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Abstract—This paper presents an iterative Kalman filter 
(IT-KF) with a reduced-biased Kalman gain for single 
channel speech enhancement in Non-stationary Noise 
Conditions (NNCs). The proposed IT-KF aims to offset the 
bias in Kalman gain through efficient parameter estimation 
leading to improve the speech enhancement performance. 
To do this, we introduce a Decision Directed (DD) and a 
posteriori SNR based noise variance estimation method 
controlled through Speech Activity Detector (SAD). The 
proposed SAD incorporates a majority voting of three 
distinct SAD fusions. The LPC parameters are computed 
from the pre-smoothing of noisy speech. With these initial 
estimated parameters, an IT-KF processes the noisy speech 
at first iteration. The parameters are re-estimated from the 
processed speech, re-adjust the Kalman gain, and the 
process is repeated at second iteration. It is shown that the 
adjusted Kalman gain enables the IT-KF to minimize the 
remaining artifacts of the processed speech, yielding the 
enhanced speech. Extensive simulation results reveal that 
the proposed method outperforms other benchmark 
methods in NNCs for a wide range of SNRs.   
 
Index Terms—speech enhancement, kalman filter, non-
stationary noise, speech activity detector, pre-smoothing 
 

I. INTRODUCTION 

The background noises degrade the speech signal 
during voice communication over telephone, speech 
recognition, speech coding, etc. A Speech Enhancement 
Algorithm (SEA) acts as a front-end tool for these 
applications by providing an estimate of clean speech. 
Many SEAs, such as Spectral Subtraction (SS) [1], 
MMSE [2], Kalman Filter (KF) [3] etc., have been 
proposed over decades. However, the speech 
enhancement performance varies over the SEAs and 
deteriorates when the speech is corrupted by non-
stationary noise.  

The enhanced speech by SS method suffers from 
musical noise and distortion due to under/over subtraction 
of the estimated noise spectrum from the noisy spectrum 
[4]. Although, the MMSE method [2] shows 
improvement over SS, the efficiency of this method 
completely depends on the accuracy of a priori and a 
posteriori SNR computation in noisy condition. In [5], 
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regional statistics based noise PSD tracking method has 
been proposed, which could be used to further improve 
the performance of MMSE method [2]. However, 
significant background noise still remains in the enhanced 
speech. Paliwal and Basu for the first-time introduced KF 
based SEA [3]. Here, the LPC parameters are computed 
from the clean speech and operates under white noise 
condition. Gibson et al. introduced an iterative KF (IT-
KF) for colored noise suppression [6], where the LPC 
parameters are estimated by processing the noisy frame 
with 3-4 iterations. Due to parameter estimation issues, 
the Kalman gain becomes biased and a significant 
amount of background noise remains in the enhanced 
speech. So and Paliwal [7] studied the impact of the Long 
Tapered Window (LTW) for LPC estimation that 
influences the KF performance. However, windowing 
impacts the KF performance to some extent. In [8], a 
Sub-band (SB) IT-KF has been introduced. It employs an 
IT-KF to the partially reconstructed High Frequency (HF) 
SBs among the 16 decomposed SBs, while keeping the 
Low Frequency (LF) SBs unchanged. The enhanced 
speech is obtained by adding the HF enhanced speech 
with the LF SBs. However, the LF SBs could also be 
affected by additive noise when processing the non-
stationary noise corrupted speech. Recently, Roy and 
Paliwal [9] introduced a NIT-KF based SEA to minimize 
the biasing effect of Kalman gain through efficient 
parameter estimation. However, some artifacts still 
remain in the enhanced speech. 

Although, most of the SEAs perform relatively well 
under white noise condition, the performance becomes 
degraded in NNCs. The authors in [9] showed that the KF 
performance deteriorates due to the biased estimate of 
Kalman gain under NNCs. In this paper, we focus on the 
further adjustment of the biased Kalman gain through 
improving the initial estimate of parameters followed by 
re-estimation of these in subsequent iterations of IT-KF. 
Specifically, the initial estimated parameters are applied 
to IT-KF for filtering the noisy speech at first iteration. 
The parameters are re-estimated to compute the Kalman 
gain, and the process is repeated again at second iteration. 
The adjusted Kalman gain in IT-KF is effective in 
minimizing the remaining artifacts of the processed 
speech, yielding the enhanced speech. The efficiency of 
the proposed method with respect to other benchmark 
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SEAs in terms of subjective and objective testing is 
reported in this paper. 

The rest of the paper is organized as follows. Section II 
describes the conventional KF for speech enhancement 
and problem statement in II-A. Section III introduces the 
proposed speech enhancement system followed by 
parameter estimation in II-A, proposed SAD algorithm in 
III-A (1), proposed noise variance estimation in III-A(2), 
estimation of initial LPC parameters in III-A(3), proposed 
parameter re-estimation method in III-A(4), summary of 
the proposed IT-KF based SEA in III-B, and optimality 
comparison of Kalman gain in III-C. Section IV describes 
the speech enhancement experiment, where the 
simulation setup is given in IV-A, IV-B deals with the 
experimental results and discussion. Section V gives 
some concluding remarks and future research directions. 

II. CONVENTIONAL KF FOR SPEECH ENHANCEMENT 

The noisy speech 𝑦(𝑛)  (nth sample) captured by a 
single microphone is represented as 

 𝑦(𝑛) = 𝑠(𝑛) + 𝑣(𝑛) (1) 

where 𝑠(𝑛) is the clean speech, 𝑣(𝑛) is the additive noise 
with variance 𝜎𝑣2 and uncorrelated with 𝑠(𝑛). 

The clean speech 𝑠(𝑛) in eq. (1) can be represented 
with a 𝑝𝑡ℎ order LPCs (𝑎𝑖’s) as [10] 

 𝑠(𝑛) = −∑  𝑝
𝑖=1 𝑎𝑖𝑠(𝑛 − 𝑖) + 𝑢(𝑛) (2) 

where 𝑢(𝑛)  is a white Gaussian excitation with zero 
mean and a variance of 𝜎𝑢2. 

Eqs. (1) and (2) are used to form the following SSM 
(where the bold faced letters represent vectors/ matrices). 
 𝒙(𝑛) = 𝜳𝒙(𝑛 − 1) + 𝒄𝑢(𝑛) (3) 

        𝑦(𝑛) = 𝒅𝒙(𝑛) + 𝑣(𝑛) (4) 

where 𝜳 is the state transition matrix containing the 𝑎𝑖’s, 
𝒙(𝑛) = [𝑠(𝑛 − 𝑝 + 1)    𝑠(𝑛 − 𝑝 + 2)    …     𝑠(𝑛)]𝑇  is 
the state vector, 𝒅 = 𝒄𝑻 = [0 0 0 1]  are the 
measurement vectors for the excitation and observation 
noises, respectively. 

For a particular frame, KF computes an unbiased and 
linear MMSE estimate 𝒙�(𝑛|𝑛) of 𝒙(𝑛) at time 𝑛, given 
𝑦(𝑛),𝑦(𝑛 − 1), . . . ,𝑦(1) by using the following recursive 
equations [3] 

 𝐱�(𝑛|𝑛 − 1) = 𝚿𝐱�(𝑛 − 1|𝑛 − 1) (5) 

 𝚺(𝑛|𝑛 − 1) = 𝚿𝚺(𝑛 − 1|𝑛 − 1)𝚿𝑇 + 𝐜𝜎𝑢2𝐜𝑇 (6) 

 𝐊(𝑛) = 𝚺(𝑛|𝑛 − 1)𝐝𝑇(𝐝𝚺(𝑛|𝑛 − 1)𝐝𝑇 + 𝜎𝑣2)−1 (7) 

 𝐱�(𝑛|𝑛) = 𝐱�(𝑛|𝑛 − 1) + 𝐊(𝑛)(𝑦(𝑛) − 𝐝𝐱�(𝑛|𝑛 − 1)) (8) 

 𝚺(𝑛|𝑛) = (𝐈 − 𝐊(𝑛)𝐝)𝚺(𝑛|𝑛 − 1) (9) 

The estimated speech at time 𝑛  is given by �̂�(𝑛) =
𝒅𝒙�(𝑛|𝑛) . The above procedure is repeated for the 
following frames, yielding the enhanced speech �̂�(𝑛). 

 

 
Figure 1.  The impact of 𝜎𝑢2 and 𝜎𝑣2 on biased 𝐾0(𝑛) of NIT-KF: (a) spectrogram of clean speech, (b) spectrogram of noisy speech (corrupted by 0 

dB restaurant noise), (c) 𝐾0(𝑛), where 𝜎𝑢2 and 𝜎𝑣2 are computed in ideal case, (d) spectrogram of enhanced speech (ideal case, PESQ=2.42), (e) 𝐾0(𝑛), 
where 𝜎𝑢2 and 𝜎𝑣2 are computed from noisy speech, (f) spectrogram of enhanced speech (noisy case, PESQ=2.07). 

Gibson et al. introduced an IT-KF by repeating eqs. 
(5)-(9) iteratively, where 𝜳 is formed with the 𝑝𝑡ℎ  and 
𝑞𝑡ℎ order LPCs of 𝑠(𝑛) and 𝑣(𝑛). The parameters are re-
estimated at the end of each iteration leading to increases 
the computational complexity. To make computationally 
efficient, Roy et al. showed that the 𝜳 of IT-KF could be 
formed with the LPCs of 𝑠(𝑛) only and effective for non-
stationary noise suppression [8]. Unlike the IT-KF in [8], 
the proposed IT-KF re-estimates the parameters in the 
subsequent iterations differently based on SAD. 

A. Problem Statement 
Though the conventional KF works reasonably well for 

the stationary noise condition, its performance suffers in 
NNCs. Roy and Paliwal showed that the poor estimates 
of LPC parameters ({𝑎𝑖} and 𝜎𝑢2) and noise variance (𝜎𝑣2) 
introduce biasing effect to the first component (𝐾0(𝑛)) of 
Kalman gain 𝑲(𝑛), particularly during the silent activity, 
resulting a significant amount of residual noise in the 
enhanced speech [9]. We will briefly review the impact 
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of biased 𝑲(𝑛) on SE performance. To do this, we further 
simplify the 𝑲(𝑛) (eq. (7)) to represent 𝐾0(𝑛) as [7] 

 𝐾0(𝑛) = Σ0(𝑛|𝑛−1)
Σ0(𝑛|𝑛−1)+𝜎𝑣2

 (10) 

where Σ0(𝑛|𝑛 − 1) corresponds to prediction error 𝜎𝑢2 of 
the first component of the a priori state estimate 𝒙�(𝑛|𝑛 −
1). 

By replacing Σ0(𝑛|𝑛 − 1) with 𝜎𝑢2 , eq. (10) could be 
represented as 

 𝐾0(𝑛) = 𝜎𝑢2

𝜎𝑢2+𝜎𝑣2
 (11) 

To examine the impact of the biased 𝐾0(𝑛) on speech 
enhancement (SE) by KF, we further simplify the a 
posteriori state estimate 𝐱�(𝑛|𝑛) (eq. (8)) and represent it 
in a scalar form (𝑥�(𝑛|𝑛)) as [7] 

 𝑥�(𝑛|𝑛) = 𝐾0(𝑛)𝑦(𝑛) + (1 − 𝐾0(𝑛))𝑥�(𝑛|𝑛 − 1) (12) 

In special case of 𝜎𝑣2 = 0, according to eq. (11), the 
𝐾0(𝑛) becomes unity and the output is equal to 𝑦(𝑛) (eq. 
(12)). Whereas 𝜎𝑢2 = 0  during the silent activity, then 
𝐾0(𝑛) = 0 and no corrupting noise from 𝑦(𝑛) is passed 
to the output (enhanced speech). 

In ideal case, {𝑎𝑖}, 𝜎𝑢2, and 𝜎𝑣2 are computed from the 
clean speech and noise, respectively. Thus, the computed 
𝐾0(𝑛) in ideal case shows a smooth transition between 0 
and 1 depending on the silent/speech activity. The smooth 
𝐾0(𝑛) could blend 𝑦(𝑛) and 𝑥�(𝑛|𝑛 − 1) (eq. (12)) in an 
effective manner, yielding better 𝑥�(𝑛|𝑛). Therefore, the 

enhanced speech (Fig. 1(d)) obtained by ideal KF is 
almost identical to the clean speech (Fig. 1(a)). 

 

 
Figure 2.  Comparing the variances (𝜎𝑣2) of noisy speech Fig. 1(b) and 
predicted speech (inverted) with the prediction error variance (𝜎𝑢2) for 

the same experimental setup used in Fig. 1. 

Whereas in practice, the {𝑎𝑖}, 𝜎𝑢2, and 𝜎𝑣2 are computed 
from the noisy speech. Thus, the predicted 𝜎𝑢2  and 𝜎𝑣2 
become worse and rise up to 1 (normalized form). For 
example, it can be seen from Fig. 2 that the predicted 𝜎𝑣2 
and 𝜎𝑢2 remain closer from 0.9s to 2.18s. Therefore, the 
computed 𝐾0(𝑛) in noisy case remains biased around 0.5 
between 0.9s to 2.18s (Fig. 1 (e)). The 𝐾0(𝑛) for other 
regions varies accordingly. With 0.5 biased 𝐾0(𝑛) 
according to eq. (12), 50% of 𝑦(𝑛) is passed to the output. 

As a result, the corresponding enhanced speech 
contains 50% background noise as clearly visible in Fig. 
1(f) specifically ranging from 0.9s to 2.18s. This is 
attributed as the biasing effect of Kalman gain. 

This paper aims to offset the bias in 𝐾0(𝑛)  through 
improving the initial estimate of {𝑎𝑖} , 𝜎𝑣2 , and 𝜎𝑢2 
followed by re-estimation of these in subsequent 
iterations of IT-KF. 

 

 

Figure 3.  Schematic diagram of the proposed IT-KF based speech enhancement system. 

III. PROPOSED IT-KF BASED SEA 

Fig. 3 shows the schematic diagram of proposed SEA. 
Firstly, 𝑦(𝑛)  is converted through overlap and 
windowing into frames 𝑦(𝑛, 𝑘), where 𝑛 is the time index 
( 𝑛 = 1,2,3, … ,𝑀 ) and 𝑘  is the frame index ( 𝑘 =
1,2,3, … ,𝑁 ). We have used 50% overlapped Kaiser 
window with 𝛽 = 2.5  for generating 𝑦(𝑛, 𝑘)  as can be 
found effective in terms of bias reduced 𝐾0(𝑛) [9].  

A. Parameter Estimation 
The 𝜎𝑣2 is computed from the estimated noise spectrum 

|𝑉�(𝑚, 𝑘)| , and the LPC parameters ({𝑎𝑖}  and 𝜎𝑢2 ) are 

computed from a pre-smoothing speech �̂�𝑝(𝑛, 𝑘) of noisy 
𝑦(𝑛, 𝑘). Whereas {𝑎𝑖}, 𝜎𝑢2, and 𝜎𝑣2 are re-estimated in the 
subsequent iterations of IT-KF based on SAD. The next 
sections describe the proposed SAD and parameter 
estimation methods. 

1) Proposed SAD Method: The proposed SAD is 
implemented through a majority voting (MV) of three 
distinct SAD fusions corresponding to Spectral Flatness 
(SF), zero-crossing rate-weighted root mean square 
energy (ZCRMS), and Kaiser-Teager Energy (KTE). It is 
observed that the SF approaches 1/0 depending on the 
silent/speech activity [11]. The degree of speech activity 
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could be predicted through ZCRMS when it rises to 1, 
while close to 0 for silent frames. Whereas during the 
speech activity, KTE rises up to 1 and gives a prominent 
local peak, while goes down to 0 for silent frames [12].  

 

 
Figure 4.  (a) Noisy speech (corrupted by 0 dB restaurant noise), (b) 

computed SF, ZCRMS, and KTE from (a). 

In noisy conditions, Fig. 4 reveals that the SF still 
varies between 0 to 1 depending on the speech/silent 
activity. Whereas the ZCRMS and KTE rise up to 1 once 
the speech activity is present and approaching 0 at silent 
activity. However, to make the SAD robust against noise, 
the threshold for each feature continually updated on a 
framewise basis to implement the corresponding SAD 
fusions. MV takes the average of SAD fusions ∈ {0,1} (0: 
silent and 1: speech activity) for each frame and speech 
activity is present if 𝑀𝑉 > 0.5, otherwise, silent. 

For 𝑘𝑡ℎ frame, the SF (denoted by 𝜂) is computed as 
[11] 

 𝜂(𝑘) =
�∏  𝐿−1

𝑚=0 |𝑌(𝑚,𝑘)|
𝐿

1
𝐿∑  𝐿−1

𝑚=0 |𝑌(𝑚,𝑘)|
  (13) 

where |𝑌(𝑚, 𝑘)| is the magnitude spectrum of 𝑦(𝑛, 𝑘), 𝑚 
is the acoustic frequency bin index, and 𝑚 = 1,2, … , 𝐿. 

For 𝑘𝑡ℎ frame, the ZCRMS (denoted by 𝜁) is given by 
[12] 

 𝜁(𝑘) =
�1
𝑀∑  𝑀−1

𝑛=0 𝑦2(𝑛,𝑘)
1
2𝑀∑  𝑀

𝑛=1 |𝑠𝑖𝑔𝑛(𝑦(𝑛,𝑘))−𝑠𝑖𝑔𝑛(𝑦(𝑛−1,𝑘))|
 (14) 

For 𝑘𝑡ℎ frame, the KTE (denoted by 𝜆) is given by [12] 

 𝜆(𝑘) = �∑  M−1
n=0 {y2(n, k) − y(n − 1, k)y(n + 1, k)}  

  (15) 

By assuming the 5  starting 𝑦(𝑛, 𝑘) ’s are silent, the 
proposed SAD algorithm is given below (where 𝑡𝜂 , 𝑡𝜁 , 
and 𝑡𝜆  are the adaptive threshold of 𝜂 , 𝜁 , and 𝜆 , 
respectively) 

 
Algorithm 1: Proposed SAD Algorithm    
1)  Initialization  
  𝑓𝜂 = 0,    𝑓𝜁 = 0,    𝑓𝜆 = 0 

𝕊𝜂 =
1
5
�  
5

𝑘=1

𝜂(𝑘),    𝕊𝜁 =
1
5
�  
5

𝑘=1

𝜁(𝑘),    𝕊𝜆 =
1
5
�  
5

𝑘=1

𝜆(𝑘) 

  𝐹𝐿𝐴𝐺(𝑘) = 0 for 𝑘 = 1,2,3,4,5 
2) for 𝑘 = 6    𝑡𝑜    𝑁 do [framewise processing loop] 
     a) Update Thresholds  

 𝕊𝜂 = 𝕊𝜂 + 𝜂(𝑘),    𝑡𝜂 = 𝕊𝜂/𝑘 
𝕊𝜁 = 𝕊𝜁 + 𝜁(𝑘),    𝑡𝜁 = 𝕊𝜁/𝑘 

         𝕊𝜆 = 𝕊𝜆 + 𝜆(𝑘),    𝑡𝜆 = 𝕊𝜆/𝑘 

     b) if 𝜂(𝑘) < 𝑡𝜂 then  
 𝑓𝜂 = 1  

         elseif 𝜁(𝑘) > 𝑡𝜁 then  
 𝑓𝜁 = 1  

         elseif 𝜆(𝑘) > 𝑡𝜆 then  
 𝑓𝜆 = 1  

         end if 
     c) 𝑀𝑉 = (𝑓𝜂 + 𝑓𝜁 + 𝑓𝜆)/3  
     d) if 𝑀𝑉 > 0.5 then   
             𝐹𝐿𝐴𝐺(𝑘) = 1 [Speech Activity]  
         else   
             𝐹𝐿𝐴𝐺(𝑘) = 0 [Silent Activity]  
         end if  
    end for  

 

 
Figure 5.  Comparing the reference and detected SAD flags for clean 

(Fig. 1 (a)) and noisy speech (corrupted by 5 dB restaurant noise). 

It can be seen from Fig. 5 that few miss-detections are 
found between the detected and reference SAD flags. 
Note that the reference SAD flags are generated by 
visually inspecting the clean speech (Fig. 1 (a)) frames (0: 
silence and -1: speech activity). 

2) Proposed 𝜎𝑣2 Estimation Method: The initial noise 
periodogram |𝑉�(𝑚, 𝑘)|2 is computed by assuming the 5 
starting 𝑦(𝑛, 𝑘)’s are silent as 

 |𝑉�(𝑚, 𝑘)|2 = 1
5
∑  5
𝑘=1 |𝑌(𝑚, 𝑘)|2 (16) 

During silent activity of 𝑦(𝑛, 𝑘) (𝑘 > 5), |𝑉�(𝑚, 𝑘)|2 is 
updated by using the DD approach as [4] 

|𝑉�(𝑚, 𝑘)|2 = 𝐺|𝑉�(𝑚, 𝑘 − 1)|2 + (1 − 𝐺)|𝑌(𝑚, 𝑘)|2 (17) 

where 𝐺 is a smoothing parameter and set to 0.9. 
In stationary noise conditions, the estimation of 

|𝑉�(𝑚, 𝑘)|2  during non-speech activity is effective [4]. 
Since the non-stationary noise is characterized by time 
varying amplitude, the active speech regions also affected 
by noise. Therefore, the traditional DD approach is not 
appropriate to estimate |𝑉�(𝑚, 𝑘)|2 in NNCs. To address 
this issue, we compute the a posteriori SNR (denoted by 
𝛾) during speech activity to asses the amount of noise 
available. For 𝑘𝑡ℎ frame, 𝛾(𝑘) is computed as 

 𝛾(𝑘) = 10log10 �
|𝑌(𝑚,𝑘)|2

|𝑉�(𝑚,𝑘−1)|2
� (18) 

It is observed that the 𝛾(𝑘)  becomes lower (mostly 
negative) if the active speech region is highly affected by 
additive noise. Thus, we compute an adaptive threshold 
(𝑡𝛾) by taking the average of 𝛾(𝑘)’s up to frame 𝑘 during 
processing the 𝑘𝑡ℎ frame as 

 𝑡𝛾 = 1
𝑘
∑  𝑘
𝑖=1 𝛾(𝑖) (19) 
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During the speech activity of 𝑦(𝑛, 𝑘) , if 𝛾(𝑘) ≤ 𝑡𝛾 , 
|𝑉�(𝑚, 𝑘)|2  is updated by eq. (17), otherwise, keep 
|𝑉�(𝑚, 𝑘)|2 unchanged. The 𝜎𝑣2 is computed from 𝑣�(𝑛, 𝑘) 
(IDFT of |𝑉�(𝑚, 𝑘)|𝑒𝑥𝑝[∠𝑌(𝑚, 𝑘)]) as 

 𝜎𝑣2 = 1
𝑀
∑  𝑀−1
𝑛=0 𝑣�2(𝑛, 𝑘) (20) 

3) Initial {𝑎𝑖}  and 𝜎𝑢2  Computation: The LPC 
parameters ( {𝑎𝑖}  and 𝜎𝑢2 ) are very sensitive to noise, 
specially at low SNRs. The existing IT-KF methods 
compute these parameters from the noisy speech at first 
iteration and re-estimate at the subsequent iterations [6, 8]. 
Due to compute these parameters from noisy speech at 
first iteration, the 𝜎𝑢2 rise up to 1 and introduce biasing 
effect in 𝐾0(𝑛)  (eq. (11)). To address this issue, we 
employ a 5𝑡ℎ order triangular smoothing to noisy 𝑦(𝑛, 𝑘) 
for reducing the noise effect, giving a pre-smoothing 
speech �̂�𝑝(𝑛, 𝑘) as [13] 

 �̂�𝑝(𝑛, 𝑘) = 1
9
∑  +(𝐿𝑠−1)/2
𝑖=−(𝐿𝑠−1)/2 𝑤[𝑖 + (𝐿𝑠 + 1)/2]𝑦(𝑛 − 𝑖, 𝑘) 

 (21) 

where 𝑤 = [1    2    3    2    1]  is a 5𝑡ℎ  order triangular 
smoothing window and 𝐿𝑠 is the length of 𝑤. 

Then compute {𝑎𝑖} and 𝜎𝑢2 from �̂�𝑝(𝑛, 𝑘) by using the 
autocorrelation based method [10]. The performance 
comparison of the initial estimated {𝑎𝑖} is shown in Fig. 6. 

4) Re-estimation of {𝑎𝑖}, 𝜎𝑢2, and 𝜎𝑣2 in Proposed IT-
KF: The conventional IT-KF [6] re-estimates the {𝑎𝑖} and 
𝜎𝑢2 from �̂�𝑗(𝑛, 𝑘) (processed speech at 𝑗𝑡ℎ iteration) while 
no action takes on 𝜎𝑣2 . Since each iteration gives more 
refined enhanced speech, the additive noise effect 
becomes reduced. Therefore, it is also necessary to 
update 𝜎𝑣2 from �̂�𝑗(𝑛, 𝑘) as introduced in our proposed IT-
KF method. To make the re-estimation of parameters 
effective, unlike conventional IT-KF [6], we do it in a 
different manner based on SAD. Specifically, during the 
silent activity, the �̂�𝑗(𝑛, 𝑘) is filled up completely with 
noise. Thus, 𝜎𝑣2  is updated at silent activity of �̂�𝑗(𝑛, 𝑘) 
while keeping the {𝑎𝑖} and 𝜎𝑢2 unchanged. During speech 
activity of �̂�𝑗(𝑛, 𝑘), the {𝑎𝑖} and 𝜎𝑢2 are re-estimated and 
keeping 𝜎𝑣2 unchanged.  

B. Summary of the Proposed IT-KF Based SEA 
For 𝑘𝑡ℎ frame, by letting MAX=2, the proposed IT-KF 

based SEA is summarized below. 
 

Algorithm 2: Proposed IT-KF Based SEA 
1) Initialization:  
    a) Extract 𝐹𝐿𝐴𝐺(𝑘) from 𝑦(𝑛, 𝑘) by SAD (3.1.1)  
    b) Compute 𝜎𝑣2 from 𝑦(𝑛, 𝑘) (3.1.2)  
    c) Compute initial {𝑎𝑖} and 𝜎𝑢2 from 𝑦(𝑛,𝑘) (3.1.3)  
    d) Set 𝒙�1(0|0) = 0 and 𝚺1(0|0) = [0]𝑝×𝑝  
    e) Form 𝜳 with estimated {𝑎𝑖}  

f) Set �̂�0(𝑛, 𝑘) = 𝑦(𝑛, 𝑘) 
2) for 𝑗 = 1  𝑡𝑜  𝑀𝐴𝑋 do [iteration loop]  

 a) for 𝑛 = 1  𝑡𝑜  𝑀 do [samplewise processing loop] 
 𝐱�𝑗(𝑛|𝑛 − 1, 𝑘) = 𝚿𝑗𝐱�𝑗(𝑛 − 1|𝑛 − 1, 𝑘) (22) 
𝚺𝑗(𝑛|𝑛 − 1, 𝑘) = 𝚿𝑗𝚺𝑗(𝑛 − 1|𝑛 − 1, 𝑘)𝚿𝑗𝑇 + 𝐜𝜎𝑢2𝐜𝑇 (23) 

 𝑒𝑗(𝑛, 𝑘) = �̂�𝑗−1(𝑛, 𝑘) − 𝐝𝐱�𝑗(𝑛|𝑛 − 1, 𝑘) (24) 

𝐊𝑗(𝑛, 𝑘) = 𝚺𝑗(𝑛|𝑛 − 1, 𝑘)𝐝𝑇(𝐝𝚺𝑗(𝑛|𝑛 − 1, 𝑘)𝐝𝑇 
 +𝜎𝑣2)−1 (25) 

 𝐱�𝑗(𝑛|𝑛, 𝑘) = 𝐱�𝑗(𝑛|𝑛 − 1, 𝑘) + 𝐊𝑗(𝑛, 𝑘)𝑒𝑗(𝑛, 𝑘) (26) 

 𝚺𝑗(𝑛|𝑛, 𝑘) = (𝐈 − 𝐊𝑗(𝑛, 𝑘)𝐝)𝚺𝑗(𝑛|𝑛 − 1, 𝑘) (27) 

 �̂�𝑗(𝑛, 𝑘) = 𝐝𝐱�𝑗(𝑛|𝑛, 𝑘)  (28) 

    end for [end of samplewise processing loop] 
     b) Re-estimate {𝑎𝑖}, 𝜎𝑢2, and 𝜎𝑣2 from �̂�𝑗(𝑛, 𝑘) (3.1.4)  
end for [end of iteration loop] 
3) Set �̂�(𝑛, 𝑘) = �̂�𝑗(𝑛, 𝑘)  and employ the overlap-add 
synthesis to �̂�(𝑛, 𝑘), yielding the enhanced speech �̂�(𝑛) 

C. Optimality Comparison of Kalman Gain 
Fig. 6 shows that the re-estimated LPC envelope at 2𝑛𝑑 

iteration of IT-KF is sharper than the initial LPC 
envelope and closer to the clean speech envelope. 
Whereas the LPC envelope computed from the 
corresponding noisy frame deviates a bit from the clean 
envelope. Due to improved {𝑎𝑖} , the re-estimated 𝜎𝑢2 
becomes lower than that of the initial estimated 𝜎𝑢2. Also, 
the re-estimation of 𝜎𝑣2  during silent activity makes it 
more effective. Therefore, the 𝜎𝑢2 and 𝜎𝑣2 offset the bias in 
𝐾0(𝑛)  effectively. It can be seen from Fig. 7 that the 
adjusted 𝐾0(𝑛) at 2𝑛𝑑 iteration of IT-KF is almost free of 
biasing effect and shown smooth transition at the edges as 
like ideal case 𝐾0(𝑛), even at low SNR of 0 dB. Whereas 
the 𝐾0(𝑛) computed from noisy speech is biased around 
0.5 almost the entire trajectory. 

 

 
Figure 6.  LPC spectrum comparison computed from the clean, noisy, 
�̂�𝑝(𝑛, 𝑘), and IT-KF (2𝑛𝑑 iteration) for the same setup used in Fig. 1. 

 
Figure 7.  Comparing the trajectory of 𝐾0(𝑛) computed through ideal, 

noisy, and proposed cases with the same experimental setup used in                           
Fig. 1. 

IV. SPEECH ENHANCEMENT EXPERIMENT 

A. Simulation Setup 
To evaluate the performance of the proposed SEA, 30 

speech sentences belonging to six speakers are taken 
from the NOIZEUS corpus sampled at 16 kHz [14, 
Chapter 12]. To perform experiments, we generate a 
stimuli set that has been corrupted by restaurant and 
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babble noises for a wide range of SNRs (-5dB to 15dB). 
The objective quality evaluation was carried out by PESQ 
and spectrogram analysis [14, Chapter 11]. We have used 
the quasi-stationary speech transmission index (QSTI) for 
objective intelligibility testing, which provides a rating in 
(%) [15]. The subjective evaluation was performed on 
two sentences (1 male and 1 female) randomly chosen 
from the stimuli set. Five English speaking listeners rate 
the quality of the enhanced speech obtained by all 
methods based on a pre-defined scale as introduced in the 
mean opinion score (MOS) test [14]. During this test, the 
listeners have no information about the proposed and 
benchmark methods to make it unbiased. The efficiency 
of the proposed method (IT-KF) is carried out by 
comparing it with other benchmark methods, such as sub-
band iterative KF (SBIT-KF) [8], MMSE with regional 
statistics (MMSE-RS) [5], and long tapered window 
based KF (LTW-KF) [7].  

 

 
Figure 8.  Average QSTI (%) comparison between the proposed and 

other SEAs on NOIZEUS corpus corrupted with: (a) restaurant and (b) 
babble noises for SNRs (-5dB to 15dB). 

 
Figure 9.  Average PESQ comparison between the proposed and other 
SEAs on NOIZEUS corpus corrupted with: (a) restaurant and (b) babble 

noises for SNRs (-5dB to 15dB). 

B. Simulation Results and Discussion 
The QSTI results for the restaurant noise experiment in 

Fig. 8 (a) specifies that the IT-KF method gives QSTI of 
0.68 to 0.88 at all SNRs, whereas the competitive 
methods give QSTI ranged between 0.57 to 0.77. The 
QSTI for the babble noise experiment in Fig. 8 (b) 
suggests that the proposed IT-KF method yields 0.63 to 
0.91 followed by the other methods give average QSTI 
ranging from 0.4 to 0.8. The high QSTI of the proposed 
method reveals that the enhanced speech provides better 
intelligibility than the benchmark methods for a wide 
range of SNRs. 

The average PESQ results for the restaurant noise 
experiment are shown in Fig. 9 (a). It can be seen from 
this figure that the proposed method (PESQ between 1.83 
and 3.13) is better than the other methods (with PESQ 
ranging from 1.4 to 2.88). Similar results are obtained for 
the babble noise experiment as shown in Fig. 9 (b). Note 
that the high PESQ indicates the enhanced speech 
provides natural quality of sound, whereas quality 
degradation for low PESQ. Therefore, the PESQ 

evaluation results in Fig. 9 reveals that the proposed 
method ensures better quality in the enhanced speech 
over benchmark methods. 

 

 
Figure 10.  Spectrogram comparison among: (a) clean speech (as in Fig. 
2.1(a)), (b) noisy speech (corrupted with restaurant noise at 5 dB SNR), 
with enhanced speech obtained through (c) LTW-KF [7], (d) MMSE-RS 

[5], (e) SBIT-KF [8], and (f) IT-KF (Proposed) methods. 

These methods also compared in terms of their 
spectrograms in Fig. 10. Here, it can be seen that the IT-
KF enhanced speech is almost free of noise floor, 
whereas the existing SEAs contain a significant amount 
of noise floor. The informal listening tests also confirm 
that the existing methods produce very annoying sounds 
as compared to the negligible audio artifacts produced by 
the proposed method. However, when compared with 
clean speech spectrogram, the proposed method 
introduced a little bit distortion in the enhanced speech. 
This may result due to an over-suppression of the spectral 
valleys by the adjusted Kalman gain during the speech 
activity. 

 

 
Figure 11.  Average MOS comparison between the proposed and other 

SEAs on NOIZEUS corpus corrupted with: (a) restaurant and (b) babble 
noises for SNRs (-5dB to 15dB). 

Fig. 11 shows the subjective MOS results for a male 
sentence "The birch canoe slid on the smooth planks" and 
a female sentence "Bring your best compass to the third 
class". It can be seen from this figure that the proposed 
method was preferred by the listeners effectively and 
gives superior quality over other methods. Specifically, 
the restaurant noise experimental results (Fig. 11 (a)) 
reveals that the proposed method gives average MOS of 
2.68 to 4.11 at all SNRs, whereas the competitive 
methods ranging from 2.23 to 3.75. The proposed method 
shows continuous improvement over benchmark methods 
for the babble noise experiment (Fig. 9 (b)). Among the 
benchmark methods, the listeners preferred the SBIT-KF 
[8] over other SEAs, apart from the ideal KF. 

V. CONCLUSION 

In this paper, an IT-KF with reduced-biased Kalman 
gain has been proposed for single channel speech 
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enhancement in NNCs. We have introduced an improved 
noise variance estimation method. The initial LPC 
parameters are computed from a pre-smoothed speech. 
These initial estimated parameters are used at first 
iteration of IT-KF to process the noisy speech and they 
are re-estimated at second iteration from the processed 
speech. It is shown that the re-estimated parameters offset 
the bias in Kalman gain and enables the IT-KF to 
minimize the noise effect, giving better enhanced speech. 
Experimental results reveal that the proposed method 
outperforms other benchmark SEAs in NNCs for a wide 
range of SNRs. An opportunity for further research lies in 
dynamically offsetting the bias of the Kalman gain under 
NNCs. 
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