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Abstract—The Sound Source Separation (SSS) problem is 
treated depending on the premises that characterize a 
specific separation problem. Within some that carry out a 
blind separation the limitation come from the acoustic scene 
with the reverberation. It is a need to look for solutions 
focusing on these limitations. For methods based on a time-
frequency approach where an estimation of the parameters 
of the mixture is required, we study different ways of 
estimation based on different probability density functions 
that can perform better in more disadvantaged acoustic 
scenes.   
 
Index Terms—audio signal processing, sound source 
separation, microphone array, mixture model, speech 
enhancement 
 

I. INTRODUCTION 

Sometimes humans want to hear a desired sound 
source in the presence of other unwanted ones. One 
example of this occurs in a room where there are many 
people talking at the same time. That is why the sound 
source separation problem is commonly called “cocktail 
party problem”. 

Sound Source Separation (SSS) algorithms are present 
in a wide variety of application, from surveillance or 
medical applications to economic studies. Many of them 
are focused to speech and audio signals for purposes like 
noise suppression, speech enhancement, etc. 

Within Blind Sound Separation (BSS) algorithms, 
DUET (Degenerate Unmixing Estimation Technique) 
described in [1], is a well-known algorithm that deals 
with the undetermined separation problem. Assuming an 
anechoic mixing model, it is able to recover any number 
of sources from only two mixtures.  

Its main characteristic is to exploit the sparsity of the 
speech sources in the time-frequency domain, a property 
that assumes low probability of two sources having 
energy in the same frequency at the same time. It makes 
source separation trough binary masking feasible, as 
described in [2]. The construction of these binary mask is 
carried out once the mixing parameters have been 
estimated.  
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The mixing matrix is estimated by means of clustering 
the relative attenuation-delay coefficients between the 
two microphones for each source. In DUET, a clustering 
method by means of a two-dimensional histogram is 
proposed. Because of several studies, such as [3] and [4], 
this approach shows limitations because of reverberation 
and noise. Several works, such as [5] and [6], have been 
presented with alternative clustering methods based on 
the use of probability distributions that aim to shape the 
distribution of the mixing parameters.  

The main problem of the DUET algorithm is that the 
estimation of the mixing parameters should be carried out 
with a two-dimensional histogram where the peaks of the 
clusters are the mixing parameters. In reverberant 
environments clusters are widened and so, some peaks 
can be hidden beneath other clusters. 

This work tries to solve the estimation problem using 
Laplacian Mixture Models and Generalized Gaussian 
Mixture Models to shape the clusters of the mixing 
parameters. First, the mixture model distribution for the 
current problem must be defined. Then, an optimization 
function must be executed.  

The goal is to find the best solution for the mixture 
model that shapes the distribution of the attenuation-delay 
coefficients obtained from the mixtures. 

II. A CLASSICAL CLUSTERING METHOD FOR THE 
ESTIMATION OF THE MIXING PARAMETERS 

In an acoustic scenario where there are only two 
sensors and S sound sources, assuming an anechoic 
mixing model, the mixture signals are composed by a 
combination of an attenuated and delayed version of each 
source signal. 

Ignoring noise components, the anechoic mixing 
model in the time-frequency domain can be expressed as 

�𝑌1
(𝑘, 𝑙)

𝑌2(𝑘, 𝑙)� = � 1 ⋯ 1
𝑎1𝑒−𝑖𝑤𝑘𝛿1 ⋯ 𝑎𝑆𝑒−𝑖𝑤𝑘𝛿𝑁

� �
𝑋1(𝑘, 𝑙)
⋯

𝑋𝑆(𝑘, 𝑙)
� (1) 

where 𝑎𝑠  and 𝑑𝑠  are the level and time differences 
between both microphones for the s-th source, 
respectively. 
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The property of sparsity in speech sources is an 
approximation since the sources are quasi-sparse, in 
consequence, this property can be expressed as  

 Xs(k, l)Xj(k, l)  ≃  0, s ≠ j (2) 

where 𝑋𝑠(𝑘, 𝑙)  and 𝑋𝑗(𝑘, 𝑙)  are time-frequency 
representations of two sources. Then, considering the 
validity of the sparseness of speech sources in the time-
frequency domain, that is, only the j-th source is active in 
a point (k, l), Equation (1) results 

 �Y1
(k, l)

Y2(k, l)� ≃ �
1

aje−iwkδj� �Xj(k, l)� (3) 

It is considered that the ratios between the mixtures do 
not depend on the source itself, but directly on the mixing 
parameters related to that source. 

 R(k, l) = Y2(k,l)
Y1(k,l)

= aje−iwkδj (4) 

Then, the local mixing parameters for each time-
frequency point (k, l) are estimated through 

 a�(k, l) = |R(k, l)| (5) 

 δ�(k, l) = − 1
ωk

∠�R(k, l)� (6) 

Please note that the local mixing parameter would be 
the mixing parameters only if the speech sources were 
strictly sparse, however, since sparsity is an approximated 
assumption, the local mixing parameters will cluster 
around the mixing parameters.  

 

 
Figure 1. Two sources in the presence of noise. 

 
Figure 2. Two sources in the presence of reverberation. 

The clustering process is carried out by means of a 
two-dimensional smoothed and weighted histogram. Fig. 
1 and Fig. 2 show the two-dimensional histogram for 
different scenarios where two sources are active. 

III. AN ALTERNATIVE ESTIMATION METHOD BASED 
ON MIXTURE MODELS 

The DUET algorithm does not propose any peak 
identification method for the two-dimensional histogram. 
Thus, in this section we propose some methods to 
identify the centers of the clusters. Also, the DUET 
algorithm is limited to work with only two sensors. So, 
another purpose of this work is to present a solution for a 
greater number of sensors. 

A. Multi-dimensional Histogram 
The separation problem can be carried out by using 

more than two microphones. Then, the mixing model 
expressed by Equation (1) can be generalized for any 
number of sensors. Due to the sparseness of the speech 
sources, the mixing model in a point (k, l), where only 
the source Xj(k, l) is working, can be expressed as 

 

⎣
⎢
⎢
⎢
⎡
𝑌1(𝑘, 𝑙)

⋮
𝑌𝑚(𝑘, 𝑙)

⋮
𝑌𝑀(𝑘, 𝑙)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

1
⋮

𝑎𝑚𝑗𝑒−𝑖𝑤𝑘𝛿𝑚𝑗

⋮
𝑎𝑀𝑗𝑒−𝑖𝑤𝑘𝛿𝑀𝑗⎦

⎥
⎥
⎥
⎤

𝑋𝑗(𝑘, 𝑙) (7) 

So, the mixing parameters can be estimated for any 
number of microphones by means of a multidimensional 
histogram, defined in [3]. This multi-dimensional 
histogram is built of ratios between the mixtures Ym(k, l),
∀m = 2, … , M and the reference one Y1(k, l). In order to 
simplify the mathematical formulation, the use of a vector 
v(k, l) is proposed, to contain these ratios for each time-
frequency point 

 𝑣(𝑘, 𝑙) = �𝑌2(𝑘,𝑙)
𝑌1(𝑘,𝑙)

⋯ 𝑌𝑚(𝑘,𝑙)
𝑌1(𝑘,𝑙)

⋯ 𝑌𝑀(𝑘,𝑙)
𝑌1(𝑘,𝑙)

� (8) 

If speech sources are sparse in the time-frequency 
domain and simplifying this expression, the vector 
v(k, l)results 

 𝑣(𝑘, 𝑙) = �𝑎2𝑗𝑒−𝑖𝑤𝑘𝛿2𝑗 ⋯ 𝑎𝑀𝑗𝑒−𝑖𝑤𝑘𝛿𝑀𝑗� (9) 

It can be observed that for one time-frequency 
point (𝑘, 𝑙) where the j-th source is present, v(k, l) will 
contain the mixing parameters of the j-th column of the 
mixing matrix.  

If speech sources are strictly sparse, the mixing 
parameters will be in v(k, l) but speech sources are quasi-
sparse and so, the elements of v(k, l)will contain local 
mixing parameters that are clustered around the mixing 
parameters. So, our objective is to estimate the center of 
the clusters which will be the best approximation to the 
mixing parameters.  

The vector v(k, l) contains M − 1 complex coefficients, 
each one of them has a level component (attenuation) and 
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a phase component (delay). Since attenuation and delay 
represent two different dimensions and their estimators 
are obtained from the separation of these components, the 
work in [3] proposes a new vector that contains 2(M − 1) 
elements. Each one of these represents one dimension in 
the multi-dimensional histogram, consequently, there will 
be 2(M − 1) dimensions. In each dimension there will be 
concentrations of points that we denote local mixing 
parameters. 

𝑤(𝑘, 𝑙) = [𝑎2𝑠 … 𝑎𝑀𝑠 𝑒−𝑖𝑤𝑘𝛿2𝑠 . . . 𝑒−𝑖𝑤𝑘𝛿𝑀𝑠]  (10) 

B. Mixture Model Based on Multivariate Probability 
Distributions 

Before going into the content of this section, in order 
to simplify the mathematical expressions, let us refer to 
the set of K · L  time-frequency points by a new index 
x =  1, . . . , N  with N = K · L, where each x represents 
univocally a time-frequency point (k, l).  Thereby, the 
vector w(k, l) can be referenced in terms of the new 
variable as w(x). Furthermore, instead of identifying the 
frequency component, the variable k = 1, … , K  will be 
the index of the dimension of the histogram where 
K=2(M-1).  

Within the set of points that belong to the s-th source 
in each dimension it will be observed that the values 
follow a certain Probability Density Function (PDF). 
Then, each PDF fks(xk)  shapes the cluster of local 
mixing parameters 
for the s-th source in the k-th dimension. 

Since the components of w(x)  result of the ratios 
between pairs of mixtures Y1(x) and Ym(x) with m ≠ 1, 
the mixing model that has generated them will determine 
how the events are distributed in each dimension. To 
have a function that models these events across all 
dimensions we propose to use a multivariate probability 
distribution, defined in [7], [8]. We will define the joint 
probability density function fs(x1, … , xK) that models the 
multivariate probability distribution for the s-th source. 
And so, if the observations between two dimensions are 
independent, it can be expressed as 

 𝑓𝑠(𝑥1, … , 𝑥𝐾) = ∏ 𝑓𝑘𝑠(𝑥𝑘)𝐾
𝑘=1 , 𝑘 = 1, … ,𝐾      (11) 

where fks(xk) is the random variable of the s-th cluster in 
the k-th dimension. 

In addition, it has been observed that in presence of 
different sources, different clusters will appear along each 
dimension. It will appear many clusters as sources are 
present in the mixtures. This S clusters will shape the 
local mixing parameters of the S sources, and them can 
be modelled as a sum of random variables. Therefore, the 
expression that models the entire multi-dimensional 
histogram will be 

𝑓(𝑥1, … , 𝑥𝐾) = 1
𝑆
∑ 𝑓𝑠(𝑥1, … , 𝑥𝐾)𝑆
𝑠=1 , 𝑠 = 1, … , 𝑆  (12) 

where fs(x1, … , xK)  is the multivariate probability 
distribution associated with the s-th source. Replacing 
equation (11) in (12), and considering that the sources 
could have different weight in the final expression, we 
define the generic expression with s =  1, … , S and 

k =  1, … , K. The term Ws is the weighting factor of the 
s-th source in the multi-dimensional histogram. 

𝑓(𝑥1, … , 𝑥𝐾) = 1
∑ 𝑊𝑠
𝑆
𝑠=1

∑ 𝑊𝑠 ∏ 𝑓𝑘𝑠(𝑥𝑘}𝐾
𝑘=1

𝑆
𝑠=1     (13) 

It has been observed that an approximated symmetry 
occurs in the cluster along a dimension k. So, it can be 
considered that using probability density functions which 
have symmetry respect of the mean μ, a proper 
performance of the Equation (13) will be obtained when 
the mean μks  of the PDF’s fks(xk)  matches with the 
center of the clusters. Thus, our objective is to find such 
means μks.  

In this work, the use of an optimization algorithm is 
proposed to find these parameters searching the 
maximum of the likelihood function. 

C. Optimization Function 
Due to the complexity of the problem and, not being 

the purpose of this paper to develop an optimization 
algorithm we choose an existing one. Matlab provides 
useful tools to solve optimization problems. Here we will 
use the fmincon [9] which is part of the Matlab 
Optimization Toolbox.  

This function has the purpose of searching the 
minimum of a function of several variables. This multi-
variable function will be the function that defines our 
mixture model.  

It should be highlighted that constraints can be added 
to the input parameters that the function evaluates. For 
example, it is possible to establish a lower and upper limit 
to the μks terms. Thus, we can avoid the optimization to 
converge at a point where these terms would be outside 
the limits that allow the separation.  

Another advantage is that by reducing the number of 
values that the optimization function must evaluate, we 
can significantly reduce the time spent on performance. 

D. Laplacian Mixture Model (LMM) 
It has been observed that, in conditions close to a real 

case, that is, within a convolutive mixing model and in 
the presence of noise, the shape adopted by the clusters 
has a certain similarity with a Laplace distribution. 
Consequently, we proposed the use of a mixture model 
based on Laplace distributions as the one presented on 
Equation (14) 

𝑓𝑘𝑠(𝑥𝑘) = 1
2𝑏𝑘

𝑒𝑥𝑝 �− |𝑥𝑘−𝜇𝑘𝑠|
𝑏𝑘

�                    (14) 

where bk controls the width of the Laplacian distributions 
in the k-th dimension. 

Let us define a Laplacian Mixture Model (LMM) with 
S centers of K dimensions, so that the center s-th has 
coordinates [μ1s, … , μKs]T. Then, the probability density 
function f(x1, . . , xK)  generated by the LMM can be 
obtained through particularizing the Equation (14) in 
Equation (13). Assuming that there is a cloud of N points 
contained in a matrix X = [x1, … , xN] with K parameters 
of each point so xn = [x1n, … , xKn]T . The likelihood 
function defines the joint probability density of all 
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observations and under independence conditions it can be 
expressed as  

 𝐿(𝑤, 𝑏, 𝜇)|𝑥1𝑛, … , 𝑥𝐾𝑛) = ∏ 𝑓(𝑥1𝑛, … , 𝑥𝐾𝑛|𝑤, 𝑏, 𝜇)𝑁
𝑛=1

  (15) 

In practice, the logarithm of the likelihood function is 
usually used. Then, the objective is to determine the 
parameters (w, b, μ) that maximize the logarithm of the 
likelihood function. Hence, the Expression (16) is applied  

𝑀𝐿𝐿 =  𝑎𝑟𝑔𝑚𝑎𝑥(𝑤,𝑏,𝜇)  𝐿𝐿(𝑤, 𝑏, 𝜇)                (16) 

The parameters to be optimized are the S weight 
factors Ws , the K width factors bk , and the S centers 
μks with K values each one. So, in total, the number of 
parameters to be optimized is K+S+K·S. 

Fig. 3 and Fig. 4 show in a two-dimensional case how 
the LMM can obtain the center of the clusters. 

 

 
Figure 3. Two-dimensional histogram with three active sources. 

 

 
Figure 4. Two-dimensional LMM solution with three active sources. 

E. Generalized Gaussian Mixture Model (GGMM) 
As expected, the variations of noise level and 

reverberation in the acoustic scene have consequences in 
the distribution of the histogram. The clusters of the local 
mixing parameters can take forms that differ from 
Laplacian distributions. According to this, it is 

appropriate to define a model that allows some 
adaptability in conditions such as those described.  

In this way, taking one more step in the approximation 
of the histogram, we propose to use a very similar model 
to the LMM. The novelty of this one is to include the 
shape parameter β . Then, our new model is based on 
Generalized Gaussian Distributions 

𝑓𝑘𝑠(𝑥𝑘) = 𝛽𝑘
2𝛼𝑘𝛤(1/𝛽𝑘)

𝑒𝑥𝑝 �−�|𝑥𝑘−𝜇𝑘𝑠|
𝛼𝑘

�
𝛽𝑘
�     (17) 

where αk controls the scale in the k-th dimension and βk 
is the shape parameter in the k-th dimension. Note that in 
case of β = 1, fks(xk) is a Laplacian distribution. n case 
of β = 2, fks(xk)is a Normal distribution.  

Starting from a Multivariate Generalized Gaussian 
Distribution (MGGD) and bearing in mind the fact of 
different sources existing in the K dimensions, we need to 
define the Generalized Gaussian Mixture Model (GGMM) 
with S center of K dimensions that the center s-th has 
coordinates [μ1s, … . , μKs]T.  

Therefore, the probability density function 
f(x1, … , xK) generated by the GGMM can be obtained 
through particularizing Equation (17) in Equation (13). 
Then the likelihood function of this model must be 
obtained through  

 𝐿(𝑤,𝛼,𝛽, 𝜇 ∣∣ 𝑥1𝑛, … , 𝑥𝐾𝑛 ) = 

= ∏ 𝑓( 𝑥1𝑛, … , 𝑥𝐾𝑛 ∣∣ 𝑤,𝛼,𝛽, 𝜇 )𝑁
𝑛=1         (18) 

In the same way that in the LMM, the objective is to 
estimate the parameters (w,α,β,μ)  that maximize the 
logarithm of the likelihood function. Hence, is applied the 
expression  

𝑀𝐿𝐿 =  𝑎𝑟𝑔𝑚𝑎𝑥 (𝑤,𝛼,𝛽,𝜇) 𝐿𝐿(𝑤,𝛼,𝛽, 𝜇)        (19) 

The parameters to optimize are the S weight factors Ws, 
the K scale parameters αk, the K shape parameters βk and 
the S centers μkswith K values each one. So, in total, the 
number of parameters to be optimized is 2K+S+K·S. 

Fig. 3 and Fig. 5 show in a two-dimensional case how 
the GGMM can obtain the center of the clusters. 

 

 
Figure 5. Two-dimensional GGMM solution with three active sources. 
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IV. EXPERIMENTAL WORK 

This section explains how will be evaluated the 
performance of the presented methods. In the first section 
the simulation process is detailed. Also, is presented the 
speech database used in the experiments. Then, two 
objective measurements are presented to quantify the 
quality of the separated speech signals. 

A. Simulation and Database 
This paper is intended to cover the separation problem 

applied to speech signals. So, a set of experiments has 
been carried out using the TIMIT database [10]. This 
database contains recordings of sentences said by 
different people. The signals have a length of 4 seconds 
with a sampling frequency of 10 kHz. Also, the RMS 
power of the speech signals has been normalized to 0 dB. 

This experiment has been simulated in acoustic 
scenarios that consist of rectangular rooms where the 
array of microphones is at the edges of the room in 
random positions. 

Similarly, the sources are randomly distributed but 
throughout the space of the room. Rooms of different 
sizes have been simulated, from 4x3x2 m to 20x20x5 m, 
also with different levels of reverberation and noise. 

The microphone signals have been obtained filtering 
the source signals by the room impulse response obtained 
with the RIRG function, free implementation is given in 
[11]. This function simulates the reflections of a room 
based on the image method, which was first proposed in 
[12]. Then the additive noise is added to each microphone 
signal. 

B. Speech Quality Measurements 
To evaluate the quality of the processed speech two 

different measures has been proposed based on a 
comparison of the separated source signal and the 
original one. 

1) Signal to Noise Ratio (SNR). This measures the 
degradation of the separated source from its 
original version. The process is carried out 
through a sample to sample comparison between 
both signals. In summary, this measure shows the 
proportion between the power of the original 
signal and the power of the error signal. 

2) Short Time Objective Intelligibility (Time). This 
popular measure is proposed in [13] and it is a 
popular function that estimates a correlation 
coefficient between the envelopes of the clean and 
processed signal. It works by means of a 
segmentation of the signal in time frames of 
approximately 400 ms. A Short Time Fourier 
Transform is applied to the signals. Then, 
grouping the DFT bins in one-third octave band it 
performs a comparison between both signal for 
each frame. Finally, it provides the average value 
of the correlation coefficient along all the frames. 

V. RESULTS 

Once the separation process has been carried out in our 
proposed acoustic scenarios, a set of results is introduced 

here. As mentioned above, different reverberation levels 
have been tested depending of the reflection coefficient 
of the walls Cr. These are one without reverberation (Cr 
= 0), one with low reverberation (Cr = 0.3) and one with 
high reverberation (Cr = 0.6). Also, the experiments have 
been carried out with different noise levels.  

Table I and Table II show the average values of STOI 
and SNR, respectively, with -30 dB of additive noise in 
the microphone signals.  

Having a look at the STOI measured with two mixes, 
the GGMM is up to the DUET performance. Even under 
reverberant conditions in large rooms, which we can 
proclaim as the rooms where the separation is more 
difficult by the greater time differences of the reflections. 

In the case of three active sources is where GGMM 
can obtain slight improvements over DUET in all the 
experimented environments. However, LMM does not 
show such good results but it keeps close results to the 
other two algorithms. 

Having three sensors instead of two has not meant a 
remarkable improvement, as well as it keeps close results 
to the others. Furthermore, increasing the number of 
microphones can cause the algorithm to work badly, since 
the number of parameters to optimize increases 
exponentially. So, we decided to use only three sensors. 

The speech signals have been normalized to 0 dB in 
the source location. The received power of the signal will 
always be lower than 0 dB in the microphones due to 
propagation loss. Thus, assuming there was only one 
source active the SNR of the signal would be lower than -
30 dB. However, we should be aware of the degradation 
that the algorithm includes. So, on the SNR measure we 
will always have worst SNR’s for two or more sources 
due to the separation process. 

The GGMM also shows improvements over DUET 
according to the SNR measure. In a similar way as with 
the STOI, greater improvements with respect to DUET 
are obtained when there are three active sources. 
However, the LMM does not show SNR improvements 
over DUET except in specific cases.  

With the intention of studying the effect of the additive 
noise in the separation process, we have varied the level 
of noise in the microphone signals. Table III shows the 
average values of STOI obtained in the experiments with 
additive noise of -10 dB power. 

A general degradation of the quality is present in all 
scenarios. But the differences of values between the three 
methods are approximately the same that in the previous 
examples. We can remark that, in the case of having two 
sources the LMM algorithm has obtained better results 
that the GGMM and DUET. Even in the worst conditions, 
that is, large rooms with high reverberation level. 

The GGMM remains the best method for the 
estimation of the mixing parameters when there are three 
active sources. 

We would like to highlight that in noise-dominated 
environment the worsening due to the increase of 
reverberation is less noticeable. 
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TABLE I.  AVERAGE STOI OF THE SOURCES WITH PNOISE=-30 DB 

STOI Small room Medium room Large room 
Mixes Sources Method Cr0.0 Cr0.3 Cr0.6 Cr0.0 Cr0.3 Cr0.6 Cr0.0 Cr0.3 Cr0.6 

 
 

2 
2 

DUET 
LMM 

GGMM 

0.83 
0.82 
0.87 

0.81 
0.79 
0.83 

0.73 
0.74 
0.76 

0.85 
0.79 
0.85 

0.81 
0.80 
0.82 

0.73 
0.73 
0.74 

0.83 
0.82 
0.81 

0.79 
0.78 
0.79 

0.70 
0.70 
0.71 

3 
DUET 
LMM 

GGMM 

0.70 
0.68 
0.76 

0.67 
0.65 
0.71 

0.60 
0.58 
0.62 

0.71 
0.68 
0.77 

0.68 
0.65 
0.71 

0.59 
0.58 
0.61 

0.70 
0.67 
0.73 

0.65 
0.64 
0.68 

0.55 
0.54 
0.57 

3 2 LMM 
GGMM 

0.80 
0.84 

0.76 
0.81 

0.70 
0.76 

0.78 
0.82 

0.71 
0.80 

0.66 
0.74 

0.65 
0.77 

0.63 
0.74 

0.57 
0.69 

3 LMM 
GGMM 

0.68 
0.77 

0.65 
0.71 

0.57 
0.62 

0.66 
0.73 

0.65 
0.68 

0.54 
0.60 

0.61 
0.65 

0.55 
0.63 

0.48 
0.56 

TABLE II.  AVERAGE SNR OF THE SOURCES WITH PNOISE=-30 DB 

SNR Small room Medium room Large room 
Mixes Sources Method Cr0.0 Cr0.3 Cr0.6 Cr0.0 Cr0.3 Cr0.6 Cr0.0 Cr0.3 Cr0.6 

 
 

2 

 
2 

DUET 
LMM 

GGMM 

10.74 
10.30 
12.08 

8.01 
7.47 
8.56 

4.59 
4.73 
5.01 

11.04 
9.48 
11.43 

8.19 
7.71 
8.40 

4.89 
4.93 
5.16 

10.46 
9.48 

10.15 

8.12 
7.48 
8.18 

5.07 
5.05 
5.42 

 
3 

DUET 
LMM 

GGMM 

6.13 
5.11 
7.24 

4.50 
4.14 
4.74 

2.56 
2.66 
2.75 

6.38 
5.39 
7.32 

4.69 
4.31 
4.97 

2.76 
2.85 
2.95 

6.32 
5.25 
6.59 

4.67 
4.31 
4.82 

2.88 
2.87 
3.12 

TABLE III.   AVERAGE STOI OF THE SOURCES WITH PNOISE=-10 DB 

STOI Small room Medium room Large room 
Mixes Sources Method Cr0.0 Cr0.3 Cr0.6 Cr0.0 Cr0.3 Cr0.6 Cr0.0 Cr0.3 Cr0.6 

 
 

2 

 
2 

DUET 
LMM 

GGMM 

0.74 
0.73 
0.71 

0.72 
0.72 
0.70 

0.67 
0.69 
0.67 

0.66 
0.66 
0.64 

0.63 
0.65 
0.62 

0.60 
0.63 
0.60 

0.54 
0.57 
0.54 

0.52 
0.55 
0.52 

0.48 
0.52 
0.48 

 
3 

DUET 
LMM 

GGMM 

0.62 
0.60 
0.62 

0.60 
0.58 
0.60 

0.55 
0.54 
0.56 

0.56 
0.55 
0.57 

0.54 
0.54 
0.55 

0.50 
0.50 
0.51 

0.48 
0.47 
0.49 

0.46 
0.45 
0.46 

0.40 
0.41 
0.41 

 

VI. CONCLUSIONS 

After reviewing the results, it would be correct to say 
that each method may be suitable for specific scenarios. It 
has been shown that in general the GGMM algorithm 
works better that DUET in the presence of reverberation 
when the noise level is low. We could say that it tends to 
overcome limitations due to reverberation, although it 
does not show huge results. 

We should never say that GGMM is better that DUET 
since it would depend on the context in which we are 
speaking. For example, this work only deals with a 
speech separation problem. Anyway, the start from the 
property of sparsity in speech signals is something 
common to both algorithms. Therewith, different 
approaches to the performance of the algorithms are no 
treated in this work, such as, the computational cost of 
each algorithm and how it affects the time spent in the 
separation in a specific device. 

This paper also shows how the acoustic scenario 
affects this type of algorithm, either by the room 
dimension or by the reverberation and noise conditions. 
This in cases that try to characterize in a very general way 
spaces of common dimensions that usually find the 
people in their day to day. 

The use of a specifically configured optimization 
function has also predetermined a performance of the 
algorithms based in mixing models in some inherent way. 
The using of constraints in the optimization function 
allowed to obtain better results since the optimization is 
limited to the desired domain of points for the different 
variables. However, the algorithm does not converge 
always to the best solution.  

ACKNOWLEDGMENT 

This work has been funded by the Spanish Ministry of 
Economy and Competitiveness-FEDER under Project 
TEC2015-67387-C4-4-R, and by the University of Alcalá 
under Project CCGP2017-EXP/060. 

REFERENCES  
[1] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures 

via time-frequency masking,” IEEE Transactions on signal 
processing, vol. 52, no. 7, pp. 1830-1847, 2004. 

[2] S. Araki, “Blind sparse source separation with spatially smoothed 
time-frequency masking,” in Proc. IWAENC 2006, 2006.  

[3] C. L. Aguilar, et al., “Multi-channel speech separation in 
reverberant environments”. Ph. D thesis, Dept. Signal Theory and 
Comms., Univ. of Alcalá, Madrid, 2016.  

[4] D. A. Alvarez, M. R. Zurera, and R. G. Pita, “Speech enhancement 
algorithms for audiological applications,” Ph. D thesis, Dept. 
Signal Theory and Comms., Univ. of Alcalá, Madrid, 2013. 

International Journal of Signal Processing Systems Vol. 7 , No. 3, September 2019

90



[5] D. Ayllón, R. Gil-Pita, P. Jarabo-Amores, and M. Rosa-Zurera, 
“Speech source separation using a generalized mean shift 
algorithm,” Signal Processing, vol. 92, no. 9, pp. 2248-2252, 2012. 

[6] M. I. Mandel, R. J. Weiss, and D. P. Ellis, “Model-based 
expectation-maximization source separation and localization,” 
IEEE Transactions on Audio, Speech, and Language Processing, 
vol. 18, no. 2, pp. 382-394, 2010. 

[7] S. Kotz, N. Balakrishnan, and N. L. Johnson, Continuous 
Multivariate Distributions, Volume 1: Models and Applications, 
New York: John Wiley & Sons, 2004. 

[8] T. W. Anderson and E.-U. Mathematicien, An Introduction to 
Multivariate Statistical Analysis, vol. 2, New York: Wiley, 1958. 

[9] M. D. Center, Optimization Toolbox, Constrained Optimization, 
fmincon, 2018. 

[10] V. Zue, S. Sene, and J. Glass, “Speech database development at 
mit: Timit and beyond,” Speech Communication, vol. 9, no. 4, pp. 
351-356, 1990. 

[11] S. G. McGovern, “Fast image method for impulse response 
calculations of box-shaped rooms,” Applied Acoustics, vol. 70, no. 
1, pp. 182-189, 2009. 

[12] J. B. Allen and D. A. Berkley, “Image method for efficiently 
simulating small-room acoustics,” The Journal of the Acoustical 
Society of America, vol. 65, no. 4, pp. 943-950, 1979. 

[13] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An 
algorithm for intelligibility prediction of time-frequency weighted 
noisy speech,” IEEE Transactions on Audio, Speech, and 
Language Processing, vol. 19, no. 7, pp. 2125-2136, 2011. 

 
 

César Clares-Crespo was born in Cuenca, 
Spain, in 1993. He received the B.Eng. Degree 
in Telecommunications Systems from the 
University of Alcalá, Madrid, Spain, in 2018. 
Since 2017 he is a Researcher in the Signal 
Theory and Communications Department at 
University of Alcalá. He is currently pursuing a 
M.Eng. Degree in Telecommunications 
Engineering, in the University of Alcalá, 
Madrid. His research interests include speech 

signal processing focusing in sound source separation and sound source 
localization. 
 
 
Roberto Gil-Pita received the M.Eng. degree in Telecommunication 
Engineering and the Ph.D. degree (with hons.) in electrical engineering 
from the University of Alcalá, Madrid, Spain, in 2001 and 2006, 

respectively. From 2001, he has worked at the Signal Theory and 
Communications Department in the University of Alcalá. His research 
interests include pattern recognition and signal processing, focusing on 
sound source separation, hearing aids, and emotional speech. He is 
project manager of several projects with public and private fundings, 
including the 2- year ATREC project for the real-time analysis of 
combat stress, funded by the Spanish Ministry of Defense, and the 
SSPressing-Colist project for smart audio processing, funded by the 
Spanish Ministry of Economy and Competitiveness. 

 
 

Manuel Rosa-Zurera received the B.Eng. degree (with hons.) in 
Technical Telecommunication Engineering from the University of 
Alcalá, Madrid, Spain, in 1990, the M.Eng. degree in 
Telecommunication Engineering from the Technical University of 
Madrid, Spain, in 1995, and the Ph.D. degree (with hons.) from the 
University of Alcalá, Madrid, Spain, in 1998. Since 1997, he has 
worked at the Signal Theory and Communications Department in 
the University of Alcalá, where he is Full Professor since 2010. He has 
been Head of the department from 2004 to 2010, and Dean of the 
Polytechnic School from 2010 to 2017. His research interests 
include statistical signal processing, signal models, source coding, 
speech and audio signal processing, and radar signal processing 
 
 
Joaquín García-Gómez received the B.Eng. Degree in 
Telecommunications Technologies Engineering, and the M. Eng. 
Degree in Telecommunications Engineering, from the University of 
Alcalá, Madrid, Spain, in 2015 and 2017, respectively. Since 2017 he is 
a Researcher and PhD student in the Signal Theory and 
Communications Department at University of Alcalá. His research 
interests include pattern recognition and audio signal processing, 
focusing on event sound detection. 
 
 
Inma Mohino-Herranz received the Ph.D degree (with hons.) in 
Information Technologies and Communications in 2017, in 2015 the 
M.Sc. Degree in Information Technologies and Communications, 
graduated in 2012 as M. Eng. degree in Electronics engineer (with 
hons.), and graduated in 2010 as B.E. degree in Technical 
Telecommunication Engineering, from the University of Alcalá (Spain). 
From 2012 she is a Researcher in the Signal Theory Department at 
University of Alcalá. Her research interests include emotion recognition, 
acoustic signal processing, speech processing, biological signal 
processing and automatic speech recognition to classify. 
 

 

International Journal of Signal Processing Systems Vol. 7 , No. 3, September 2019

91


