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Abstract—Infinite Impulse Response (IIR) filters can be 

designed from an analogue low pass prototype by using 

frequency transformation in the s-domain and bilinear z-

transformation with pre-warping frequency; this method is 

known as frequency transformation from the s-domain to 

the z-domain. This paper will introduce a new method to 

transform an IIR digital filter to another type of IIR digital 

filter (low pass, high pass, band pass, band stop or narrow 

band) using a technique based on inverse bilinear z-

transformation and inverse matrices. First, a matrix 

equation is derived from inverse bilinear z-transformation 

and Pascal’s triangle. This Low Pass Digital to Digital Filter 

Pascal Matrix Equation is used to transform a low pass 

digital filter to other digital filter types. From this equation 

and the inverse matrix, a Digital to Digital Filter Pascal 

Matrix Equation can be derived that is able to transform 

any IIR digital filter. This paper will also introduce some 

specific matrices to replace the inverse matrix, which is 

difficult to determine due to the larger size of the matrix in 

the current method. This will make computing and hand 

calculation easier when transforming from one IIR digital 

filter to another in the digital domain.  

 

Index Terms—bilinear z-transformation, frequency 

transformation, inverse bilinear z-transformation, IIR 

digital filters, warping frequency, pre_warping frequency 

 

I. INTRODUCTION 

Currently, the most common method to design an 

Infinite Impulse Response (IIR) digital filter uses a 

reference analogue low pass prototype with a desirable 

class (such as Butterworth, Chebyshev or elliptic), then 

transforms it to another type of filter (low pass, high pass, 

band pass, band stop or narrow band filter) using 

frequency transformation in the s-domain and then 

converting the resulting analogue filter into an equivalent 

digital filter using bilinear z-transformation with pre-

warping frequency [1], [2]. This method is known as 

frequency transformation in the s-domain to z-domain [3], 

[4] and is described mathematically by way of a matrix 

equation, called the Analog Low Pass Prototype to 

Digital Filter Pascal Matrix Equation. This paper will 

introduce a new method to design IIR digital filters from 

a low pass IIR digital filter using inverse bilinear z-

transformation; with the support of the Pascal’s triangle, a 

matrix equation is derived, called the Low Pass Digital to 

Digital Filter Pascal Matrix Equation. From this matrix 

equation and inverse matrix, an IIR digital filter can be 
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designed from any type of IIR digital filter. This process 

is described in a general mathematical way as a Pascal 

matrix equation called the Digital to Digital Filter Pascal 

Matrix Equation. The main purpose of this equation is to 

simplify operations involving the matrix multiplication, 

which will make it more effective for programming and 

calculating transforming one IIR digital to another. 

II. ANALOG LOW PASS PROTOTYPE TO DIGITAL 

FILTER PASCAL MATRIX EQUATION 

Frequency transformation from the s-domain to the z-

domain is a method to transform an analogue low pass 

prototype into a digital filter (low pass with different cut-

off frequency, high pass, band pass, band stop or narrow 

band) as shown as a block diagram in Fig. 1.  

 

Figure 1. Frequency transformation from s-domain to z-domain 

The technique uses one-to-one mapping poles and 

zeros on a stable region in the s-domain inside a unit 

circle in the z-domain [5]. The main advantage of this 

method is in transforming a stable designed analogue low 

pass prototype filter to a stable digital filter for which the 

frequency response has the same characteristics [6], [7] as 

those of the analogue low pass filter. 

TABLE I.  TRANSFORMING AN ANALOGUE LOW PASS PROTOTYPE TO 

A DIGITAL FILTER 

Transforming    s=f(z) 

Low pass to low pass                                 
1

1

1

1

z
c

z








 

Low pass to high pass                                 
1

1

1

1

z
t

z








 

Low pass to band pass                           
1 1

1 1

1 1

1 1

z z
U L

z z

 

 

 


 
 

Low pass to band stop 
                         

1 1

1 1

1

1 1

1 1

z z
U L

z z

 

 

 


 

 

Low pass to narrow band                         
1 1

1 1

1 1

1 1
Q Q

z z
U L

z z

 

 

 


 
 

Low pass to Notch 
                        

1 1

1 1

1

1 1

1 1
Q Q

z z
U L

z z

 

 

 


 
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Table I further details the block diagram shown in Fig. 

1. It demonstrates how to transform a given analogue low 

pass prototype to a desired digital filter. 

Let fs be the sampling frequency; fc, the cut-off 

frequency for the low pass and high pass digital filter; 

and fU and fL, the upper and lower frequency of the band 

pass and band stop. In the case of narrow band pass and 

notch digital filters, f0 is the centre frequency and Q is a 

quality factor. The parameters c, t, U, L, UQ and LQ can 

be calculated as: 

cot tanc c

s s

f f
c t

f f
 
   

    
     

cot
1

tan
1

U U
U

s U L

LL

L
U Ls

f c
c U

f c t
tf Lt
c tf





   
        

          

0

0

00

0

cot

tan

Q os

Q

f
c

U Qcf

L Qtf
t

f





  
  

         
    

Let H(s) be the transfer function of the analogue low 

pass prototype and H(z), the transfer function of the 

digital filter. These can be written as below, where Ai, Bi, 

ai and bi are real coefficients, n is the nth order of the 

analogue low pass prototype and N is the Nth order of the 

digital filter. N = n for low pass and high pass, and N = 2n 

for band pass, band stop and narrow band filters: 

0 0 1
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

 

Following Table I, the relationship between 

coefficients Ai and Bi of the given analogue low pass 

prototype filter, and coefficients ai and bi of the desired 

digital filter, can be formulated as a matrix equation 

called the Analog Low Pass Prototype to Digital Filters 

Pascal Matrix Equation: 

    
    

0 0( 1; 1) ( 1; 1)( 1; 1) (1; 1)
( 1;1)

0 0( 1; 1) ( 1; 1)( 1; 1) (1; 1)
( 1;1)

i N i nN N n NN n
N

i N i nN N n NN n
N

a P A T

b P B T

       


       


      

       



     (1) 

A. Matrix [P] 

Matrix [P] contains the positive and negative binomial 

coefficients of the Pascal’s triangle. There are two types 

of matrix [P]: [PLP] for a digital low pass filter and [PHBS] 

for digital high pass, band pass, band stop and narrow 

band filters. These can defined as: 

 

   

   
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      

 

Let [I] be an anti-diagonal unit matrix: 

( 1; 1)

0 0 0 1
0 0 0
0 1 0 0
1 0 0 0

N N

I

 

 
 

  
  

 

The matrix [PHBS] can be calculated as [PHBS] = [IPLP]. 

B. Matrix [T] 

Depending on the conversion, matrix [T] is either [Tx] 

or [TUL]. For low pass to low pass filters x is replaced by 

c; for low pass to high pass x is replaced by t in matrix 

[Tx]. Matrix [TUL] can be derived from the Pascal’s 

triangle expansion of (U+L)
n
 by inserting zeros. This 

matrix is used when transforming low pass to band pass, 

band stop and narrow band filters: 

2

1 0 0 0 0
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  

 

The procedure of converting an analog low pass filter 

to a digital filter were studied, the next section will 

introduce how to transform a digital low pass filter to 

another type of digital filter. 

III. DIGITAL LOW PASS TO DIGITAL FILTER PASCAL 

MATRIX EQUATION 

Following Table I, transforming from an analogue low 

pass prototype to a low pass digital filter with the cut-off 

frequency fc can be done using s = c[(1 − z
−1)

/(1 + z
−1

)]. 

Applying inverse bilinear z-transformation [1], a low pass 

digital filter can be converted back to an analogue low 

pass filter as: 

1 c s
z

c s

 



                                  (2) 

Let fcn be a new cut-off frequency of the low pass 

digital filter and cn = cot[x(fcn/fs)]. From Table I and (2), a 

digital filter can be designed from a given low pass 

digital filter as shown in Table II. 

TABLE II.  TRANSFORMING AN ANALOGUE LOW PASS PROTOTYPE TO 

A DIGITAL FILTER 

Transforming    z=Z(z-1) 

Low pass to low pass                          
1

1

( )

( )

N N

N N

c c c c z

c c c c z





  

  
 

Low pass to high pass                             
1

1

( )

( )

c t c t z

c t c t z





  

  
 

Low pass to band pass 

                             

        
1 2

1 2

2( ) ( )

2( ) ( )

c U L U L z U L c z

c U L U L z U L c z

 

 

      

      
 

Low pass to band stop 

                             

         
1 2

1 2

1 2 ( ) ( 1)

1 2 ( ) 1)

cU cL c U L z cU cL z

cU cL c U L z cU cL z

 

 

      

      
 

 

In the case of a narrow band, U and L are replaced by 

UQ and LQ. Let Hg(z) be a transfer function for a given 
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low pass digital filter and Hd(z), a transfer function for a 

desired digital filter, as shown in (3) and (4): 

( ) ( )

0 0

( ) ( )

0 0

( ) ( )

n n
i i

LP i d i

i i

LP dn n
i i

LP i d i

i i

a z a z

H z H z

b z b z

 

 

 

 

 
 

 

 

The relationship between aLP, bLP, ad and bd can be 

described as a matrix equation, the Low Pass Digital to 

Digital Filter Pascal Matrix Equation: 
tr tr

d LP LP LP

tr tr

d LP LP LP

a a P T TP

b b P T TP

 

 

                        (3) 

where the matrices [PLP
tr
] and [P

tr
] are the transpose of 

the matrix [P]. Matrix [TLP] can be found from a matrix 

[Ty] by replacing c with y as follows: 

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 1

n

n

y

y

y
T

y



 
 
 
 
 
  

 

The next section will introduce an alternative method 

to transform a low pass digital filter into another digital 

filter by using inverse matrices. From that, a general 

matrix equation is derived that is able to transform any 

digital filter to another. 

IV. IIR DIGITAL FILTER FREQUENCY 

TRANSFORMATION 

As discussed in Section III, a desired low pass, high 

pass, band pass, band stop or narrow band digital filter 

can be designed by transforming a given low pass digital 

filter. The process design is simple and uses a matrix 

equation as described in (3). Also from this matrix 

equation, a desired digital filter can be re-transformed to 

a given low pass digital as follows: 

 

 

1 111

1 111

tr tr

LP d LP LP

tr tr

LP d LP LP

a a P T T P

b b P T T P

 

 

          

          

               (4) 

Let subscript ‘g’ denote ‘given’ and ‘d’, ‘desired’. 

From (3) and (4), the coefficients ad and bd of a desired 

digital filter can be found from ag and bg of a given 

digital filter as follows: 
11

11

tr tr

d g g d d

tr tr

d g g d d

a a P T T P

a a P T T P





            

            

                  (5) 

The inclusion of the inverse matrices [P
tr
]

-1
 and [Tg]

-1
 

makes the matrix in (5) very large, so computing and 

hand calculation is difficult. To solve this problem, some 

features of matrices are considered in the next section. 

A. Inverse Matrix [P
tr
]

-1
 

Multiplying matrix [P
tr
] with size (N+1,N+1) by itself 

will give a diagonal matrix in which all the numbers in 

the diagonal are equal to 2
N
. This means that an inverse 

matrix [P
tr
]

-1
 is equal to matrix [P

tr
],

 in 
which all the 

numbers divide by 2
N
 as follows: 

1 1

2

tr tr

n
P P



     

B. Inverse Matrix [Tg]
-1

 

[Tx] and [Ty] are diagonal matrices, so the inverse can 

be obtained by replacing each element in the diagonal 

with its reciprocal as follows: 
11

11

( 1; 1) ( 1; 1)

1 1
ii

x y

i j i jn n n n

T T
x y




    

     
             

        

 

The inverses of [Tx] and [Ty] are used for low pass and 

high pass filters. In the case of band pass, band stop and 

narrow band filters, a matrix [Th] is used. [Th] is an upper-

left triangular matrix of size (n+1; n+1). If the main anti-

diagonal is the first, then all the odd anti-diagonals above 

it are the 3rd, 5th, 7th, … and correspond to m = 

1,2,3,4, … Each element in the mth anti-diagonal can be 

expressed in the formula as: 

 
     

1

1

1 2 1 1;1 2 1 1;

m

j

h n m j jn m j j

L
T K U

U



 

        

 
  

 
 

The coefficients K can be calculated because all the K 

in the main anti-diagonals are equal to 1 and from m = 2, 

3, 4, 5, … all the K in the first column are accordingly 

replaced with −2, +2, −2, +2, … ; all other K in all anti-

diagonals can be found by: 

        1 2 1 1; 1 2 1 2; 1 2 1 3;n m j j n m j j n m j j
K K K

              
   

All other elements in the matrix [Th] equal to zero. 

The inverse matrices [P
tr
]

-1
 and [Tg]

-1
 are illustrated 

above without using the determinant matrix, which is 

very difficult to calculate due to its very large size. They 

are used in matrix equations to transform a digital filter to 

another digital filter as shown in detail as follows: 

- Low pass digital to digital filters 

 

 

( 1; 1)(1; 1)( 1; 1) ( 1; 1) ( 1; 1) ( 1; 1)

( 1; 1)(1; 1)( 1; 1) ( 1; 1) ( 1; 1) ( 1; 1)

tr x t tr

d LP LP x n NnN n n n n N N

tr x t tr

d LP LP x n NnN n n n n N N

a a P T T P

b b P T T P



       



       
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
                 

  (6) 

- High pass digital to digital filters 

 
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tr y c tr

d HP HBS y n NnN n n N Nn n
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

      
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
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  (7) 

- Band pass to digital filters 

     

     
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d BP HBS h n n n NN n n N Nn

tr tr
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a a P T I T P

b b P T I T P
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               

               

(8) 

- Band stop to digital filters 

     

     
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                 

                 

 (9) 

In the case of converting band pass to band pass and 

band stop to band stop, there is no anti-diagonal unit 

matrix [I] in (8) and (9). In the case of a narrow band to 

digital filter, U and L are replaced by UQ and LQ in the 

matrix [Th]. 

Equations (6), (7), (8) and (9) can be described as 

general matrix equations, or Digital to Digital Filter 

Pascal Matrix Equations, which can transform a given 

digital filter (the subscript ‘g’) into a desired digital filter 

(subscript ‘d’) as follows: 
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d g g g d d

d g g g d d

a a P T T P

b b P T T P
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




                          (10) 

In (10), ag and bg are the coefficients of the given 

digital filter. Matrices [P] and [T] can be found from the 

Pascal’s triangle and their size depends on the Nth order 

of the given digital filter. The only component that needs 

to be controlled in (10) is matrix [Td]. If the parameters (c, 

t, U and L) change, the cut-off frequency of the desired 

low pass and high pass, or the upper and lower frequency 

of the band pass, band stop and narrow band will differ. 

Thus, the process design of a digital filter using the 

Digital to Digital Filter Pascal Matrix Equation will be 

easier for programing and hand calculation. 

V. DESIGN OF A DIGITAL FILTER USING THE DIGITAL 

TO DIGITAL FILTER PASCAL MATRIX EQUATION 

This section will provide some examples of 

transforming a digital to another digital filter using the 

Digital to Digital Filter Pascal Matrix Equation with 

Matlab programing. 

A. Example 1: Transforming a Low Pass Digital Filter 

to another Low Pass Digital Filter 

Transforming a 3rd-order Butterworth low pass digital 

filter with the transfer function H(z) at cut-off frequency 

fc = 200 Hz, to a low pass digital filter with cut-off 

frequency 400 Hz at the sampling frequency 1000 Hz 

(see Fig. 2), is done as follows: 
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Figure 2. Transforming a digital low pass at fc=200Hz to a digital low 
pass at fc=400Hz 

B. Example 2: Transforming a High Pass Digital Filter 

to another High Pass Digital Filter 

Transforming a 3rd-order Butterworth high pass digital 

filter with the transfer function H(z) at cut-off frequency 

fc = 200 Hz, to a high pass digital filter with the cut-off 

frequency 400 Hz at the sampling frequency 1000 Hz 

(see Fig. 3), is done as follows: 
1 2 3

1 2 3

0.2569 - 0.7707 0.7707 - 0.2569
( )

1 0.5772 0.4218 0.0563z

z z z
H z

z z

  

  




  
 

 
 

0.2569 -0.7707 0.7707 -0.2569

1 -0.5772 0.4218 -0.0563
g

g

a

b

 



 

200
cot tan 1.3764

1000

400
tan tan 3.0777

1000

c

s

cn

n

s

f
c

f

f
t

f

 

 

   
     

  
   

     
  

 

From (7): 

 
1 3 3 1
1 1 1 1

0.2569 -0.7707 0.7707 -0.2569
1 1 1 1
1 3 3 1

0 0 0 2.6075 0 0 0 1
0 0 1.8944 0 0 0 3.0777 0
0 1.3764 0 0 0 9.4721 0 0
1 0 0 0 29.1522 0 0 0

1 3 3 1
1 1 1 1

2.0553 -6.166 6.166 -2.0
1 1 1 1
1 3 3 1

d
a

 
   


  
   

   
   


   
      
 
   

 
  
   

 553

 

 
1 3 3 1
1 1 1 1

1 -0.5772 0.4218 -0.0563
1 1 1 1
1 3 3 1

0 0 0 2.6075 0 0 0 1
0 0 1.8944 0 0 0 3.0777 0
0 1.3764 0 0 0 9.4721 0 0
1 0 0 0 29.1522 0 0 0

1 3 3 1
1 1 1 1

113.5606 199.8713 134.3300 31
1 1 1 1
1 3 3 1

d
b

 
   


  
   

   
   


   
      
 
   

 
  
   

 .5766

 

1 2 3

1 2 3

2.055 - 6.166 6.166 - 2.055
( )

113.6+199.9 134.3 +31.58z
d

z z z
H z

z z

  

  





 

 

Figure 3. Transforming a digital high pass at fc=200Hz to a digital high 

pass at fc=400Hz 

©2017 Int. J. Sig. Process. Syst.

International Journal of Signal Processing Systems Vol. 5, No. 2, June 2017

86



C. Example 3: Transforming a Band Pass Digital Filter 

to a Narrow Band Pass Digital Filter 

Transforming a 2nd-order Butterworth band pass 

digital filter with the transfer function H(z) with lower 

frequency fL = 100 Hz and upper frequency fU = 300 Hz, 

to a narrow band pass digital filter with Q = 50 and 

central frequency f0 = 200 Hz (see Fig. 4), at a sampling 

frequency of 1000 Hz is done as follows: 
2

1

0.4208 0.4208
( )

1 0.4425 0.1584

z
H z

z








 
 

 
 

300
cot cot 0.7265

0.4208 0 0.4208 1000

1 0.4425 0.1584 100
tan cot 0.3249

1000

U

U

g s

g L

L

s

f
c

a f

b f
t

f

 

 

    
            

                

 

200
0.9511 cot 68.8191

1 1000
200

0.4253 tan 36.3271
1 1000

U

Q

U L

L

Q

U L

c
U U Q

c t
t

L L Q
c t





   
        

 
         

 

From (8): 

 

 

0 1.0515 0 1 0
0 1.6832

1 0 36.3271 0 68.8191

1 2 1
1 0 1 1.6832 0 1.6832
1 2 1

d
a    

      
 

     
  

 

 

 

0 1.0515 0 1 0
1.6008 1.6832

1 0 36.3271 0 68.8191

1 2 1
1 0 1 178.6686 -109.383 175.3022
1 2 1

d
b    

      
 

    
  

 

2

1 2

1.683 1.683
( )

178.7 109.4 175.3
d

z
H z

z z



 




 
 

 

Figure 4. Transforming a digital band pass with fL=100Hz and 
fU=300Hz to a digital narrow band pass at f0=200Hz, Q=50. 

D. Example 4: Transforming a Band Stop Digital Filter 

to a Notch Digital Filter 

Transforming a 2nd-order Butterworth band stop 

digital filter with transfer function H(z), lower frequency 

fL = 100 Hz and upper frequency fU = 300 Hz, to a notch 

digital filter with Q = 50 and central frequency f0 = 200Hz 

at a sampling frequency of 1000 Hz (see Fig. 5) is done 

as follows: 
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Figure 5. Transforming a digital band pass with fL=100Hz and 
fU=300Hz to a digital Notch filter at f0=200Hz, Q=50. 

VI. CONCLUSION 

A new method was provided for transforming and re-

transforming between any low pass digital filter with 

transfer function Hg(z) and another digital filter with 

transfer function Hd(z). The method can be applied to 

transform a given digital filter into any other digital filter 

(low pass, high pass, band pass, band stop or narrow 

band). The involvement of the Pascal’s triangle in the 

Pascal matrix and inverse Pascal matrix equations, as 

demonstrated in the examples, simplifies hand calculation 

and computing when transforming a digital filter in the z-

domain. The features of the matrices [P] and [T] are very 

helpful for finding the inverse matrix, which is not easy 

to do with the larger matrix size. The algorithm for this 

converse and inverse method is very simple because all 

operations employ matrix multiplication, so it is more 

effective for programming and calculation. 
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