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Abstract—Until now, marginalization-based Missing 
Feature Theory (MFT) for speech classification has been 
limited to the use of Log Spectral Subband Energies (LSSEs) 
as features. These features are highly correlated, thus 
suboptimal for classification with diagonal-covariance 
Gaussian Mixture Models (GMMs), a common classifier in 
marginalization-based MFT. In this paper, we propose that 
Spectral Subband Centroids (SSCs) are more apt for 
marginalization-based MFT, as they are both decorrelated 
and spectrally local. Our results show that SSCs as features 
produce a more robust marginalization-based MFT, 
diagonal-covariance GMM-based, Automatic Speaker 
Identification (ASI) system than LSSEs as features, for at all 
tested SNR values (with Additive White Gaussian Noise 
(AWGN)). It is also shown that a fully-connected Deep 
Neural Network (DNN) can accurately estimate the Ideal 
Binary Mask (IBM) used for MFT.   
 
Index Terms—spectral subband centroids, missing feature 
theory, speaker identification, deep neural network, ideal 
binary mask 
 

I. INTRODUCTION 

The aim of an Automatic Speaker Identification (ASI) 
system is to determine a person's identity from a database 
of known speakers, given a recording of their speech. 
There are many methods currently used in the literature 
for implementing a high-performance ASI system, 
however a common theme amongst many of these 
approaches is the degradation of their accuracy with the 
introduction of noise. Cooke 𝑒𝑡 𝑎𝑙  [1], proposed the 
method of Missing Feature Theory (MFT) to reduce the 
impact of additive noise on ASI performance.  

MFT is based on the knowledge that when information 
is missing from a speech signal, it is still comprehendible 
to the listener. The fact that humans can amply 
comprehend speech that has had fractions of its 
information removed indicates a significant level of 
inherent redundancy in the signal's spectro-temporal 
information. MFT approaches aim to first find the 
degraded (or unreliable) components of the speech 
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signal's spectrogram, and then to either ignore the 
unreliable components, or estimate their optimal value. 

The two most popular methods of MFT, 
marginalization and cluster-based reconstruction, deal 
with the unreliable components in different manners. 
Marginalization-based approaches integrate over the 
unreliable components of the spectrogram, thereby 
effectively using only the reliable components for 
classification. An immediate drawback of this method is 
that the features used for classification must intrinsically 
be spectrally local, meaning that they cannot incorporate 
information from a range of frequencies. This makes 
cepstral and other spectrally non-local features 
incompatible with this approach. Another drawback that 
stems from this approach is that the classifier itself must 
be modified to exclude the unreliable components. 

The aim of cluster-based reconstruction is to estimate 
the values of the unreliable components before 
classification. These values are calculated based on the 
surrounding reliable components of the spectrogram, 
using 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 knowledge of speech. Since there are no 
wholly-excluded frequency components, spectrally non-
local features such as Mel Frequency Cepstral 
Coefficients (MFCCs) can be used as features for 
classification. However, cluster-based reconstruction has 
been shown to perform worse than marginalization-based 
methods, due to noise still being incorporated into the 
classification process  [2]. 

The dominant feature type used in diagonal-covariance 
Gaussian Mixture Model (GMM)-based ASI systems has 
been MFCCs [3] and [4]. However, as MFCCs are 
spectrally non-local features, they cannot be used with 
marginalization-based MFT. This means that MFT-based 
ASI systems have been restricted to Log Spectral 
Subband Energies (LSSEs), a feature known to provide 
inferior system accuracy to MFCCs. The inherent 
disadvantage of LSSEs is that the features themselves are 
highly correlated, whereas MFCCs are decorrelated. 
Diagonal-covariance GMMs are not good at modelling 
correlated features, leading to inferior LSSE performance. 

In this paper, we present for use with marginalization-
based MFT a substitute feature for LSSEs, namely 
Spectral Subband Centroids (SSCs) [5]. SSCs possess 
several characteristics which make them promising 
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features for MFT. Specifically, they are decorrelated, 
robust, and spectrally local features. SSCs have also been 
proven successful as features in ASI systems [6] and [7]. 

The reliable components of a spectrogram are 
identified using a binary spectrographic mask. The Ideal 
Binary Mask (IBM) can be calculated when both the 
clean and noisy spectrograms of a signal are given. To 
demonstrate the practical validity of a MFT-based ASI 
system using SSCs, estimators are used to approximate 
the IBM from a given noisy spectrogram. 

Section II describes the spectrogram used to compute 
the IBM. Section III describes the Spectral Subband 
Features (SSF) that were used for the comparison, namely 
LSSEs, MFCCs, and SSCs. Section IV details the 
marginalization-based MFT method for diagonal-
covariance GMMs. Section V presents the two IBM 
estimators used, namely MMSE STSA w. SPU, and a 
fully-connected Deep Neural Network (DNN). Sections 
VI, VII, and VIII are dedicated to the experiment setup, 
the results and discussion, and the conclusion 
respectively. 

II. SPECTROGRAM AND IDEAL BINARY MASK 

A. Spectrogram 
The first stage of computing the spectrogram of a 

speech waveform is short-time analysis. Overlapping 
analysis frames are typically between 20-40 𝑚𝑠  to 
achieve signal stationarity, with a tapered window 
applied to mitigate spectral leakage. The Power Spectral 
Density (PSD) of the 𝑖𝑡ℎ  frame 𝑥𝑖(𝑛) is then estimated 
from the Discrete Fourier Transform (DFT) using the 
periodogram method:  
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where 𝐾 is the DFT length, 𝑁 the frame length, and 𝑤(𝑛) 
is a windowing function.  

Next, the Spectral Subband Energy (SSE) coefficients 
for the frame are computed from the PSD by using a bank 
of 𝐵  triangular-shaped critical band filters spaced 
uniformly on the mel scale (shown in Fig. 1) as follows:  
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where ℎ𝑏 refers to the 𝑏𝑡ℎ  filterbank. The SSEs form the 
final spectro-temporal representation of the signal. 
 

 
Figure 1.  Mel filterbank with 10 triangular-shaped filters. 

B. Ideal Binary Mask 
When a signal is corrupted by uncorrelated additive 

noise, the noisy spectrogram 𝑿 can be modeled as the 
sum of the clean spectrogram 𝑺  and the noise 
spectrogram N: 

 

 ( ) ( ) ( )    .i i iX b S b N b= +   (3) 
 
In MFT methods, it is assumed that noisy spectrogram 

components with a SNR at or above a set threshold 𝜃 are 
reliable estimates of the corresponding clean spectrogram 
components. The SNR of the 𝑏𝑡ℎ  filterbank of the 𝑖𝑡ℎ  
frame is calculated as follows: 
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Conversely, corrupted spectrogram components with a 

SNR below 𝜃 (set to zero in this work) are assumed to be 
unreliable estimates. An Ideal Binary Mask (IBM) 𝐼 
identifies the reliable and unreliable components of a 
noisy spectrogram by comparing the SNR from Eq. 4, to 
the threshold 𝜃: 
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III. SPECTRAL SUBBAND FEATURES 

A. Log Spectral Subband Energies 
Previous work on marginalization-based MFT has 

relied on LSSEs as features for classification. LSSEs are 
local in both time and frequency, enabling an IBM to 
identify the reliable components. SSEs from Eq. 1 are 
scaled by the natural logarithm to form LSSEs:  

 

 ˆLSSE ( ) log ( ) ( ), 0 1.i b i
k

b h k P k b B= ≤ ≤ −∑   (6) 

 
However, LSSEs provide inferior diagonal-covariance 

GMM-based ASI accuracy when compared to MFCCs. 
The suboptimal classification accuracy is due to the 
features' high correlation, as illustrated in Fig. 2. 

 

 
Figure 2.  The cross-correlation of features for a) LSSE features, b) 

MFCC features, and c) SSC features. 26 filterbanks were used. 

B. Mel Frequency Cepstral Coefficients 
MFCCs decorrelate the LSSEs (shown in Fig. 2) by 

taking the Discrete Cosine Transform (DCT) over the 𝐵 
filterbanks:  
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where 0 ≤ 𝑐 ≤ 𝐵 − 1. However, the DCT ‘smears’ the 
LSSEs throughout all of the MFCCs.  This means that 
MFCCs cannot be used in marginalization-based MFT as 
they are not spectrally local. 

C. Spectral Subband Centroids 
SSCs indicate at what frequency in the filterbank the 

‘center of mass’ is located. SSCs for a frame are 
calculated by taking the weighted average of the 
frequencies present in the subband. The weights are 
determined by the product of the 𝑘𝑡ℎ  filterbank 
coefficient, and the 𝑘𝑡ℎ PSD coefficient:  
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In this work, a value of 𝛾 =  1 was used. Like LSSEs, 
SSCs are spectrally local, enabling SSCs to be used as 
features for marginalization-based MFT classification. 
SSCs are not only spectrally local, they are also 
uncorrelated (shown in Fig. 2), like MFCCs. The 
uncorrelated property of SSCs enables them to be an ideal 
feature for a diagonal covariance GMM employing 
marginalization-based MFT. 

IV. MARGINALIZATION-BASED MFT 

A common classifier in ASI systems is to model each 
speaker using a diagonal-covariance Gaussian Mixture 
Model (GMM). Each speaker model 𝑠  has a set of 𝑀 
mixtures, with mixture 𝑚  having mean vector 𝝁 , 
diagonal-covariance matrix 𝚺 , and 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖  probability 
𝑃(𝑚|𝑠) . The distribution of random variable 𝒙 for the 
𝑚𝑡ℎ  mixture of speaker model 𝑠  is 𝒙 ∼  𝑁(𝝁,𝚺|𝑚, 𝑠) . 
The likelihood that 𝒙 was from speaker 𝒔 is given by:  
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where 𝒙 in this work was represented by either LSSEs, 
MFCCs, or SSCs. 

Using the IBM from Eq. 5, the reliable components of 
𝒙 can be identified. The marginal distribution of 𝒙 is thus 
taken over the reliable components 𝒙𝑟 . 𝒙𝑟 ∼
 𝑁(𝝁𝑟 ,𝚺𝑟|𝑚, 𝑠)  gives the marginal distribution for the 
𝑚𝑡ℎ  mixture of speaker model 𝑠. With only the reliable 
components 𝒙𝑟  being used, the likelihood from Eq. 9 
becomes: 
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V. IDEAL BINARY MASK ESTIMATES 

The Ideal Binary Mask (IBM) is computed from the 
clean 𝑺 and noisy 𝑿 spectrogram, by using Eq. 4 and Eq. 

5. However, the clean spectrogram 𝑺 is not available in 
practical applications. To estimate the IBM, either the 
clean spectrogram is estimated, or the IBM is estimated 
directly. 

A. Speech Enhancement 
The speech enhancement algorithm used to estimate 

the clean spectrogram 𝑺� was the MMSE STSA estimator 
by Ephraim 𝑒𝑡 𝑎𝑙. [8]. Speech Presence Uncertainty (SPU) 
was used in combination with the MMSE STSA 
estimator. The MATLAB implementation of the 
algorithm was by Loizou 𝑒𝑡 𝑎𝑙. [9]. 

B. Ideal Binary Mask Estimator 
To estimate the IBM directly, a Deep Neural Network 

(DNN) with fully-connected layers was used. Given the 
corrupted SSE spectrum of a frame, the DNN was tasked 
with estimating its IBM. The network had 3 hidden layers, 
with 256 nodes per layer. The hidden layers employed a 
rectifier activation function. A sigmoid activation 
function was applied to the output layer. As the state of 
the output layer neurons was within the interval [0,1], the 
IBM estimate was found using:  
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where 𝑦𝑖(𝑏) was the state of the 𝑏𝑡ℎ  output layer neuron 
for the 𝑖𝑡ℎ  frame. 

The hidden layers of the DNN were initialized using a 
stacked autoencoder [10], with the 𝐴𝑑𝑎𝑚 algorithm [11] 
used for gradient descent optimization. Cross entropy was 
the loss function employed. Each autoencoder layer was 
trained for 10 epochs, with the complete network fine-
tuned for 50 epochs. Early stopping was employed during 
fine-tuning, with a validation set used to determine error. 

VI. EXPERIMENT 

A. Database 
The speech corpus used was the TIMIT [12] database. 

The TIMIT database has 630 speakers, each with 8 
unique and 2 common short sentences recorded at 16kHz. 
The 8 unique sentences of each speaker were used to train 
the GMM speaker models. 

The 2 common short sentences of each speaker were 
used for testing. Each test sentence was degraded to a 
range of SNR levels, by Additive White Gaussian Noise 
(AWGN). The SNR values were: 30dB, 20dB, 10dB, 0dB, 
and -10dB. The GMM speaker models, the speech 
enhancement method, and the DNN, were all tested on 
the noisy test utterances. 

For the DNN training examples, the 8 unique short 
sentences for each speaker were used, which were 
corrupted by AWGN at the same SNR values as above. 
The IBM for each training example was used as the target. 
10% of the training data was used as the validation set. 

B. Test Details 
All speech was framed at 30 𝑚𝑠 per frame, with a 10 

𝑚𝑠  shift. 26 filter banks were used to compute the 
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spectral subband features. The first test involved a 
comparison of the spectral subband features (LSSEs, 
MFCCs, and SSCs) for speaker identification. Diagonal-
covariance GMMs with 32 mixtures were used as speaker 
models. LSSEs and SSCs were also tested using 
marginalization-based MFT with an IBM. 

The second test compared the IBM to the IBM 
estimates presented in Section V. Speaker models using 
SSCs, marginalization-based MFT, and diagonal-
covariance GMMs with 32 mixtures were used for the 
comparison. 

 

 
Figure 3.  Comparison of a diagonal-covariance GMM-based ASI 

system (using MFCCs, LSSEs, and SSCs) to a marginalization-based 
MFT version, using an IBM (for SSCs and LSSEs). 

VII. RESULTS AND DISCUSSION 

Comparing the ASI results from Fig. 3 without 
marginalization-based MFT shows that the uncorrelated 
features (MFCCs, and SSCs) achieved a greater accuracy 
than the correlated features (LSSEs), due to the diagonal-
covariance GMM speaker models. The robustness of 
SSCs to noise was also demonstrated, having a higher 
accuracy then MFCCs at high SNR values (30 dB, 20 dB, 
and 10 dB). Applying marginalization-based MFT to a 
robust feature like SSCs should therefore significantly 
outperform MFCCs at high SNR values. 

Fig. 3 illustrates that in the presence of noise, LSSEs 
and SSCs as features benefited from the introduction of 
marginalization-based MFT. Marginalization-based ASI 
results for LSSEs were better at lower SNR values than 
ASI results for MFCCs (10 dB, 0 dB, and -10 dB), 
showing the robustness of the marginalization-based 
MFT method. However, the best ASI results at all tested 
SNR values came from SSCs and marginalization-based 
MFT. Three properties of SSCs allowed them to form a 
highly robust diagonal-covariance GMM-based MFT ASI 
system: SSCs are robust, uncorrelated, and local in both 
time and frequency. 

An accurate IBM estimator is needed for 
marginalization-based MFT to work in a practical sense. 
Shown in Fig. 4 are the IBM estimate results for 
marginalization-based MFT and SSCs. MMSE STSA w. 
SPU, which estimated the clean spectrum for Eq. 4, 
provided an inaccurate IBM estimate at all tested SNR 
values. The DNN, which estimated the IBM directly, 
provided a more accurate estimate of the IBM when 
compared to MMSE STSA w. SPU. This shows the 

practical validity of marginalization-based MFT and 
SSCs for robust ASI when a DNN is used to estimate the 
IBM. 

 

 
Figure 4.  IBM estimate results for a diagonal-covariance GMM-based 

ASI system using marginalization-based MFT and SSCs as features. 
 

VIII. CONCLUSION 

In this paper, Spectral Subband Centroids (SSCs) are 
presented for a marginalization-based MFT, diagonal-
covariance GMM-based Automatic Speaker 
Identification (ASI) system. The current features used in 
marginalization-based MFT are Log Spectral Subband 
Energies (LSSEs), however these features perform sub 
optimally in diagonal-covariance GMMs. SSCs are 
spectrally local, decorrelated features, and when 
combined with marginalization-based MFT, are more 
robust to noise (AWGN) than MFCCs (as well as LSSEs 
with marginalization-based MFT) at all tested SNR 
values. It is also shown that a fully-connected Deep 
Neural Network (DNN) can accurately estimate the Ideal 
Binary Mask (IBM) used for MFT. 
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