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Abstract—Photophethysmography (PPG) is a technique 

used to measure and record changes in the blood volume of 

a part of the body and has become an essential tool in the 

practice of medicine because it is a non-invasive measure of 

low cost and easy implementation. The PPG signal has been 

widely used in clinical settings—emergency room, operating 

room, etc.—but reliable and accurate measurements are 

achieved only when the patient is at rest. Different indices 

for assessing the cardiovascular system can be obtained 

from the analysis of PPG signals. These indices are derived 

from the analysis of the shape of the PPG signals of patients 

at rest. When the patient moves, the shape and the spectrum 

of the PPG signal are altered. This paper presents a new 

method for the estimation of the main frequency component 

of PPG signals corrupted with motion artifacts. In addition, 

the analysis of the singular values obtained with this method 

allows to estimate the level of noise affecting the PPG signal. 

The periodicities of the noisy PPG signal can be estimated, 

simply by reconstructing the signal with its main frequency 

component and then, detect its zero crossings. The proposed 

method has a low computational cost. This article compares 

the performance of the method Singular Value 

Decomposition of the Time–Frequency Distribution 

(SVDTFD) with Discrete Wavelet Transform (DWT) and 

Ensemble Empirical Mode Decomposition (EEMD) by 

estimating the heart rate from PPG signals with motion 

artifacts produced by the continuous movement of patients. 

 

Index Terms—photoplethysmography, motion artifacts, 

singular value decomposition, short–time Fourier transform, 

discrete wavelet transform, ensemble empirical mode 

decomposition 

 

I. INTRODUCTION 

The photoelectric phethysmography, also known as 

photoplethysmography, is based on changes in the 

absorption properties of the tissue and the blood when 

illuminated by light. The interaction of the different body 

systems involved in the generation of the PPG signal is 

an active area of research and debate. 

The principle of the technique is simple. The light 

irradiated from a source (LED) is scattered, reflected and 

partly absorbed by the tissue and the blood. Part of the 

scattered radiation go through the skin and is detected by 

a photodetector. The radiation ranging between red and 
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infrared is the most used because it penetrates several 

millimeters below the surface of the skin and reaches the 

blood vessels located in the dermis. This radiation is 

partially modulated by the periodic changes in the 

volume of arterial blood, as these cause the corresponding 

dynamic changes in the absorption of the tissue being 

irradiated [1]. These variations of the PPG are attributed 

to the interaction of the arterial and venous blood with 

cardiac, respiratory and autonomous systems. The general 

consensus in the medical field is that blood pressure 

waves propagate along the arteries of the skin, locally 

increasing and decreasing the volume of blood in the 

tissues with the same frequency of the heartbeat. 

Dynamic changes in blood volume depends basically on 

the characteristics of cardiac function, the size and 

elasticity of the blood vessels and specific neuronal 

processes [2]. The intensity of the modulated light that 

reaches the photodetector generates variations in its 

output current and is assumed that these changes are 

related to changes in the arterial blood volume. 

The size and technology of this sensor makes it 

suitable for non-invasive mobile monitoring applications 

of patients. One of the major disadvantages presented by 

the use of photoplethysmography on mobile devices, is 

that PPG signals are highly susceptible to the motion of 

the patients. The motion artifacts are usually induced by 

the movement between the sensor and the skin [3]-[5]. 

This noise considerably reduces the performance of pulse 

oximeters in its various applications. The motion artifact 

reduction is not obvious because the components of the 

PPG signal and the components of the acceleration 

overlaps and also because the PPG signal is quasi-

periodic and non-stationary, making it necessary to use 

advanced signal processing techniques. Motion artifact 

reduction is an open research problem. As far as the 

authors know, the proposed techniques so far are not 

sufficiently robust to completely reconstruct the PPG 

signal while the patient is moving. 

The Singular Value Decomposition (SVD), Empirical 

Mode Decomposition (EMD), Discrete Wavelet 

Transform (DWT) and adaptive filtering methods have 

shown a very good performance in the reduction of 

motion artifacts. The SVD as has been proposed [6] has a 

low performance when the fundamental frequency of the 

PPG signal changes, and the decomposition obtained 
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depends on the level of distortion generated by the 

motion artifact. Adaptive Noise Cancellation (ANC) 

estimates the noise signal from information correlated 

with the movement of the sensor. This data is highly 

correlated with the motion artifacts, but is obtained from 

accelerometers located near the sensor [7], which is 

beyond the scope of this study. EEMD based methods 

estimates an approximation of the main frequency 

component of PPG signals with motion artifacts, but the 

performance of this decomposition directly depends on 

the number of ensembles used, which in turn increases 

the execution time of this algorithm. The DWT estimates 

the main frequency component of PPG signals with 

motion artifacts by thresholding the wavelet coefficients 

[8]. The performance of the proposed method is 

compared with DWT and EEMD by estimating the heart 

rate of patients during physical exercise. 
This article is organized as follows: Section II presents 

the SVDTFD, DWT and EEMD methods. Section III 

presents the case study. Section IV presents the 

comparison of the SVDTFD, DWT and EEMD methods. 

Finally, conclusions and future work are presented. 

II. METHODS 

A. Singular Value Decomposition of the Time-

Frequency Distribution 

The proposed method finds the Singular Value 

Decomposition (SVD) of the time-frequency distribution 

obtained with the Short-Time Fourier Transform (STFT). 

The singular value decomposition identifies and order the 

dimensions in which the data presents the highest 

variation and then finds the best approximation of the 

original data using few dimensions. The application of 

the SVD to the complex matrix given by the STFT 

decomposes the time-frequency distribution of the PPG 

signal in its higher variation components. 

1) Singular value decomposition 

Let 𝑨 be a real or complex valued matrix of size 𝑚 × 𝑛 

with 𝑚 ≥ 𝑛. The SVD of 𝑨 is a factorization of the form. 

𝑨 = 𝑼𝚺𝑽⊺                                  (1) 

where 𝑼⊺𝑼 = 𝑽⊺𝑽 = 𝑰𝒏 and 𝚺 = 𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎2). 

The matrix 𝑼 of size 𝑚 × 𝑚 consist of 𝑚 orthonormal 

eigenvectors associated with the 𝑚  eigenvalues of 𝑨𝑨⊺ 

and the matrix 𝑽 os size 𝑛 × 𝑛 consist of 𝑛 orthonormal 

eigenvectors associated with the 𝑛  eigenvalues of 𝑨⊺𝑨. 

The columns of 𝑼 are called left singular vectors of 𝑨 

while the columns of  𝑽 are called right singular vectors 

of 𝐀. The columns of 𝑼 = [𝒖1, … , 𝒖𝑚] corresponding to 

non-zero diagonal elements of 𝚺 span the range of 𝐀. The 

columns of 𝑽 = [𝒗1, … , 𝒗𝑛]  corresponding to zero 

diagonal elements of 𝚺 are a orthonormal basis of the null 

space of 𝐀. The elements 𝜎𝑖 of the diagonal of 𝚺 are the 

non–negative square roots of the eigenvalues of 𝑨⊺𝑨 and 

are called singular values. It holds that 𝜎1 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0. 

If 𝑟𝑎𝑛𝑘(𝑨) = 𝑟 then 𝜎𝑟+1 = ⋯ = 𝜎𝑛 = 0 [9]. 

The major advantages of the singular value 

decomposition are: i) The SVD transforms correlated 

variables into a set of uncorrelated variables that exposes 

the different relations between the original data. ii) The 

SVD allows to identify and order the dimensions in 

which the data show the greatest variation. iii) Finally, 

once you have identified where the most variation occurs, 

it is possible to find the best approximation of the original 

data using a few dimensions (the ones with most 

variation). 

2) Short-Time Fourier transform 

The Short-Time Fourier Transform (STFT) represents 

signals in the form of time–frequency maps of energy—

spectrograms. It is used to determine the frequency and 

phase content of a local section of a signal as it changes 

over time [10].  

The Fourier transform FFT of a continuous real 

variable signal 𝑥 is defined as: 

𝐹𝐹𝑇(𝑓) = ∫ 𝑥(𝑡)𝑒𝑥𝑝−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
                 (2) 

where 𝑡 is time, 𝑓 frequency and 𝑗 is the imaginary unit. 

This definition leads to the inversion formula of the 

Fourier transform: 

𝑥(𝑡) = ∫ 𝐹𝐹𝑇(𝑓)𝑒𝑥𝑝𝑗2𝜋𝑓𝑡𝑑𝑓
∞

−∞
                  (3) 

The STFT of a signal 𝑥(𝑡) is defined using a window 

𝑔(𝑡), as: 

𝑆𝑇𝐹𝑇𝑥
𝑔(𝑡, 𝑓) = ∫ 𝑥(𝑡′)𝑔∗(𝑡′ − 𝑡)𝑒𝑥𝑝−𝑗2𝜋𝑓𝑡′

𝑑𝑡′∞

−∞
  (4) 

The spectrogram can be associated with the energy 

density of 𝑥 at time 𝑡 and frequency 𝑓, and is defined as: 

𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚{𝑥(𝑡)}(𝑡, 𝑓) = |𝑆𝑇𝐹𝑇𝑥
𝑔(𝑡, 𝑓)|

2
       (5) 

The inversion formula of the STFT is: 

𝑥(𝑡′) = ∬ 𝑆𝑇𝐹𝑇𝑥
𝑔(𝑡, 𝑓)𝑔(𝑡′ − 𝑡)𝑒𝑥𝑝𝑗2𝜋𝑓𝑡′

𝑑𝑓𝑑𝑡
∞

−∞
   (6) 

For a discrete signal 𝑥[𝑘] , 𝑘 ∈ ℤ  with an analysis 

window 𝑔[𝑘] of length 𝐿, the STFT becomes: 

𝑆𝑇𝐹𝑇𝑥
𝑔[𝑘, 𝑙] = ∑ 𝑥[𝑘′]𝑔∗[𝑘′ − 𝑘]𝑒𝑥𝑝−𝑗2𝜋𝑙𝑘′/𝐿

𝑘′      (7) 

where 𝑘 ∈ ℤ and 𝑙 = 0, … , 𝐿 − 1. 

It is considered the case of a finite signal with N 

samples 𝑥[𝑘], 𝑘 = 0, … , 𝑁 − 1. In this case the STFT is a 

complex value matrix of size 𝑁 × 𝐿  containing 

information about the phase and the frequency of the 

signal 𝑥[𝑘]. 
The simplified inversion formula for a discrete signal 

is: 

𝑥[𝑘′] =
1

𝐿 𝑔∗[0]
∑ 𝑆𝑇𝐹𝑇𝑥

𝑔[𝑘′, 𝑙]𝑒𝑥𝑝𝑗2𝜋𝑙𝑘′/𝐿𝐿−1
𝑙=0        (8) 

The proposed method (Singular Value Decomposition 

of the Time–Frequency Distribution [SVDTFD]) consist 

of five stages: i) PPG signal filtering in the range 0.5𝐻𝑧 

to 5𝐻𝑧 . ii) Get the complex value matrix 𝑺𝑻𝑭𝑻 of the 

PPG signal, where the PPG signal is the discrete signal 

𝑥[𝑘]  in (7). iii) Decompose the matrix 𝑺𝑻𝑭𝑻  in its 

singular values (section II.A.1). iv) Reconstruct the matrix 

𝑺𝑻𝑭𝑻 as: 

𝑺𝑻𝑭𝑻̅̅ ̅̅ ̅̅ ̅̅ = ∑ 𝒖𝑖𝜎𝑖𝒗𝑖
⊺𝑁

𝑖=1                          (9) 

where 𝑺𝑻𝑭𝑻̅̅ ̅̅ ̅̅ ̅̅  is the reconstructed spectrum, 𝒖𝑖𝜎𝑖𝒗𝑖
⊺ is the 

i-th SVDTFD component and 𝑛 indicates the number of 
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SVDTFD components to be taken in the reconstruction of 

the PPG signal. 𝑛 will be called the reconstruction level. 

v) Get the filtered PPG signal by taking the inverse STFT 

(8) of the matrix 𝑺𝑻𝑭𝑻̅̅ ̅̅ ̅̅ ̅̅ . 

B. Discrete Wavelet Transform (DWT) 

The Continuous Wavelet Transform (CWT) 

decompose a continuous signal 𝑥(𝑡)  into a basis of 

translated and dilated functions called wavelets: 

𝜓𝑎,𝑏 =  
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
)                          (10) 

Provided that the signal 𝑥(𝑡) and the mother wavelet 

𝜓(𝑡) are finite energy signals, the CWT is defined as: 

𝐶𝑊𝑇(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓 (

𝑡−𝑏

𝑎
) 𝑑𝑡

∞

−∞
             (11) 

where 𝑎 is the scale factor which controls the width (or 

effective support) of the function 𝜓  and 𝑏  is the 

translation factor which controls the temporal localization 

of the function 𝜓. 

The wavelet coefficients represent the correlation 

between the wavelet and a localized section of the signal, 

and they are proportional to the inner product between the 

signal and the different wavelets 𝜓𝑎,𝑏. 

If the wavelets are generated only by integer 

translations and dilatations of the mother wavelet 𝜓(𝑡), it 

is generated a family of functions of the form: 

𝜓𝑗,𝑘(𝑡) = 2𝑗 2⁄ 𝜓(2𝑗 − 𝑘)   𝑗, 𝑘 ∈ ℤ             (12) 

where the factor 2𝑗 2⁄  holds a constant norm independent 

of the scale 𝑗 . This family of functions is called the 

wavelet expansion set. The mother wavelet 𝜓(𝑡) has an 

associated scale function 𝜙(𝑡)  and both form an 

orthonormal basis for the expansion of one-dimensional 

signals. Both functions allows to approximate a finite 

energy signal 𝑥(𝑡) as [11]. 

𝑥(𝑡) =  ∑ 𝑐𝑗0,𝑘𝜙𝑗0,𝑘(𝑡)𝑘 + ∑ ∑ 𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑡)𝑗𝑘        (13) 

where 𝑗, 𝑘 ∈ ℤ+, 𝑐𝑗0,𝑘  are the scale coefficients, 𝑗0  is the 

space of lower resolution, and 𝑑𝑗,𝑘  are the wavelet 

coefficients. 

The Discrete Wavelet Transform (DWT) decomposes 

the signal using filter banks. The filter banks consist of 

pairs of quadrature mirror filters, one a Low Pass Filter 

(LPF) and the other a High Pass Filter (HPF). This filter 

banks decompose the signal in different scales (Fig. 1). 

 

Figure 1.  DWT filter banks [8]. 

The 𝐴𝑗 are the approximated coefficients, and they are 

the output of the LPF. The 𝐷𝑗  are the detailed coefficients, 

and they are the output of the HPF [8]. 

1) DWT for motion artifact reduction 

Provided that the noisy signal 𝑥(𝑡)  is sparse in the 

wavelet domain, which is usually the case, the DWT is 

expected to distribute the total energy of the noiseless 

signal in only a few wavelet components with high 

amplitude. As a result, the amplitude of most of the 

wavelet components is attributed to noise only. The 

general procedure to reduce the noise of a signal is to 

zeroing all the detailed coefficients that are smaller than a 

threshold 𝑇  that is related to the noise level [12]. The 

most important thresholdind operators are hard 

thresholding: 

𝜌(𝑐) = {
𝑐,     𝑖𝑓 |𝑐| > 𝑇

0,     𝑖𝑓 |𝑐| ≤ 𝑇
                       (14) 

and soft thresholding: 

𝜌(𝑐) = {
𝑠𝑔𝑛(𝑐)(|𝑐| − 𝑇),     𝑖𝑓 |𝑐| > 𝑇

0,                                 𝑖𝑓 |𝑐| ≤ 𝑇
            (15) 

where 𝑐 is each wavelet coefficient and 𝑇 is the chosen 

threshold. 

C. Hilbert-Huang Transform (HHT) 

1) Empirical Mode Decomposition (EMD) 

The Empirical Mode Decomposition (EMD) [13] is an 

adaptive method that allows to analyze signals which can 

be non-stationary or from non-linear systems. It 

decomposes the signal directly in the time domain —

totally dependent on data—in oscillations of different 

frequencies. At the end of the decomposition, the original 

signal can be expressed as a sum of amplitude and 

frequency modulated signals called Intrinsic Mode 

Functions (IMF) plus a trend that can be monotonic or 

constant: 

𝑥(𝑡) = ∑ ℎ𝑗(𝑡)𝑛
𝑗=1 +  𝑟𝑛(𝑡)                   (16) 

where 𝑥(𝑡) is the noisy signal, 𝑛 is the number of IMFs, 

ℎ𝑗(𝑡) is the j-th IMF and 𝑟𝑛(𝑡) is the trend of 𝑥(𝑡). For a 

signal to be considered an IMF must satisfy two 

conditions i) The number of extrema and the number of 

zero crossings must be equal or differ at most by one. ii) 

At any time instant, the mean value of the upper and 

lower envelopes is zero. 

The second condition implies that an IMF is stationary, 

but can have amplitude modulations and changes in its 

instantaneous frequency. 

The algorithm 1 describes the principle of EMD [14]. 

Algorithm 1 EMD algorithm 

1: 𝑟0(𝑡) = 𝑥(𝑡), 𝑗 = 1 

2: while 1 = 1 do 

3:    ℎ0(𝑡) = 𝑟𝑗−1(𝑡), 𝑘 = 1 

4:    while stopping criteria do 

5:    Locate local maxima and minima of ℎ𝑘−1(𝑡) 

6:   Cubic spline interpolation to define upper and 

lower envelop of ℎ𝑘−1(𝑡) 

7:     Calculate mean 𝑚𝑘−1(𝑡) from upper and lower 

        envelop of ℎ𝑘−1(𝑡) 

8:     ℎ𝑘(𝑡) = ℎ𝑘−1(𝑡) − 𝑚𝑘−1(𝑡) 

9:     𝑘 = 𝑘 + 1 

10:   end while 

11:   ℎ𝑗(𝑡) = ℎ𝑘(𝑡) 
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12:   𝑟𝑗(𝑡) = 𝑟𝑗−1(𝑡) − ℎ𝑗(𝑡) 

13:   𝑗 = 𝑗 + 1 

14:   if 𝑟𝑗(𝑡) has only one extrema then 

15:       break 

16:   end if 

17: end while 

18: 𝑟𝑛(𝑡) = 𝑟𝑗(𝑡) 

Usually the stopping criteria is when the number of 

extrema and zero crossings are equal or differ at least in 

one, and that difference remains constant for several 

consecutive steps of the algorithm 

In some cases EMD may experience the mode mixing, 

which is presented as oscillations of very disparate 

amplitude in a mode, or the presence of very similar 

oscillations in different modes. To overcome this problem, 

it was proposed the Ensemble Empirical Mode 

Decomposition (EEMD) [15], [16]. EEMD defines the 

true IMF components (denoted as 𝐼𝑀𝐹̅̅ ̅̅ ̅̅ ) as the mean of 

the corresponding IMFs obtained via EMD over an 

ensemble of trials, generated by adding different 

realizations of white noise of finite variance to the 

original signal 𝑥(𝑡) . The algorithm 2 describes the 

principle of EEMD [16]. 

Algorithm 2 EEMD algorithm 

1:  Generate 𝑥𝑖(𝑡) = 𝑥(𝑡) + 𝛽𝜔𝑖(𝑡), where 𝜔𝑖(𝑡), 𝑖 =
     1, … , 𝐼 are different realizations of zero mean unit 

variance Gaussian noise. 

2:  Fully decompose by EMD (Alg 1) each 𝑥𝑖(𝑡), 𝑖 =

      1, … , 𝐼  getting their modes 𝐼𝑀𝐹𝑗
𝑖 , where 𝑗 =

      1, … , 𝐽 indicates the modes of 𝑥𝑖(𝑡) 

3:  𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑗(𝑡) =

1

𝐼
∑ 𝐼𝑀𝐹𝑗

𝑖(𝑡)𝐼
𝑖=1 , where 𝐼𝑀𝐹̅̅ ̅̅ ̅̅

𝑗(𝑡) is the j-

th mode of 𝑥(𝑡) 

2) Hilbert spectral analysis 

The instantaneous frequency and the local energy for 

each IMF can be derived using the Hilbert transform. 

The Hilbert transform 𝑦(𝑡)  of a function 𝑥(𝑡)  of 𝐿𝑝 

class is: 

𝑦(𝑡) =  
1

𝜋
𝑃 ∫

𝑥(𝑡)

𝑡−𝜏
𝑑𝑡

∞

−∞
                       (17) 

where 𝑃  is the Cauchy principal value of the singular 

integral. From the function 𝑥(𝑡) and its Hilbert transform 

𝑦(𝑡) it is obtained the analytic function. 

𝑧(𝑡) = 𝑥(𝑡) + 𝑗𝑦(𝑡) = 𝑎(𝑡)𝑒𝑥𝑝𝑖𝜃(𝑡)          (18) 

where 𝑗 is the imaginary unit: 

𝑎(𝑡)(𝑥2 + 𝑦2)1 2⁄ , 𝜃(𝑡) = tan−1 𝑦

𝑥
               (19) 

where the function 𝑎(𝑡)  is the instantaneous amplitude 

and the function 𝜃(𝑡)  is the instantaneous phase. The 

instantaneous frequency is: 

𝐼𝐹 =
1

2𝜋

𝑑𝜃(𝑡)

𝑑𝑡
                               (20) 

and the local energy is: 

𝐸(𝑡) =
1

2
𝑎(𝑡)2                             (21) 

3) HHT for motion artifact reduction 

The conventional EMD denoising technique identifies 

each IMF to be noise-only case or noise-signal case by 

energy level and partially reconstructs the signal using 

only the information dominant IMFs. Nevertheless the 

motion artifacts scatter on every scale so that the 

conventional approach is not capable of reducing the 

motion artifacts effectively [17]. 
A more effective denoising procedure is based on 

thresholding each IMF [12], [17]. The threshold operator 

used is soft. the i-th IMF is sliced into the segments 

ℎ𝑖(𝑍𝑗
𝑖) where the 𝑍𝑗

𝑖  represent the time interval between 

the j-th and the 𝑗 + 1 -th zero crossing [𝑧𝑗
𝑖 , 𝑧𝑗+1

𝑖 ] . The 

parameter used for the soft thresholding are the energy 

level 𝐸𝑖(𝑡) of each IMF and the range of instantaneous 

frequency 𝐼𝐹𝑖(𝑡). The j-th thresholded segment ℎ̃𝑖 of the 

i-th IMF is: 

If |ℎ𝑖(𝑟𝑗
𝑖)| > 𝑇𝑖  and 0.5 ≤ 𝐼𝐹𝑖(𝑍𝑗

𝑖) ≤ 10 then: 

ℎ̃𝑖(𝑍𝑗
𝑖) = ℎ𝑖(𝑍𝑗

𝑖)
|ℎ𝑖(𝑟𝑗

𝑖)|−𝑇𝑖

|ℎ𝑖(𝑟𝑗
𝑖)|

                     (22) 

in any other case ℎ̃𝑖(𝑍𝑗
𝑖) = 0 , where ℎ𝑖(𝑟𝑗

𝑖)  is the 

amplitude of the extremum of each time interval 𝑍𝑗
𝑖  and: 

𝑇𝑖 =  √𝐸𝑖 × 𝜏𝑡ℎ𝑟 ,                           (23) 

III. CASE STUDY 

This section discusses the different levels of 

reconstruction obtained with the SVDTFD method 

applied to PPG signals of patients at rest and in 

continuous movement. This is done by varying the 

number of SVDTFD components 𝑛 used in the spectrum 

reconstruction of the PPG signal (9). The signals of 

patients at rest and walking correspond to the testing 

phase of the project “Sistema de Vigilancia de Eventos de 

Pacientes Ambulatorios en Riesgo Cardiovascular” 

developed in the center of excellence ARTICA in 

cooperation with the faculties of medicine and 

engineering of the Universidad de Antioquia. The signals 

of patients during physical exercise were obtained of 

TROIKA [18]. 

A. Singular Value Decomposition of the Time-

Frequency Distribution 

The parameters of this method are the same as those of 

STFT: i) Analysis window. ii) Length of the window. iii) 

Overlapping. 

1) Analysis of PPG signals without motion artifacts 

For a noiseless PPG signal, the SVDTFD obtains the 

main frequency component of the signal and its 

harmonics. Fig. 2 shows the singular value for each 

SVDTFD component of the matrix 𝑺𝑻𝑭𝑻  of a healthy 

patient at rest. 

As can be seen from Fig. 2, the first 6  SVDTFD 

components account for 93% of the total variance of the 

PPG signal. The first SVDTFD component account for 

50%  of the total variance of the signal, and it is 

equivalent to the heart rate of the patient. Fig. 3 shows the 

reconstructed signal (solid line) by varying the number of 
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SVDTFD components 𝑛  in (9). The dotted-dashed line 

represents the original PPG signal. 

 

Figure 2.  Singular values of a noiseless PPG signal. 

 

Figure 3.  Different reconstruction levels of a noiseless PPG signal with 

the SVDTFD. a) First SVDTFD component 𝑛 = 1.b) 1 and 2 SVDTFD 

components 𝑛 = 2. c) 1 to 3 SVDTFD components 𝑛 = 3. 

As can be seen from Fig. 3, the first SVDTFD 

component 𝑖 = 1  corresponds to the main frequency 

component of the PPG signal (heart rate). Each of the 

following SVDTFD components (𝑖 ≥ 2) correspond to a 

harmonic of the PPG signal. The first 4  SVDTFD 

components account for 85% of the variance of the PPG 

signal, which is enough to analyze the PPG signal. Since 

all PPG signals are different, is proposed to reconstruct 

any noiseless PPG signal with the first 𝑛 = 4 SVDTFD 

components, which account for at least the 80% of the 

total variance of the signal. 

With noiseless PPG signals, this method acts as a filter 

that retrieves the main components of the PPG signal. 

Remember that PPG signals are quasi-periodic and non-

stationary, which makes that the frequency components 

and the phase of the signal changes over time. SVDTFD 

is able to take into account those changes and adapt to 

them. It follows that the reconstructed PPG signal for 

each level of reconstruction is in phase with the original 

PPG signal (Fig. 3). 

2) Analysis of PPG signals with motion artifacts 

When the PPG signal is corrupted with motion artifacts, 

this method establishes the noise level contaminating the 

signal and finds its main frequency component. The 

following analysis want to show the variation of the 

singular values of each SVDTFD component according to 

the noise level contaminating the PPG signal. Fig. 4 

shows the singular value of each SVDTFD component of 

the matrix 𝑺𝑻𝑭𝑻  of a healthy patient in continuous 

motion (walking at normal pace). 

 

Figure 4.  Singular values of a PPG signal with moderate motion 
artifacts. 

In Fig. 4 can be noticed that the variance contributed 

by the first 7 SVDTFD components is 93%. The variance 

accounted for the first SVDTFD component is 35.5%. 

When moderate motion artifact occurs in the PPG signal, 

the variance of the first component is reduced compared 

to the same signal in a range without motion artifacts, 

while the variance of the SVDTFD components from 2 to 

4 increases. Remember that the nature of the motion 

artifacts is random, therefore its power contribution at 

each frequency is also random. Through the analysis of 

signals of walking patients it is concluded that the power 

contribution of moderate motion artifacts at each 

frequency are higher for the frequency components 2 and 

3 of the PPG signal. The foregoing agrees with that the 

movements with acceleration between 0.7Hz and 2.5Hz 

affect the PPG signal [7]. Fig. 5 shows a segment of the 

signal under study and its first reconstruction level 𝑛 = 1. 

The solid line represents the reconstructed signal and the 

dotted-dashed line represents the original PPG signal. 

 

Figure 5.  First reconstruction level of the PPG signal of a healthy 

patient in moderate continuous movement. 
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Fig. 6 shows the singular values for a signal corrupted 

with intense motion artifacts (patient during physical 

exercise), the variance contributed by the first 13 

SVDTFD components is 93%. The variance accounted 

for the first SVDTFD component is 28%. 

 

Figure 6.  Singular values of a PPG signal with intense motion artifacts. 

Fig. 7 shows a segment of the signal under study and 

its first reconstruction level 𝑛 = 1. 

 

Figure 7.  First reconstruction level of the PPG signal of a healthy 
patient during physical exercise. 

As the movement of the patient increases, the variance 

of the principal components of the PPG signal decreases 

and the variance of the others components increases. This 

behavior occurs because as the patient movement 

increases, the power and the frequency range of motion 

artifacts also increase. 

B. Discrete Wavelet Transform 

The parameters of DWT are: i) The Threshold 

selection rule 𝑇𝑃𝑇𝑅. ii) The thresholding operator (soft 

or hard). iii) The Wavelet decomposition level 𝑁. iv) The 

Mother wavelet. The parameters used are: i) Universal 

threshold. ii) Soft thresholding operator. iii) 𝑁 = 4. iv) 

Daubechies 44 [19]. This parameters were selected from 

the analysis of the signals in Section III.A. Thresholding 

wavelet coefficients allows to find the main frequency 

component of PPG signals, but the reconstructed signal is 

out of phase with the original. 

C. Hilbert-Huang Transform 

The parameters of EEMD are: i) The amplitude of the 

added white noise 𝛽. ii) The number of ensembles 𝐼. iii) 

The value of the multiply parameter 𝜏𝑡ℎ𝑟. The parameters 

used are: i) β=0.28 . ii) I=30 . iii) τthr=0.18 . This 

parameters were selected from the analysis of the signals 

in Section III.A. IMF thresholding allows to find the main 

frequency component of PPG signals, but the 

reconstructed signal is out of phase with the original. A 

higher number of ensembles improves the filtering, but 

the execution time becomes prohibitive. 

IV. COMPARISON OF THE METHODS SVDTFD, DWT, 

EEMD FOR THE ESTIMATION OF THE HEART 

RATE DURING PHYSICAL EXERCISE 

The comparison of the SVDTFD, DWT and EEMD 

methods for the reduction of motion artifacts consist in 

estimating the heart rate (𝑏𝑝𝑚) from the PPG signal of a 

patient during physical exercise. The analysis was made 

from PPG signals of 11 people in continuous movement. 

During data recording, each subject ran on a treadmill 

with changing speeds. The running speeds changed as 

follows: at rest for 30s, at 6km/h  for one minute, at 

12km/h  for one minute, at 6km/h  for one minute, at 

12𝑘𝑚/ℎ for one minute, at rest for 30s. The sensor used 

was a bracelet. The heart rate values are calculated in 

windows of 8𝑠 length. Two successive windows overlap 

by 6s . The signals used for the comparison of the 

methods were obtained from TROIKA [18]. 

The performance measures normally used for this type 

of estimates are: 

 The Average Absolute Error (AAE) measured in 

𝑏𝑝𝑚 and is defined as: 

𝐴𝐴𝐸 =
1

𝑁
∑ |𝐵𝑃𝑀𝑒𝑠𝑡(𝑖) − 𝐵𝑃𝑀𝑡𝑟𝑢𝑒(𝑖)|𝑁

𝑖=1         (24) 

where 𝑁 is the number of estimates. 

 The Average Absolute Percentage Error (AAEP) 

is defined as: 

𝐴𝐴𝐸𝑃 =  
1

𝑁
∑

|𝐵𝑃𝑀𝑒𝑠𝑡(𝑖)−𝐵𝑃𝑀𝑡𝑟𝑢𝑒(𝑖)|

𝐵𝑃𝑀𝑡𝑟𝑢𝑒(𝑖)
𝑁
𝑖=1             (25) 

Table I shows the average absolute error for each 

signal and each method. Table II shows the average 

absolute percentage error for each signal and each 

method  

TABLE I.  AVERAGE ABSOLUTE ERROR IN THE ESTIMATION OF THE 

HEART RATE 

Patient SVDTFD(𝑏𝑝𝑚) DWT(𝑏𝑝𝑚) EEMD(𝑏𝑝𝑚) 

1 24.03 21.92 19.68 

2 21.64 16.89 23.16 

3 7.26 10.70 13.78 

4 1.03 1.74 17.36 

5 5.75 10.45 6.89 

6 0.57 2.61 6.92 

7 3.61 8.32 12.63 

8 2.02 5.00 6.07 

9 19.87 18.13 62.82 

10 5.10 4.96 41.17 

11 15.57 16.05 25.52 

Mean±std 8.87±8.88 9.73±7.19 19.67±17.47 
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As can be seen from Table I and Table II, the 

SVDTFD method has the highest performance and the 

EEMD method has the lowest performance. In some 

cases the error in the estimate exceeds the 15%, because 

for certain movements the motion artifacts obscures the 

heart rate information of the PPG signal. 

TABLE II.  AVERAGE ABSOLUTE PERCENTAGE ERROR IN THE 

ESTIMATION OF THE HEART RATE 

Patient SVDTFD(%) DWT(%) EEMD(%) 

1 20.33 19.42 16.04 

2 16.83 13.70 16.48 

3 6.35 9.63 10.00 

4 0.76 1.33 11.09 

5 5.11 9.42 5.71 

6 0.44 2.25 4,82 

7 3.34 6.92 9.63 

8 2.12 5.06 4.97 

9 11.94 10.81 38.18 

10 3.55 3.45 25.29 

11 11.54 11.95 16.65 

Mean±std 6.86±6.76 7.83±5.74 13.24±10.43 

V. CONCLUSIONS 

This paper presented a simple method to find the main 

frequency components of PPG signals by means of the 

singular value decomposition of the time-frequency 

distribution given by the STFT. When the PPG signal is 

corrupted with motion artifacts, the first SVDTFD 

component corresponds with the main frequency 

component of the PPG signal (heart rate). 

The application of the method was presented for 

signals of healthy patients at rest, walking and during 

physical exercise. It is concluded that the singular values 

given by the proposed method allow to analyze the state 

of motion of the patient. The time variation of the 

singular values are correlated with the changes in the 

frequency components of the PPG signal generated by 

motion artifacts. 

A comparison was made with the DWT and EEMD 

methods, using them to estimate the heart rate from PPG 

signals registered during physical exercise of the patient. 

When comparing the SVDTFD with the other two 

methods, it was found that the SVDTFD has the benefit 

of finding the main frequency component of PPG signals 

corrupted with motion artifacts by only reconstructing the 

signal with the first SVDTFD component. The DWT and 

the EEMD need to threshold its components, which 

introduces an extra parameter. 

The results obtained in the estimation of the heart rate 

during physical exercise, allows to conclude that the 

SVDTFD method outperformed the DWT and EEMD 

methods. 

VI. FUTURE WORK 

Future work includes: i) To analyze if the SVDTFD is 

applicable to other signals. ii) To obtain the heart rate 

variability from patients in continuous movement with 

SVDTFD. iii) To analyze the performance of SVDTFD in 

the measurement of the 𝑆𝑝𝑂2 by individually filtering the 

red and IR signals when motion artifacts occurs. 
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