Adams, I. Murray, and D. J. C. MacKay. “Tractable 

nonparametric Bayesian inference in Poisson processes with 
Gaussian process intensities,” in Proc. 26th Annu. Inter. Conf. on 
Machine Learning, Montreal, Quebec, Canada, 2009, pp. 9-16. 

[2] M. Gennaro, K. Tchernyshyov, T. M. Brown, and K. D. Gordon. 
“A new method for deriving the stellar birth function of resolved 
Stellar Populations,” The Astrophysical Journal, vol. 808, no. 1, p. 
20, 2015.  

[3] D. L. Borchers and R. Langrock, “Double-observer line transect 
surveys with Markov-modulated Poisson process models for 
overdispersed animal availability,” Biometrics, vol. 71, no. 4, pp. 
1060-1069, 2015.   

[4] D. I. Warton and L. C. Shepherd, “Poisson point process models 
solve the ‘pseudo-absence problem’ for presence-only data in 
ecology,” Ann. Appl. Stat., vol. 4, no. 3, pp. 1383-1402, 2010. 

[5] J. Zhuang, C. Chang, Y. Ogata, and Y. Chen, “A study on the 
background and clustering seismicity in the Taiwan region by 
using point process models,” J. of Geophysical Research, vol. 110, 
no. B5, p. B05S18, 2005. 

[6] M. Haenggi, J. Andrews, et.al., “Stochastic geometry and random 
graphs for the analysis and design of wireless networks,” IEEE 
JSAC, vol. 27, no. 7, pp. 1029-1046, 2009.   

[7] D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of 
Events, London: John Wiley & Sons, Inc., 1966.  

[8] D. R. Cox and V. Isham. Point Processes, London: Chapman & 
Hall, 1980.  

[9] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of 
Statistical Learning, 2nd ed., New York: Springer, 2009. 

[10] T. Mitchell, Machine Learning, New York: McGraw Hill, 1997.  
[11] G. McLachlan and T. Krishnan, The EM Algorithm and 

Extensions, New York: Wiley, 1977.  
[12] R. Streit, Poisson Point Processes—Imaging, Tracking, and 

Sensing, New York: Springer, 2010.  
[13] V. Antsiperov, “Precedent-based low count rate image intensity 

estimation using maximum likelihood distribution descriptions,” 
in Proc. of the Inter. Conf. on Pattern Recognition and Artificial 
Intelligence, Montreal, May 13-17, 2018, pp. 707-711. 
 
 

Viacheslav Antsiperov was born in 1959. 
Graduated from the Moscow Institute of Physics 
and Technology in 1982. He received Candidate’s 
degree (Physics and Mathematics) in 1986. At 
present, He is leading researcher at the 
Kotelnikov Institute of Radioengineering and 
Electronics of the Russian Academy of Sciences.  
His scientific interests are information systems, 
processing and analysis of signals including 

image and speech recognition, biomedical informatics.  
 

 
Aleksei Morozov was born in 1968. Graduated 
from Bauman Moscow State Technical 
University in 1991. He received his Candidate’s 
degree in Physics and Mathematics in 1998 and 
Senior researcher at the Kotel’nikov Institute of 
Radio Engineering and Electronics, Russian 
Academy of Sciences. His scientific interests are 
logic programming, intelligent video 
surveillance, and processing of biomedical 

signals (EEG, EMG, and MEG).  
 

 
 

International Journal of Signal Processing Systems Vol. 7 , No. 3, September 2019

106


