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Abstract—Speech separation based on auditory scene 
analysis (ASA) has been widely studied. In this study a 
computational ASA model, in which a mixed signal is 
sequentially decomposed into frequency signals using a 
modified discrete Fourier transform (MDFT), has been 
proposed. Four feature types of ASA are extracted from the 
decomposed frequency signals based on simple rules, and 
the decomposed frequency signals are regrouped by 
examining the characteristics of the extracted features. 
Finally separated speeches are obtained by adding the 
regrouped frequency signals in a modified inverse DFT. The 
separation performance of the proposed model is examined 
via computer simulations and subjective evaluations.   
 
Index Terms—speech separation, auditory scene analysis, 
unitary input, sequential processing, modified discrete 
Fourier transform, subjective evaluation 
 

I. INTRODUCTION 

Speech separation is actively studied worldwide. It can 
be applied to the hearing function of a robot, automatic 
generation of conference minutes, and automatic scoring 
of music. Speech separation involves two techniques that 
use multiple and unitary inputs (microphones). 

As the multi-input method, blind source separation 
(BSS), which is a statistical method based on the 
independent component analysis (ICA), has gained 
attention. The transform (mixture) matrix from multiple 
inputs to measured data is estimated; then, speech 
separation is performed using its inverse matrix. BSS 
achieves superior separation performance; however, it 
requires an assumption that multiple sound sources are 
independent and that the number of microphones is 
greater than or equal to the number of sources. 

Auditory scene analysis (ASA) is proposed as the 
unitary input method [1]. Human beings can hear specific 
speeches in an environment where people speak 
simultaneously. This ability is well known as the cocktail 
party effect. The ASA psychologically explains the 
auditory mechanism of human beings. A mixed speech 
can be separated by extracting four features: common 
onset/offset, harmonic structure, common changes, and 
gradual changes. Then, the extracted features are grouped. 

Computational ASA (CASA) processes ASA in a 
computational algorithm [2], which is based on the time-
frequency analysis (spectrogram) obtained via block 
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processing. In addition, the separation performance of 
mixed speeches and the reproducibility of original 
speeches will be improved by adopting a leaning function 
[3]-[11], in which all features are extracted in advance for 
separation. The unitary input method can eliminate the 
condition that the number of microphones has to be 
greater than or equal to that of the sources. 

This study aims to realize CASA in sequential 
processing based on simple rules, which is more suitable 
for real-time processing than block processing. In 
contrast, the separation performance may be degraded as 
the available features in a sampling period are restricted 
compared with block-processing models. This study also 
aims to investigate how the four features of ASA are 
implemented in the sequential processing and to clarify 
what the sequential processing of CASA can and cannot 
accomplish. 

A basic model for the sequential processing of CASA 
has been proposed previously [12], [13]. However, the 
separation performance has been evaluated using only a 
mixed speech; therefore, the effectiveness of the 
proposed model has not been fully investigated. In this 
paper, the proposed model is re-explained in detail and 
the robustness of the settings for the proposed model is 
visually evaluated in the results using several mixed 
speeches. In addition, the separation performance is 
subjectively evaluated using Separation Mean Opinion 
Score (SMOS) as a new evaluation criterion. 

II. SEQUENTIAL PROCESSING MODEL OF ASA 

ASA has been proposed to provide a framework for 
clarifying the auditory function of human beings [1]. In 
ASA, four physical features in a mixed signal, namely 
“common onset/offset,” “harmonic structure,” “common 
change,” and “gradual change” play prominent roles. The 
concept model for ASA is described in Fig. 1. 

We have proposed to realize sequentially the unitary 
input model of ASA using a modified discrete Fourier 
transform (MDFT) pair [12], which is illustrated in Fig. 2. 
The MDFT pair is defined as the following equations [14]. 
The MDFT is realized using FIR filter bank and the 
modified inverse DFT (MIDFT) is realized only by 
adding the MDFT outputs. 
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A mixed speech xi is sequentially decomposed into 
frequency signals Yk,i using MDFT. From the frequency 
signals, the four features of ASA are extracted by the 
detectors. In the grouping controller, the group to which 
each frequency signal belongs to is determined using the 
extracted features. The grouped signals are added in the 
MIDFT and a separated sound xm

i is generated. 
 

 
Figure 1.  Concept model of ASA. 

 
Figure 2.  Sequential processing of ASA using a MDFT pair. 

A. Detectors 
Before the detection of four features, the frequency 

signals decomposed from an input signal are averaged 
using a moving window with 100 samples. Then, their 
envelopes are detected using the signal level detectors 
proposed in [15] to examine the global behavior of each 
signal. 

1) Detection of common onset/offset 
For detecting the common onset/offset features in 

frequency signals, the onset/offset points in each signal 
are determined. If the amplitude of a frequency signal at a 
given time is smaller or greater than a threshold, a label 
with the value “0” or “1,” respectively, is applied. The 
time when the value “0” changes to “1” is regarded as an 
onset point. Inversely, the time when the value “1” 
changes to “0” is regarded as an offset point. The 
threshold value must be adjusted according to the 
amplitude of an input. Frequency signals with the same 
value are regarded as being common. 

2) Detection of common changes 
The variation of a frequency signal is represented by 

an increase or decrease of the signal. The amplitude of a 
frequency signal at a given time is subtracted from that in 
previous 100 sampling periods. If the result is positively 
larger than a threshold, “+1” is assigned at the frequency, 
whereas “-1” is assigned in the negative case. If the result 

is smaller than the threshold, “0” is assigned. If the 
frequency signals have the same value at the same time, 
they are regarded as being commonly changing. 

3) Detection of harmonic structure 
The harmonic structure is the backbone of processing 

in the proposed model and the detection accuracy of this 
structure greatly influences the speech separation 
performance. In [12], harmonic structures are extracted 
and the fundamental frequencies are determined using the 
harmonics; however, this caused misdetection wherein 
the grouped harmonics included unnecessary frequency 
signals. In this study, an improved detection method of 
harmonic structures is introduced to detect the 
fundamental frequencies. 

The extraction method of spectral peaks is identical to 
that used in the conventional method, which is not novel 
and its concept is described in [16] for example. However, 
the detected peaks under the decided frequency are 
regarded as the fundamental frequencies in the proposed 
method, whereas all detected spectral peaks are 
candidates for the fundamental frequencies in the 
conventional method. Harmonic frequencies are 
estimated based on the phenomenon that the frequencies 
of harmonics are integral multiples of the fundamental 
frequency. However, this phenomenon is not always true. 
The frequency values of harmonics slightly vary in actual 
voicing samples.  

Let us explain the issue using Fig. 3 where the spectral 
peaks are detected at frequency k=16, 30, and 45 and then 
the fundamental frequency is regarded as 16. However, if 
the harmonics searching using the fundamental frequency 
of k=16 never detect its harmonics of k=30 and 45. The 
fundamental frequency may be changed from its true 
value 15 because of its variation. 

 

 
Figure 3.  An example of variation of harmonics. 

For addressing this problem, ±1 frequencies of the 
integral-multiple frequencies of the fundamental 
frequency are also regarded as harmonics. The 
fundamental frequency also varies slightly; therefore, the 
fundamental frequency and its ±1 frequencies are used 
for estimating harmonics. In other words, the above 
integral multiplication is always achieved at three 
frequencies (the fundamental frequency and its plus and 
minus 1 ones). From the three candidates obtained, the 
frequency with the largest number of harmonics is 
determined as the true fundamental frequency and its 
integral-multiple frequencies are detected as harmonics. 
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Another issue is that the spectral peaks of all 
harmonics are never simultaneously detected. Harmonics 
in a real speech does not always vary simultaneously as 
they have different amplitudes and phases. Figure 4 
shows an instance of the time variation of the detected 
spectral peaks at frequencies k, 2k, and 3k, which 
correspond to the harmonics in a real speech. Even in 
harmonics, their spectral peaks can never be extracted 
synchronously. This phenomenon poses a problem in 
sequential processing as it causes the misdetection of 
harmonics.  

 

 
Figure 4.  Time variation of the detected spectral peaks. 

In this study, a moving-window method is introduced 
for mitigating the misdetection. Let us explain the 
proposed method using Fig. 5, where “1” indicates the 
existence of spectral peaks and 2f denotes the window 
size. 

 

 
Figure 5.  Detection of spectral peaks using a moving window. 

Assuming the current time is i, the detection of the 
harmonic structure is always examined at i-f. In Fig. 5, it 
is assumed that there are two spectral peaks at k and 2k+1 
at i-f and the lower peak corresponds to the fundamental 
frequency. In addition, the number of spectral peaks in a 
window is assumed to be 20 at k and those at k+1 and k-1 
are 15 and 0, respectively. In this case, the maximum 
value is 20 at k. Next, 2k is assumed as the second 
harmonic. Assuming that the number of spectral peaks in 
a window at 2k, 2k+1, and 2k-1 are 15, 10 and 0, 
respectively, the maximum value is 15 at 2k. By adding 

both the maximum values, 20 and 15, the total value of 
35 is obtained for k.  

For dealing with the variation in the fundamental 
frequency, ±1 frequencies of the fundamental frequency k 
are also investigated using the above procedure. In Fig. 5, 
in the case of k+1, the number of spectral peaks in a 
window is assumed to be 15 and those at the second 
harmonic to be 2(k+1) and its ±1 frequencies, 2(k+1)+1 
and 2(k+1)-1, are 0; 0; and 10, respectively. The total 
number of spectral peaks is 25 at k+1. In the case of k-1, 
the total value is assumed to be 0. Comparing the total 
values, k with the maximum total value of 35 is regarded 
as the true fundamental frequency. Harmonics are sought 
using this fundamental frequency. 

The window size is considered as a grace period for 
determining the fundamental frequency. In contrast, such 
a grace period causes a delay in processing and should be 
minimized; in the proposed method, f sampling periods 
are grace periods.  

4) Gradual change 
In ASA, the gradual change comprises two 

characteristics, namely, “similarity” and “continuity” as 
shown in Fig. 6 (a) and (b), respectively. Similarity is 
defined as the connectedness of sound for a short time 
(e.g., in a phoneme), and the continuity provides a 
criterion for the connectedness of sound for a long time 
(e.g., in successive phonemes).  

 

 
Figure 6.  Detection of gradual changes. 

a) Detection of similarity 
Similarity is based on the phenomenon that the 

fundamental frequency does not change considerably. 
The fundamental frequency can be obtained via the 
detection of harmonic structures. If the detected 
fundamental frequencies are successive and have the 
same value, they are regarded identical. However, even if 
the successive fundamental frequencies are different and 
have small variation width, they are regarded as identical. 
When the fundamental frequency is k at time i and that at 
the previous sampling period i-1 is within k±1, both 
fundamental frequencies are regarded as connected. 

b) Detection of continuity 
The continuity is also based on the phenomenon that 

the characteristic of a sound never changes considerably. 
The fundamental frequency never changes suddenly in a 
few phonemes. However, if the phonemes include silent 
zones, the method for detecting the similarity cannot be 
used to detect the continuity and another method for 
detecting continuity is required. The key point is to utilize 
the information of fundamental frequencies that were 
included in previously grouped harmonics. 

Let us explain the procedure using Fig. 7. When a new 
harmonic structure with a fundamental frequency ki is 
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detected at i and there is no fundamental frequency before 
just one sampling period, it is examined whether 
harmonic groups are present during the past 1500 sample 
periods from the current time. The duration corresponds 
to the number of samples in a phoneme when the 
sampling frequency is 8 kHz. If there are harmonic 
groups, the fundamental frequencies during the maximum 
1000 sampling periods are averaged in each harmonic 
group. If the difference dn between the fundamental 
frequency ki of the detected harmonic structure and the 
averaged frequency k*n is within ±4 and is the smallest, 
the harmonic structure with the smallest difference is 
regarded as connected to the detected harmonic structure. 

 

 
Figure 7.  Detection of Continuity. 

Moreover, another issue has to be resolved. Two 
fundamental frequency peaks are simultaneously detected 
at different frequencies; however, these are originally 
identical as indicated in Fig. 5 (c). This phenomenon is 
caused by a variation in the fundamental frequency and 
the characteristic of the signal level detector, which has a 
large time constant for a decreasing signal [15]. For 
instance, it can be assumed that two phonemes are 
successive; then, the former's fundamental frequency is 
changed in the latter phoneme. Even after the former 
phoneme ends, the frequency signal as an output of the 
signal level detector is continued because it is filtered 
using a large time constant. Therefore, an originally 
identical fundamental frequency is detected at two 
frequencies. 

To solve this problem, the onset/offset feature is 
utilized. Let us explain that using Fig. 8. Actual voiced 
speeches do not comprise only line spectra; therefore, 
they comprise main lobes and side lobes. The detected 
spectral peaks correspond to the main lobes. Preferring to 
the onset/offset feature of the side lobes, continuity is 
detected even if an originally identical fundamental 
frequency is detected at two frequencies as described 
below. 

When a spectral peak of the fundamental frequency 
ends at (a) in Fig. 8, the similarity and the continuity at 
this point are investigated first. Even if they are not 
detected, the presence or absence of another spectral peak 
is examined within its ±3 frequencies. If there is another 
spectral peak at (b), the onset/offset features of the 
fundamental frequency and those of the frequency of 

another peak are investigated. If the onset features are 
detected, those spectral peaks are regarded to correspond 
to an identical fundamental frequency, i.e., the spectral 
peaks are continued. 

 

 
Figure 8.  Gradual change detection using the common onset/offset 

feature. 

In contrast, if the detected spectral peaks at different 
frequencies do not correspond to the identical 
fundamental frequency but to different fundamental 
frequencies, the above processing causes the misdetection 
of continuity. To address this problem, even if the 
continuity is detected after the above processing, the 
amplitudes of two frequency signals are compared with 
each other. However, this comparison is performed not at 
the end-point of a detected spectral peak (a) but at a point 
beyond the past L sampled point at (c) from the end-point. 
If the difference between the amplitude levels is less than 
a quarter of a major one, the two detected spectral peaks 
at different frequencies are concluded to correspond to an 
identical fundamental frequency. 

B. Grouping Controller 
The procedures in the grouping controller is described 

in Fig. 9. Harmonic structures are first extracted from 
spectral peaks based on the method explained in Sect. II-
A3 and frequency elements (harmonics) in each harmonic 
structure are grouped. Next, the common change is 
examined in each group as described in Sect. II-A2. 
Concretely, the number of “+1”s, “-1”s, or “0”s of the 
spectral peaks is investigated in each group. If the 
number of “+1”s is larger than half of the number of all 
peaks, the group is regarded as increasing and all spectral 
peaks are grouped even if some spectral peaks have “-1” 
or “0.” This processing for grouping is performed up to 
±3 frequencies of each spectral peak. However, if the 
number of “+1”s of the frequency element is less than 
half of the number of all spectral peaks, this processing is 
aborted. The above processing is also achieved similarly 
for “-1” and “0.” If the number of spectral peaks with the 
same value is less than half of the number of all peaks, 
the detected onset/offset is examined described in Sect. 
II-A1. If the harmonics are labeled as the onset, they are 
also grouped. This processing is performed at ±3 
frequencies of each harmonic. Finally, the similarity and 
continuity are investigated as described in Sect. II-A4 and 
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the time-connectedness of grouped harmonics is 
guaranteed. 

 

 
 (a) Overview 

 

 
(b) Grouping by common change and onset/offset. 

 

 
 (c) Grouping by gradual change. 

Figure 9.  Grouping controller. 

III. EVALUATION IN EXPERIMENTS 

A. Visual Evaluation 
Fig. 10 (a), (b), and (c) show the waveforms of a 

mixed signal, male speech, and female speech used for 
performance evaluation, respectively. The number of 
samples for MDFT was N=768; therefore, the maximum 
frequency is N/2-1=383. The upper limit for estimating a 
fundamental frequency was k=40. The threshold for 
extracting spectral peaks was the sum of 100 and the 
twofold mean of the input spectrum. L for comparing the 

amplitude levels was 100. The moving-window size 2f 
for detecting the fundamental frequency was 101; 
therefore, a processing delay of 50 sampled periods, i.e., 
6.25 ms is necessary. The thresholds for detecting the 
common change and the common onset/offset are set to  

2X+100+ (400/k) for 1 ≤ k< 90,                    
2X+50+ (50/ (k-89)) for 90 ≤ k, 

where X is the mean value of the amplitude spectrum. 
The results are shown in Figs. 10 (d) and (e). The 

proposed method cannot determine which separated 
signal corresponds to the original speech. The separated 
signals (d) and (e) seem to be the original signals (b) and 
(c), respectively. It is roughly confirmed that speech 
separation based on ASA can be achieved sequentially 
using the proposed model. Degradation naturally occurs 
in the separated signals as the information that can be 
used in the proposed sequential processing is restricted in 
contrast with that of the conventional block-processing 
methods [3]-[11].  

 

 
Figure 10.  Waveforms (1). 

Using the same conditions, another mixed signal was 
processed. The waveforms are shown in Fig. 11, where a 
mixed signal (a), male speech (b), female speech (c), and 
the processed signals (d) and (e). It is confirmed that the 
settings in the proposed model is robust. The separation 
performance was conducted using other mixed signals 
and confirmed that the proposed sequential processing 
model worked well despite it is simple rule-based 
processing. As the performance of detectors for four 
features is improved, the separation performance will be 
improved. However, there was a fact that some mixed 
signals cannot be separated well by the proposed model. 
The example is shown in Fig. 12. The waves which are 
not included in the original speech (c) are presented in the 
separated signal in (e). The reason is that the frequencies 
of a harmonic in one speech were the same as those in the 
other speech; therefore, the onset/offset features in each 
speech could not be detected. It is difficult for the 
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proposed model to separate them since only the phase 
information is not utilized. This is an apparent limitation 
of not only the proposed model but also the unitary input 
models. 
 

 
Figure 11.  Waveforms (2). 

 
Figure 12.  Waveforms (3). 

B. Subjective Evaluation 
In order to evaluate the separation performance, the 

subjective evaluation using Mean Opinion Score (MOS) 
was conducted. The number of subjects was fifteen. All 
were male Japanese students of the authors’ university. 
They were required to rate the separated sounds by five 
categories, 5: “Excellent,” 4: “Good,” 3: “Fair,” 2: 
“Poor,” and 1: “Bad.” With the exception of the mixed 
signals that could not be separated well by the proposed 
model, six mixed signals were selected from all processed 
signals for the subjective evaluation. The results are 
shown in Fig. 13. 

Totally, the MOS was lower than 2 that is ranked as 
“Poor”; therefore, it is confirmed that the reproducibility 
in separated signals of the proposed model is low. 

 
Figure 13.  Subjective evaluation using MOS. 

On the other hand, the subjective evaluation using the 
MOS is to evaluate the quality of sounds and not to 
evaluate the separation performance. Therefore, the 
authors defined Separation Mean Opinion Score (SMOS) 
as a new evaluation criterion. In the SMOS, before 
evaluating separated sounds, the subjects listened to their 
original sounds. After that, they listened to the separated 
sounds and evaluated how they were separated by five 
rating scale as shown in Table 1. 

TABLE I.  FIVE RATING SCALE OF SMOS 

 Score 
Completely separated 5 

Fairly separated 4 
Perceptively separated 3 

Not sufficiently separated 2 
Completely unseparated 1 

 
The evaluation results are shown in Fig. 14. Total 

score in SMOS became higher than the MOS; however, it 
was not sufficient. On the other hand, there was no 
separated sound which was rated as “completely 
unseparated”. It is confirmed that the speech separation is 
roughly achieved by even using the proposed model 
which is based on simple signal processing and rules. 
 

 
Figure 14.  Subjective evaluation using SMOS. 

IV. CONCLUSIONS 

A unitary input model for the sequential processing of 
CASA has been proposed. In the conventional studies, the 
separation performance had been evaluated using only a 
mixed speech. In this study, the robustness of the settings 
for the proposed model was visually evaluated in the 
results using other mixed speeches. In addition, the 
separation performance was subjectively evaluated using 
SMOS as a new evaluation criterion. 
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The results confirmed that the sequential processing of 
CASA was feasible even if the proposed model was based 
on simple signal processing and rules; however, speech 
separation could not be completely achieved using the 
proposed model. 

A future study must involve the verification of the 
separation performance using various mixed signals and 
conditions. 
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