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Abstract—The ISAR imaging algorithm has depend on the 

mathematical model of the observation process, and the 

inaccuracies in the observation model may cause the model 

errors. In this paper, ISAR imaging is regarded as a 

narrow-band version of the Computer Aided Tomography 

(CT), where the phase errors in ISAR data are treated as 

model errors. Based on the inherent sparsity of targets in 

the imaging area, the ISAR imaging joint with phase 

adjustment is represented by a sparse signal reconstruction 

problem, which is set up as an optimization problem in a 

Sparse Bayesian Learning (SBL) framework. Owing to the 

superiority of the SBL, we employ an expansion-

compression variance-component based method (ExCoV) to 

reconstruct the target’s scattering coefficients and correct 

the phase error alternately via the maximum likelihood 

estimation. The numerical simulation results show the 

effectiveness of this novel method for various types of phase 

errors, which can produce a relatively well-focused image of 

the target and obtains the improvements over existing 

techniques for model error compensation in ISAR.  

 

Index Terms—ISAR imaging, computer aided tomography, 

phase error correction, sparse Bayesian learning, ExCoV 

 

I. INTRODUCTION 

As a widely used remote sensor, the radar can obtain 

high resolution images of non-cooperative moving targets 

at long distance. Due to the advantages of robust 

performance under all-weather circumstance and high 

probability of target recognition, the Inverse Synthetic 

Aperture Radar (ISAR) is a candidate tool in many 

military and civilian applications, such as the air/space 

surveillance and the aircraft traffic control. However, the 

traditional imaging algorithms based on match filter, 

usually suffer from the low resolution and high sidelobes. 

Lots of high resolution ISAR imaging algorithms have 

been proposed to deal with such problem. Recently, there 

has been significant and increasing interest in addressing 

the sparse signal reconstruction in Radar imaging [1]. In 

particular, based on the sparse of signal, the Compressive 

Sensing (CS) has been extensively studied and 

successfully applied in ISAR image reconstruction [2]. 

The ISAR imaging model can be represented by the 

tomography [3], which is in light of the Computer Aided 

Tomography (CT) imaging technique [4], [5]. The word 

tomography, which means reconstruction from slices and 
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the turntable targets imaging formula based on the 

projection-slice theorem. Under the CT frame, the ISAR 

image formation can be represented by an inverse 

problem. CS has emerged as a promising technique to 

solve the inverse problem in ISAR imaging. Based on the 

echo of radar signal is parsimonious, the scatter 

coefficients of target can be recovered from the high-

dimensional through a low-dimensional projection. 

However, the solution of inverse problems in ISAR 

imaging requires the use of precise mathematical model 

in the observation process and these techniques based on 

CS theory rely on the assumption that there has no 

residual phase error in the processed data. In ISAR 

imaging, the relative motion between the radar and target 

can be decomposed into translational and rotational 

motions, but only the rotational motion of the target 

contributes to the formation of the Doppler spectrum. The 

rotational motion-induced errors cause the phase errors, 

which are main reasons for model uncertainties. For most 

of the Range Doppler (RD) or CS-based ISAR imaging 

algorithm [6]-[8], the translation motion is presumed to 

be perfectly compensated. However, such uncertainties 

often result the phase errors and suffer the undesired 

artifacts in the formed ISAR image, then the autofocus 

techniques are developed for solve this type of problem. 

The conventional autofocus techniques, such as map-

drift autofocus [9], Phase Gradient Autofocus (PGA) [10] 

and Minimum-Entropy Method (MEM) [11], which 

based on the observation mathematical model in ISAR 

are accurate and belong to the post-processing approaches. 

Although these autofocus techniques are simple to 

implement and computationally efficient, they usually 

suffer from high sidelobe levels which visually smears 

the target signature and cannot be easy integrated into the 

CS framework to estimate the phase error and obtain the 

high focus target ISAR image. 

According to the Geometrical Theory of Diffraction 

(GTD) theory [12], for high-resolution images at high 

frequencies, the scattering responses of an object can be 

well approximated as a sum of responses from individual 

reflectors, and the echo of the ISAR target can be 

represented by a few individual scatters, then the echo of 

ISAR targets can be formulated as a sparse signal 

representation problem [13], [14]. Various studies have 

been presented on the phase error correction in ISAR 

imaging which are considered by the sparse recover 

problems [15], [16]. These methods make use of the 
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knowledge of object sparsity, which has been shown to 

offer certain improvements over conventional imaging. 

Through it satisfies an appropriate phase error model, the 

use of sparse representation aims at the minimization of 

the 
1l -norm to reconstruct the target scatter coefficients 

[15]. Nevertheless, the 
1l -norm minimization is sensitive 

to user parameters which are typically functions of the 

noise or signal sparsity levels and require tuning. Setting 

the user parameters is not trivial and the reconstruction 

performance depends crucially on their choices [17]. To 

overcome this disadvantage, the sparse recovery scheme 

is interpreted by using the Bayesian philosophy in [18], 

however, the phase adjustment is realized by solving the 

optimization based on Hessian update scheme, which 

needs more computational cost. 

The sparse Bayesian recover algorithm employs a 

sparse prior on the signal, and estimates the parameter 

based on the Bayesian inference [18]. Moreover, the 

sparse Bayesian recover algorithm is automatic and does 

not require tuning or knowledge of signal sparsity or 

noise levels. The most popular sparse Bayesian 

approaches, include Sparse Bayesian Learning (SBL) 

[19], [20] and Bayesian Compressive Sensing (BCS) [21], 

are based on SBL model. Own to its priority, the SBL 

model is used in SAR/ISAR imaging and obtain high 

resolution radar images [8], [22]. In [23], based on the 

idea of the SBL methods, a multi-task Bayesian model is 

utilized in a hierarchical manner to the autofocused ISAR 

imaging problem and the result can produce a well-

focused ISAR image. The major shortcomings of SBL are 

its high computational complexity and large memory 

requirements, which make its application on large-scale 

data practically impossible. In this paper, we use a sparse 

Bayesian recovering algorithm named ExCoV (expansion 

compression variance-component based method) [24] to 

ISAR imaging, which generalizes the SBL model and has 

a much smaller number of parameters to estimate than 

SBL. Because of its parsimony of the probabilistic model, 

the ExCoV is typically significantly faster than SBL [24], 

[25]. Motivated by the existed methods and the sparse 

echo of ISAR under the frame of CT, we develop an 

approach of iterative ExCoV via MLE (maximum 

likelihood estimation) for the joint ISAR imaging and 

phase error correction. The proposed ExCoV-MLE 

method handles the autofocus problem as an optimization 

problem, the ExCoV-MLE method is iteratively 

minimized the cost function with respect to the target 

scatter coefficients and the phase error. Firstly, the cost 

function is minimized with respect to the target scatter 

coefficients. Secondly, the phase error is estimated by 

MLE method, which is used to update the model matrix 

and the algorithm passes to the next iteration. 

The rest of this paper is organized as follows. In 

Section 2, the sparse ISAR imaging model under the CT 

frame is introduced. The proposed method is described in 

detail in Section 3. Numerical simulations in Section 4 

compare the imaging performances of the proposed and 

existing methods. Concluding remarks and future work 

are given in Section 5. 

II. THE SPARSE ECHO OF ISAR OBSERVATION MODEL 

In this section, in terms of the projection slice theorem 

[3], [4], ISAR imaging can be regarded as a narrow-band 

version of CT under the far-field scenario. In light of the 

CT image reconstruction, the geometry of ISAR principle 

is illustrated in Fig. 1. In the following, the mathematical 

model of ISAR imaging model with the phase error under 

the CT frame is formulated. 
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u
( )r u
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Figure 1.  The tomography geometry for data collection in ISAR 

In Fig. 1, the coordinate u o v   is immobile to the 

radar and the coordinate x o y   is fixed on the target. 

The relation of two coordinate is respectively as: 

cos sin

sin cos

u x y

v x y

 

 

   


    
                      (1) 
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y u v

 

 

   


   
                       (2) 

where   is the rotation angle of target around the 

center o  from counterclockwise rotation. From Fig. 1, 

during the CPI (coherent processing interval), the 

instantaneous rotation angle of the target is defined as 

( )mt , where 
mt  is the slow time, the instantaneous 

range from the random scatter center at ( , )P x y  to radar 

is given by 
0( ) cos ( ) sin ( )m m mR t R y t x t      , 

where 
0R  is the distance from the radar to the center of 

plane. Then the instantaneous range between the point 

scatter ( , )P x y  and the reference point O  is: 

( ) cos ( ) sin ( )m m mR t y t x t                   (3) 

In ISAR systems, one of the most widely used signals 

is the linear frequency modulated (LFM) signal, which is 

often used for high resolution and a long coherent 

processing interval. In this paper, we defined the emitted 

LFM signal is: 

2
ˆ

ˆ ˆ ˆ( ) rect( ) exp[ 2 ( )]
2

c

p

t
s t j f t t

T


        (4) 

where ˆrect( / )pt T  represents the window function, pT  

denotes the pulse duration, the chirp rate is / pB T  , B  

represents the bandwidth, t̂  is the fast time and cf  is the 
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centered frequency. Then the received signal from a 

random scatter in target at a distance of R  can be simply 

written as: 

2
ˆ ˆ( , ) ( , ) ( )

R
s t x y s t dxdy

c
 


     (5)

 

where   is the integration area of reflected signals. For a 

given observation angle  , ( , )x y  is a complex 

function and models the reflectivity density of the target 

at ( , )x y  in the scattering filed. A common sense is that 

when an arbitrary target is illuminated by a radar, the 

backscattered signal will consist of the superposition of 

the returns from a multitude of scattering centers just like 

in the CT imaging. 

The relationship 
( , )line

( ) ( , )
u

r u x y ds


    is used to 

define line integral ( )r u  in Fig. 1. The relationship 

between the projection ( )r u  and the scatter ( , )x y  

can be represented as: 

( ) ( , ) ( cos sin )r u x y u x y dxdy    


       (6)
 

where ( )r u  is actually the Radon transform of ( , )x y  

along the radar line of sight  . Without loss of 

generality, in order to reduce the received effective 

bandwidth, the dechirp method is employed. After 

coherent processing, we obtain the complex envelope of 

the return echo from the target and take account of the 

phase errors as: 

0
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After mixing, low-pass filtering, it can be 

approximately obtained as follows: 

ˆ ˆ( , ) ( )exp( )exp{ ( ) }
u

s t r u j jk t u du           (8)
 

where ˆ2( ) /ck f t c   denotes the spatial frequency 

variable. From (8), it can be seen that the returned signal 

can be identified as the Fourier transform of the 

projection ( )r u , this is the core idea of projection-slice 

theorem in CT imaging. Substituting (6) into (8), the 

relationship between the object scatter reflectivity 

( , )x y  and the demodulated observed signal ˆ( , )s t   

can be represented as: 

ˆ ˆ( , ) ( , )exp( )exp{ ( )

                     ( cos sin )}

s t x y j jk t

x y dxdy

  

 


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  

         (9)
 

Supposing the ISAR works at high frequencies and 

according to the geometric theory of diffraction, the 

tomographic ISAR echo data related to (9) can be 

represented by: 

  ˆ( , ) ( , )exp( ) exp ( ) ( ) ( )
I

i m m

i

S t x y j jk t R t t     
 

(10)
 

where I  is the number of the strongest scattering centers 

in ISAR target. The noise ˆ( )t  is assumed complex 

Gaussian with power spectral density 2

  and is assumed 

to be independent for different range bin. 

We discretize the ISAR imaging area into a grid of 

uniform cells where each of the target scatters is located 

at one of cells. Based on the ISAR scene geometry and 

the data formation above, the sparse presentation model 

can be derived as follows. Let 
1M  and 

2M  denote the 

number of image grid points in the X  and Y  directions, 

1N  and 
2N  denote the number of fast time grid pints and 

the number of observing angle grid points, respectively. 

The total number of unknowns is 
1 2M M M   and the 

total number of the observed data points is 
1 2N N N  . 

For a scatter located at ( , )k lx y , the N -element steering 

vector can be written as: 

, , , 2 , 1 , 1 2[ (1,1), , (1, ), , ( ,1), , ( , )]T

k l k l k l k l k lb b N b N b N Na
 

(11)
  

where ,
ˆ( , ) exp( ( )( cos sin ))k l p k q l qb p q jk t y x      , 

11 p N  , 
21 q N  ,

1 21 ,1k M l M    . Then, the 

steering matrix can be written as: 

1 2 1 21,1 ,1 1, ,, , , , ,M M M M
   A a a a a     (12)

 

The phase error matrix is denoted by 

 1diag exp( ), ,exp( )Nj j E  and the complex ISAR 

imagery is denoted by: 

2 1 1 21 1 1 1[ ( , ), , ( , ), , ( , ), ( , )]T

M M M Mx y x y x y x y   
 

(13) 

The received radar data are stacked into the vector s , 

then the ISAR imaging mathematical model with phase 

error can be given in matrix form as 

 EA s                (14) 

where 1N s  and   represents the additive zero-mean 

complex Gaussian noise matrix. 

III. AUTOFOCUS TECHNIQUE BASED ON EXCOV-MLE 

METHOD 

The autofocus technique includes mainly two stages. 

Firstly, defining ( )i  as the counter of iteration and 

assuming the  thi  estimations are obtained, we 

alternatively optimize ( 1)ˆ i   and the phase errors ( 1)ˆ i
E  in 

the ( 1)thi   iteration. The detailed algorithm is stated as 

follows. 

A. Update the ( 1)ˆ i   by ExCoV Method [24], [25] 

We assumed the ( )ˆ i
E  is obtained, and ( ) ( )ˆ ˆi iH E A . 

The ExCoV method use the GML rule to select the best 

index set  , and the GML rule maximizes 

   ˆGML GL ,   , here the 
2 2ˆ ˆˆ ˆ( , , ( ))      

arg max In ( | )p


 s  is the ML estimate of   for given 

 , and  GL In ( | ) ( ) / 2p s     , where ( )   is 
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the Fisher information matrix (FIM) for the signal 

variance components 
  and 2 . The ( )   is defined in 

Appendix A and it can be penalizes the growth of  . 

The GML rule thereby balances modeling accuracy and 

efficiency. 

The basic idea of the ExCoV is to interleave the two 

steps that approximately maximizes GML rule, which 

contains multiple cycles. One of step is the expansion and 

compression steps with goal to find a more efficient  ; 

For a fixed  , the other step is the Expectation-

Maximization (EM) steps, thereby approximating ̂
. 

The best estimate of   and corresponding signal estimate 

obtained in the entire history of the algorithm. 

B. Update the ( 1)ˆ i
E  by Maximum Likelihood 

Estimation (MLE) 

Since no prior for phase error matrix ( 1)ˆ i
E  is available, 

the inference of ( 1)ˆ i
E  can be obtained by MLE method. 

Suppose we obtain the best estimate of ( 1)ˆ i   in ExCoV 

algorithm, the solution of elements in ( 1)ˆ i
E  can be 

formulated by minimizing the negative log-likelihood 

function as: 
2

( 1) ( 1)

2
ˆ ˆ=arg min exp( ) ,    1, ,

m

i i

m mj m M


    As (15)

 

The above problem is a convex optimization problem 

and having a closed-form solution. We set the derivative 

with respect to m  to zero (see Appendix B for details) 

and we can obtain: 

 
 

1

( 1)

1

Im ( )
ˆ arctan

Re ( )

i H H

i

m i H H












 
 
 
 

A

A

s

s
   (16)

 

We repeat the two stages above until the ExCoV-MLE 

shows no obvious improvement. 

IV. NUMERICAL SIMULATIONS 

In this section, we present several numerical 

simulation results using synthetic and electromagnetically 

calculation data to illustrate the performance of the 

proposed algorithm. Some popular methods are also 

presented. 

A. Synthetic Data Experiments 

Suppose radar transmits LFM signal with bandwidth 

1GHz and carry frequency 10GHz. The sampling number 

in fast time is 256, and the observation azimuth varies 

within 2.5 2.5 , corresponding sampling number is 

512. The imaging target is composed of 23 scattering 

centers, as shown in Fig. 2. The width of scene is 10m in 

both azimuth and range and the sampling space to 

reconstruct the sparse basis is 0.2m in both azimuth and 

range. Three different types of phase errors (sinusoidal 

errors, quadratic errors, and uniformly distributed random 

errors), are simulated. In Fig. 3, radar echoes are 

generated according to the point scattering model and 

0dB Gaussian complex noises are added. Based on CS 

theory, we randomly choose the 20 sampling point from 

the fast time and observation azimuth respectively and 

use the proposed algorithms to reconstruct the ISAR 

images. The Monte Carlo number is set by 500 and the 

iteration number in phase error estimation is set by 10. In 

Fig. 3, the reconstructed target reflection coefficients are 

given to evaluate the proposed algorithm. Among all the 

imaging results, it is seen that ExCoV-MLE method can 

obtain a well-focused and precision ISAR image in low 

SNR, although one scatter is lost in the random phase 

error scenario. 
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Figure 2.  Reflectivity distribution of simulated target 
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(a) Phase errors                     (b) The reconstructed ISAR image 

Figure 3.  ISAR imaging result with SNR=0dB 

The top figures are quadratic phase errors and the 

reconstructed ISAR image. The middle figures are the 

sinusoidal phase errors and the reconstructed ISAR image. 

The bottom figures are the random phase errors and the 

reconstructed ISAR image. In this paper, we define the 

MSE of sparse signal as the error between the 

reconstructed scatter coefficients and the true value, i.e., 

0 0
ˆ- /i   , where ˆ

i  denotes the estimate of scatter 

coefficients in the i th iteration and 
0  denotes the true 

value of scatter coefficients. We also define the MSE of 

phase errors as the error between the estimated phase 

errors and the true value, i.e., 0 0
ˆ- /i   , where ˆ

i  

denotes the estimate of phase errors in the i th iteration 
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and 
0  denotes the true value of phase errors. Fig. 4 

indicates the convergence of the proposed method at the 

SNR=0dB. As shown in Fig. 4(a) and Fig. 4(b), during 

the whole iteration process, the MSE of the sparse 

coefficient ̂  and the phase errors keep decreasing after 

each iteration. In particular, the three types of phase 

errors can converge to some extent after 10 iterations. 

These results mean that the ExCoV-MLE method is 

capable of reconstructing the target scatter coefficients 

accurately and estimating the phase errors in low SNR. 
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(a) The MSE of scatter coefficient       (b) The MSE of phase errors 

Figure 4.  Convergence of the algorithm in terms of the iteration index 

B. Electromagnetically Calculation Data Experiments 

In the real environments, most of the object scatters are 

not located in the partition grids, causing the strong 

coherence of column in sparse dictionary. To validate the 

effectiveness of ExCoV-MLE algorithm in this situation, 

the Electromagnetic data which produced by the 

electromagnetism calculation software called CST 2014 

are applied in this experiment. 

We assume that the carrier frequency of the ideal 

signal is 10GHz, bandwidth is 1GHz, and that the 

sampling number of the frequency is 201.The azimuth 

angle is from 55 to 64.02, and the sampling number is 

452. The type of the phase error is random the SNR is set 

to 3dB. As shown in Fig. 5, the measured target is a 

scaled model of F22 and its size is 9.2m 6.6m .  

 

Figure 5.  The F22 target model 

Fig. 6(a), illustrates the imaging results of FFT 

methods with the full aperture data. It can be seen that the 

defocusing phenomenon and relatively high side lobes 

occur in azimuth direction. The imaging results of sparse 

recover algorithm which using a part of sampling data are 

shown in Fig. 6(b), Fig. 6(c) and Fig. 6(d). It can be seen 

that L1 and VBSBL based method have a relative 

degraded performance, While ExCoV-MLE method can 

greatly preserve the strong scatters and provides cleaner 

image. These advantages imply that ExCoV-MLE 

method is a better choice in joint ISAR imaging with 

phase error correction. 
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(c) VBSBL                                    (d) ExCoV 

Figure 6.  The imaging results of Electromagnetic Data 

V. CONCLUSION 

Due to the imperfection of coarse motion 

compensation, the phase error correction problem is 

considered in ISAR imaging. In this paper, the sparse 

ISAR imaging model is established based on CT frame 

and an efficient ISAR imaging with phase error 

correction method has been proposed based on the 

ExCoV-MLE method. The ExCoV-MLE alternately 

corrects the phase errors during the reconstruction of 

target reflection coefficients under the ExCoV framework. 

The ExCoV scheme is automatic and demands no prior 

knowledge about signal-sparsity or measurement-noise 

levels, which is suitable for large-scale problems. The 

simulation results show the effectiveness of the proposed 

approach as well as the improvements it provides over the 

existed methods. In addition, a well-focused image could 

also be achieved even under the condition of low SNR. 

However, since the computation load is another important 

issue for real-time ISAR imaging, an adaptive and fast 

ISAR imaging algorithm based on the sparse Bayesian 

recovery method is deserved to be explored in the future. 

APPENDIX  A 

The compute of ( )   using the FIM result for the 

Gaussian measurement model 2 2ˆ ˆˆ, ,  . 
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where 1,2, ,i m  and (:, )iH  denotes the i th 

column of 
H . 

APPENDIX  B 

The cost function for phase error estimation is as 

follows: 
2
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We evaluate the norm expression and get by: 
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By taking the derivative with respect to ( 1)i

m
  and 

setting it to zero, we can obtain the result as shown in (7). 
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