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Abstract—Atmospheric light and transmission estimations 
are the most important steps in underwater image dehazing 
based on dark channel prior. In this paper, we develop a 
fast and efficient method to estimate the atmospheric light 
according to the red channel prior for underwater image 
dehazing. The subsampling technique is first applied to 
reduce the computational complexity of atmospheric light 
estimation with almost no visual quality degradation. 
Accordingly, a low-cost VLSI architecture with heavy 
resource sharing for the atmospheric light estimation is 
proposed to meet the requirement of real-time underwater 
image dehazing. Compared to previous design, the proposed 
atmospheric light estimator requires much less hardware 
cost and can achieve 2.3 times speedup while maintaining 
good visual quality.   
 
Index Terms—underwater image dehazing, dark channel 
prior, atmospheric light estimation, VLSI architecture 
 

I. INTRODUCTION 

Recently, people have paid more and more attention to 
the study of undersea due to the growing shortage of 
natural resources on land. When exploring the underwater 
environment, video or images are usually utilized to 
obtain the valuable information. Unfortunately, 
underwater images usually suffer from poor visibility and 
low contrast because of the phenomena of optical 
scattering and absorption in water. Furthermore, 
underwater images also have the problem of color 
distortion because the light attenuation is associated with 
the wavelength of spectrum. In general, the shorter 
wavelengths (green and blue colors) can reach greater 
depths under the water than the longer wavelengths (red 
color), leading to the underwater images with a typical 
bluish or greenish tone as shown in Fig. 1. For practical 
applications, poor visibility and color distortion will 
seriously affect the exploration of underwater 
environment.  

To overcome this problem, the restoration of hazy 
images with image processing techniques has been 
researched in various ways. For example, Schechner et al. 
[1] analyzed the physical effects of visibility degradation 
and proposed an algorithm based on a couple of images 
obtained through a polarizer that is rotated to work at 
different orientations. As a result, extra information about 
the scene that facilitates the inversion of the image 
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formation process can be acquired. Moreover, Torres-
Mendez et al. [2] presented a supervised algorithm, 
where parameters of color correction are learnt over 
training data. However, the above-mentioned methods 
require extra information and do not work on a single 
image. To avoid the problem of multiple images, several 
single-image methods have been developed to remove 
haze for single image. Fattal [3] presented a method for 
estimating the optical transmission in foggy scenes based 
on minimal input to increase scene visibility and recover 
haze-free scene contrasts. He et al. [4] introduced an 
effective method named the dark channel prior to remove 
haze from a single image. In [4], the concept of dark 
channel was first applied to estimate the atmospheric 
light and the transmission from the input hazy image. 
Afterward, the soft matting method was used in [4] to 
optimize the transmission to avoid the halo artifact 
generated in the recovered scene. Finally, the scene 
without haze can be recovered from the atmospheric light 
and optimized transmission. However, soft matting has 
very high computational complexity and requires heavy 
computing resource. Therefore, He et al. [5] proposed the 
guided filter instead of the soft matting to refine the 
estimated transmission effectively. The guided filter has a 
nice property of edge-preserving smoothing and lower 
computational complexity. 

 

 
Figure 1.  Typical underwater image. 

Since the situation of degraded underwater images is 
similar to the effect of hazy weather on outdoor vision, 
several recent researches (e.g., [6]-[12]) have extended 
and improved the dark channel prior method to restore 
the visual quality of underwater images while considering 
the nature of the degradation induced by a marine 
environment. For instance, Chiang et al. [7] enhanced the 
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underwater images by joining a dehazing method with 
wavelength compensation. According to the estimation of 
wavelength attenuation, a reverse compensation was 
conducted to restore the color distortion. Galdran et al. 

[10] considered the absorption effect in the red channel 
and proposed a red channel prior method. This method is 
simple and robust, and can restore the red color with short 
wavelengths, leading to a contrast improvement. 

 

 
Figure 2.  General flowchart of underwater image dehazing. 

However, most of the above-mentioned underwater 
image dehazing methods require high computing resource 
and long execution time when they are implemented in 
software. Consequently, these methods are probably 
unsuitable for real-time applications and integrated 
systems. To meet the real-time requirements, Shiau et al. 
[13] proposed a fast method and the corresponding 
pipelined hardware architecture for haze removal based 
on the concept of a dark channel. The proposed 
architecture in [13] can perform atmospheric light 
estimation, transmission estimation, and scene recovery. 
In addition, Huang et al. [14] presented a low-complexity 
guided filter and its low-cost hardware implementation to 
refine the estimated transmission of underwater images. 
This simplified guided filter can support Full-HD 
underwater image dehazing at a throughput of 30 frame/s. 

In addition to transmission estimation, atmospheric 
light estimation is also an important step in underwater 
image dehazing based on dark channel prior. Although 
the achievable throughput is very high, the hardware 
architecture of the atmospheric light estimator proposed 
in [13] is expensive. Therefore, this paper proposes a fast 
and efficient method and its low-cost VLSI architecture 
to estimate the atmospheric light based on the red channel 
prior [10] for underwater image dehazing. We first apply 
the subsampling technique with a subsampling ratio of s 
to significantly reduce the computational complexity of 
atmospheric light estimation to 1/s2 without obvious 
visual quality degradation. As a result, the corresponding 
hardware architecture can heavy share the computation 
resources while keeping a very high performance to 
decrease the hardware cost significantly. Compared to the 
atmospheric light estimator in [13], the proposed 
architecture consumes much less hardware cost and can 
achieve 2.3 times speedup and the comparable visual 
quality. 

The remainder of this paper is organized as follows. In 
Section II, the background information and related 
methods for underwater image dehazing are introduced 
briefly. Then, the proposed atmospheric light estimation 
method and hardware architecture are presented in 
Section III. The experimental results and comparisons are 
described in Section IV. Finally, the conclusion is 
provided in Section V. 

II. BACKGROUND 

Clear and brilliant underwater image is essential to 
many applications such as ocean engineering, ocean 

science, and ocean biology etc. As mentioned previously, 
many image dehazing systems have been proposed to 
improve the visual quality of underwater images based on 
the concept of dark channel prior method. Fig. 2 
illustrates a general flowchart of underwater image 
dehazing, which is based on the common and popular 
optical model shown in (1). In this model, the input hazy 
image 𝐼  is modeled as two components: the direct 
transmission of light from the object and the transmission 
due to turbid water medium and floating particles, as 
follows. 

 𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥)) (1) 

where 𝐼 is the observed (hazy) image on the three RGB 
color channels, 𝐽  is the scene radiance, 𝑡  is the 
transmission along the ray, and  𝐴  is the global 
atmospheric (background) light. The first term 𝐽(𝑥)𝑡(𝑥) 
is treated as direct attenuation and the second term 
𝐴(1 − 𝑡(𝑥)) denotes airlight.  

Using this optical model to recover the scene 𝐽 , the 
main challenge is to estimate the atmospheric light 𝐴 and 
the transmission 𝑡 from the hazy image 𝐼  properly. The 
transmission can be expressed as 𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥), where 𝛽 
is the scattering coefficient of the atmosphere and d is the 
scene depth at 𝑥. Unfortunately, it is difficult to compute 
𝑡(𝑥)  from 𝑒−𝛽𝑑(𝑥)  directly. Instead, the dark channel 
prior method proposed in [4] can be used to estimate 
atmospheric light and the transmission. The dark channel 
of image 𝐼 can be obtained by 

 𝐼𝑑𝑎𝑟𝑘(𝑥) = min
𝑦∈Ω(𝑥)

( min
𝑐∈{𝑟,𝑔,𝑏}

𝐼𝑐(𝑦)) (2) 

where 𝐼𝑐 is a color channel of image 𝐼 and Ω(𝑥) is a local 
patch centered at 𝑥. Afterward, the atmospheric light can 
be estimated from the top 0.1% brightest pixels in the 
dark channel 𝐼𝑑𝑎𝑟𝑘. Moreover, according to dark channel 
prior method, the intensity value of 𝐽𝑑𝑎𝑟𝑘 is low and tends 
to be zero if the scene 𝐽 is a haze-free image. In addition, 
the transmission in a local patch Ω(𝑥) is supposed to be a 
constant. After rewriting (1) and applying (2) to (1), the 
transmission can be estimated as 

 �̃�(𝑥) = 1 − 𝜔 ∙ min
𝑦∈Ω(𝑥)

�min
𝑐

𝐼𝑐(𝑦)
𝐴𝑐

� (3) 

where  𝜔 is a constant parameter and is used to keep a 
small amount haze. 

However, this estimated transmission �̃�(𝑥)  in (3) is 
coarser and requires a smoothing operator to preserve its 
edges. The guided filter [5], which is an edge-preserving 
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image filter and can effectively avoid gradient reversal 
artifacts with lower computational complexity, can be 
adopted to refine �̃�(𝑥) into 𝑡(𝑥). After 𝐴 and 𝑡 have been 
obtained, the desired scene radiance 𝐽 can be recovered as 

 𝐽(𝑥) = 𝐼(𝑥)−𝐴
max (𝑡(𝑥), 𝑡0)

+ 𝐴 (4) 

where  𝑡0 is a lower bound used to restrict 𝑡(𝑥) to avoid 
the noise generated in the recovered scene. 

In fact, the red color component usually undergoes 
maximum attenuation in an underwater environment. 
Therefore, several recent works (e.g., [10]) for 
underwater image dehazing modified the dark channel 
prior according to the absorption effect in the red channel 
to enhance the restoration performance. Galdran et al. 
[10] proposed a red channel method and modified the red 
channel of optical model in (1) into  

  1 − 𝐼𝑟(𝑥) = �1 − 𝐽𝑟(𝑥)�𝑡(𝑥) + (1 − 𝐴𝑟)�1 − 𝑡(𝑥)� (5) 

Based on the same idea, the red channel of original 
image 𝐼, denoted by 𝐼𝑟𝑒𝑑(𝑥), is computed as 

𝐼𝑟𝑒𝑑(𝑥) = 
    

     
min( min

𝑦∈Ω(𝑥)
(1 −  𝐼𝑟(𝑦)), min

𝑦∈Ω(𝑥)
𝐼𝑔(𝑦), min

𝑦∈Ω(𝑥)
𝐼𝑏(𝑦)) (6) 

Afterward, the atmospheric light can be obtained from 
𝐼𝑟𝑒𝑑(𝑥), and the transmission can be estimated as 

�̃�(𝑥) =    
   1 − min � min

𝑦∈Ω(𝑥)
1−𝐼𝑟(𝑦)
1−𝐴𝑟

, min
𝑦∈Ω(𝑥)

𝐼𝑔(𝑦)
𝐴𝑔

, min
𝑦∈Ω(𝑥)

𝐼𝑏(𝑦)
𝐴𝑏

� (7) 

Finally, the scene radiance 𝐽 is recovered as 

 𝐽(𝑥) = 𝐼(𝑥)−𝐴
max (𝑡(𝑥), 𝑡0)

+ (1 − 𝐴)𝐴 (8) 

For more details about red channel prior, please refer 
to [10]. Nevertheless, the recovered underwater images 
usually has color distortion after dehazing due to the 
discrepancy absorption of different lights. To obtain 
better recovery images, the color correction methods (e.g., 
[15]) can be applied after scene radiance recovery to 
achieve the balanced color values of the RGB 
components. 

III. PROPOSED ATMOSPHERIC LIGHT ESTIMATOR 

As can be seen in (3), (4) and Fig. 2, the atmospheric 
light 𝐴 must first be obtained from the input image 𝐼 for 
estimating the transmission and recovering the scene 𝐽. 
He et al. [4] picked the top 0.1% brightest pixels from the 
dark channel 𝐼𝑑𝑎𝑟𝑘,  and selected a suitable value from 
these brightest pixels as the atmospheric light. However, 
the sorting process to find the atmospheric light is time-
consuming and the sorting time will depend on the size of 
an input image. To meet the requirement for real-time 
applications, Shiau et al. [13] proposed an approximate 
method and the corresponding hardware architecture to 
find the atmospheric light quickly. After 𝐼𝑑𝑎𝑟𝑘 has been 
obtained, a maximum value 𝐴𝑑𝑎𝑟𝑘 is determined as 

 𝐴𝑑𝑎𝑟𝑘 = max
(𝑖,𝑗)∈𝐼

{𝐼𝑑𝑎𝑟𝑘(𝑖, 𝑗)} (9) 

where max is the maximum operation to find the 
maximum value of 𝐼𝑑𝑎𝑟𝑘 at (𝑖, 𝑗) coordinate. If the pixel 
𝐴𝑑𝑎𝑟𝑘  is located at (𝑠, 𝑡)  coordinate, the corresponding 
pixel value of 𝐼  at (𝑠, 𝑡)  coordinate is found as the 
candidate of atmospheric light. Subsequently, an 
adjustment parameter 𝜃  is applied to refine the 
atmospheric light as follows.  

 𝐴𝑐 = 𝜃 ∙ 𝐼𝑐(𝑠, 𝑡),   ∀𝑐 ∈ (𝑟,𝑔, 𝑏)   (10) 

The parameter 𝜃  can be regarded as an intensity 
correction for the recovered scene adjustment. In [13], 𝜃 
is set to 0.875 so that it can be implemented by using shift 
operation. 

 

 
Figure 3.  Architecture of atmospheric light estimator in [13]. 

 
Figure 4.  Architecture of the proposed atmospheric light estimator. 

Fig. 3 illustrates the hardware architecture of 
atmospheric light estimator proposed in [13]. In Fig. 3, 
the Min_9 unit determines a minimum value from nine 
pixel values of a 3×3 window and the Min_3 unit 
determines a minimum value among three color channels. 
The CMP unit finds a maximum value as the atmospheric 
light. The value of 1/𝐴𝑐 is calculated by a look-up table 
(LUT) unit. The architecture in Fig. 3 is a two-stage 
pipelined architecture and can process one pixel each 
clock cycle to estimate the atmospheric light. That is, it 
would take about 2,073,600 clock cycles and 20.7 ms to 
process a Full-HD image with 1920×1080 pixels if the 
architecture can operate at 100MHz.  

Although the achievable performance is quite high, the 
hardware architecture of the atmospheric light estimator 
proposed in [13] is expensive. In this paper, we apply the 
subsampling technique with a subsampling ratio of s to 
reduce the computational complexity of atmospheric light 
estimation to 1/s2, so that its hardware architecture can be 
further simplified. To achieve the goal, the input image 𝐼 
is first subsampled into 𝐼′. In order to avoid complicating 
the subsampling process, we directly pick the pixel in the 
top left corner of an s×s window of input image 𝐼 as the 
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subsampled pixel. Then, 𝐼′𝑑𝑎𝑟𝑘  and 𝐴′𝑑𝑎𝑟𝑘  of the 
subsampled image 𝐼′ can be obtained as 

 𝐴′𝑑𝑎𝑟𝑘 = max
(𝑖,𝑗)∈𝐼′

�𝐼′𝑑𝑎𝑟𝑘(𝑖, 𝑗)� (11) 

Assume that s = 4, the computational complexity of 
atmospheric light estimation can be reduced to 1/16. 
Accordingly, a low-cost hardware architecture as shown 
in Fig. 4 is proposed to estimate the atmospheric light. In 
the proposed architecture, only one Min_9 unit and one 
LUT unit are required and its critical path delay is the 
same with that of the architecture in Fig. 3. Moreover, it 
takes seven clock cycles to deal with one pixel, and 
would take about 907,200 clock cycles and 9.1 ms to 
process a Full-HD image with 1920×1080 pixels if the 
architecture can operate at 100MHz. The comparisons 
between the architectures in Fig. 3 and Fig. 4 for 
processing a Full-HD image are summarized in Table I. 
The results show that the proposed architecture consumes 
less hardware cost and is 2.3 times faster than the 
architecture in Fig. 3. 

TABLE I. COMPARISON BETWEEN DIFFERENT ATMOSPHERIC LIGHT 
ESTIMATOR FOR PROCESSING A FULL-HD IMAGE 

ALT Design Shiau [13] Proposed 

# of Min_9 3 1 

# of LUT 3 1 

# of Min_3 1 1 

# of CMP 1 1 

latency 2 7 

# of clock cycles 2,073,600 907,200 

IV. EXPERIMENTAL RESULTS 

To evaluate the visual quality of the proposed 
atmospheric light estimator (ALE), an underwater image 

dehazing system similar to Fig. 1 was implemented in 
C++ language with single-precision floating-point (FP) 
format. In this experiment, three versions of dehazing 
system were developed for comparison. The first version 
(Dehazing_SW) adopted the red channel prior in [10], 
atmospheric light estimation in [13], guided filter in [5], 
and was implemented in software with FP format. In the 
second version (ALE_HW), the atmospheric light 
estimation in the first version was replaced by the 
proposed atmospheric light estimator implemented in 
SystemC with the fixed-point format and s = 4. In the 
third version (ALE_GF_HW), the guided filter (GF) in 
the second version was replaced by the simplified GF 
proposed in [14] implemented in SystemC with the fixed-
point format. Several Full-HD underwater images (Image 
01 to Image 12) in different water conditions and 
different scene configurations were used for the 
experiments. The output results of Image 01 to Image 04 
shown in Fig. 5 demonstrate that ALE_HW and 
ALE_GF_HW can obtain the comparable results to 
Dehazing_SW. 

In addition to the aforementioned qualitative 
comparison, the quantitative evaluation was carried out to 
further evaluate the visual quality of proposed ALE. 
Table II shows the entropy comparisons among different 
versions. The value of entropy represents the valuable 
information contained in the recovered images. In 
addition, the peak-signal-to-noise (PSNR) value and the 
structural similarity (SSIM) index [16] among the 
underwater images produced by Dehazing_SW and other 
versions are also calculated and listed in Table II. As can 
be seen in Table II, the average entropy of different 
version is almost the same, and all PSNR values are 
higher than 60 dB. Moreover, all SSIM indices are larger 
than 0.97. The results in Table II exhibit that the visual 
quality produced by ALE_HW and ALE_GF_HW is very 
close to that of Dehazing_SW. 

TABLE II. QUANTITATIVE COMPARISON OF DIFFERENT DEHAZING SYSTEMS IN TERMS OF ENTROPY, PSNR AND SSIM 

Images 
Dehazing_SW ALE_HW ALE_GF_HW 

Entropy Entropy PSNR SSIM Entropy PSNR SSIM 

Image 01 5.251 5.242 92.52 0.9978 5.241 91.50 0.9971 

Image 02 6.366 6.392 88.71 0.9982 6.393 87.85 0.9974 

Image 03 6.408 6.405 115.37 0.9994 6.404 103.19 0.9973 

Image 04 6.135 6.146 106.85 0.9992 6.141 105.31 0.9978 

Image 05 5.837 5.809 66.12 0.9749 5.812 65.93 0.9731 

Image 06 6.39 6.422 101.64 0.9932 6.421 97.71 0.9923 

Image 07 5.642 5.644 87.55 0.9986 5.646 86.59 0.9973 

Image 08 6.493 6.475 85.57 0.9765 6.475 85.29 0.9769 

Image 09 5.689 5.700 113.51 0.9982 5.703 107.72 0.9970 

Image 10 6.539 6.539 129.66 0.9994 6.547 108.45 0.9936 

Image 11 6.462 6.454 112.36 0.9980 6.464 100.58 0.9959 

Image 12 6.519 6.552 81.94 0.9845 6.554 81.17 0.9846 

Average 6.144 6.148 98.48 0.9932 6.150 93.44 0.9917 
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(a) (b) (c) (d) 

Figure 5.  Qualitative Comparison of different designs (a) Original underwater images with a size 1920×1080, from top to bottom: Image 01, Image 
02, Image 03, and Image 04, (b) Dehazing results by Dehazing_SW, (c) Dehazing results by ALE_HW, and (d) Dehazing results by ALE_GF_HW. 

V. CONCLUSION 

This paper has proposed a fast and efficient 
atmospheric light estimator and its low-cost hardware 
architecture to achieve the real-time Full-HD underwater 
image dehazing while maintaining good visual quality. 
The subsampling technique was employed to reduce the 
computational complexity of atmospheric light estimation. 
As a result, the hardware resources can be heavy shared, 
leading to significant reduction in the hardware cost. 
Compared to previous design, the proposed architecture 
consumes less hardware cost and achieves higher 
performance without visual quality degradation.  
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