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Abstract—Subband techniques have been developed to use 

low order subfilters instead of full band higher order filters 

and consequently reduce the complexity and increase the 

convergence speed of the adaptive algorithm. In this paper 

the performance of two delayless subband adaptive 

algorithms for identification of an unknown system in an 

active noise control scheme are compared. This is carried 

out by using a common speech signal as the excitation input 

for identification of the secondary path model. The 

performances of the algorithms are measured in terms of 

the achieved minimum mean square error and 

misalignment error. The results are also compared to the 

time domain NLMS algorithm. The compared delayless 

structures are working in the closed loop form with DFT 

analysis filterbanks. Adaptation in the auxiliary loop and 

with help of weight transformation eliminates signal path 

delay and hence the unknown secondary path can be 

modelled accurately. 
 

Index Terms—Active Noise Control (ANC), delayless 

subband adaptive filter, frequency domain adaptive filter 

 

I. INTRODUCTION 

Increase in the number of industrial equipment has 

made acoustic noise a major problem in modern societies. 

Although these are traditionally handled by using passive 

techniques like enclosures, barriers and silencers they are 

large, costly and ineffective at low frequencies. To 

overcome these shortcomings active noise control has 

been proved to be a viable technique. 

 

Figure 1.  Single channel active noise control. 
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A basic block diagram of the ANC system is shown in 

Fig. 1. The reference signal u(𝑛) is fed to the adaptive 

filter by the reference microphone. Error microphone 

receives the superposition of primary noise from the 

noise source through unknown plant and secondary noise 

through the canceling loudspeaker. The residual noise 

shown as 𝑒(𝑛) in Fig. 1 is used to update the weights of 

the adaptive filter [1]. Based on the principle of 

superposition the primary noise 𝑑(𝑛) is canceled by the 

secondary noise of equal amplitude but opposite phase 

[2]. In most of real active noise control systems not only 

the primary noise has a non-stationary nature but also the 

surrounding environment is time varying and prone to 

change [3]-[5]. This necessitates development of an 

adaptive mechanism to cope with these two types of 

changes. One of the commonly used adaptive algorithms 

to update the filter coefficients in ANC systems in the so 

called Filtered-x Least Mean Square algorithm (Fx-LMS). 

In case that the incident noise is highly correlated and 

non-stationary it is shown that filtered-x LMS algorithm 

performs poorly [6]. On the one hand increase in the 

length of the adaptive filter results in increase in the 

complexity of the system, increased level of minimum 

mean square error, and reduction in convergence speed of 

the Least Mean Square (LMS) algorithm. On the other 

hand, FxLMS algorithm has limited capability in tracking 

non-stationary signals and its stability robustness is 

subject to changes based on the accuracy of the estimated 

model of the secondary path [7]-[9]. To be able to address 

the problems with respect to inaccuracies of the 

secondary path online identification of secondary path is 

proposed [10]-[12]. Using robust control approaches is 

proved to be effective in dealing with uncertainties in the 

secondary path [13], [14]. To improve the convergence 

speed of the filtered-x algorithms RLS-based approaches 

is proposed [15], [16]. Introduction of IIR filters and fast 

array implementation of the RLS algorithm will reduce 

computational complexity of the algorithm substantially 

[17], [18]. Another approach to overcome the above 

mentioned problems with respect to the properties of the 

incident noise is to use subband signals. The frequency 

contents of the subband signals concentrate on the 

frequency range corresponding to the passband of the 

analysis filter [1]. Further downsampling of subband 
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signals results in reduced spectral dynamic range. At the 

same time the length of the adaptive filters in subband 

techniques is shorter allowing larger step sizes to be used 

and again increase the convergence rate. 

Early approaches in subband structures relied on 

overlapping filterbanks and critical subsampling [19]. 

However, it resulted in aliasing components in the output. 

In [20], non-overlapping filterbanks were introduced but 

it resulted in spectral gaps. Subband structure based on 

the polyphase decomposition is introduced in [21]. 

Filterbank structures with critical sampling of subband 

signals with sparse subfilters have been discussed in [22]. 

It results in better convergence behavior. In [23], adaptive 

filtering in subbands has been discussed for 

computational savings and better convergence rate. 

Adaptive cross filter between the subbands have been 

employed for the perfect reconstruction. Adaptive 

filtering at a lower decimation rate, due to subband 

processing, reduces the computational complexity. Also, 

the reduction of spectral dynamic range in each subband 

leads to faster convergence. However, the main anomaly 

of such kind of algorithm is the delay introduced in the 

signal path due to bandpass filters in the subband used to 

derive bandpass signals. The structure developed in [24], 

reduces the delay significantly. Here adaptive weights are 

calculated in subband domain and then collectively 

transformed into the full band filter coefficients. An 

additional advantage of this technique is reduction in the 

aliasing effects. An improvement of this structure by 

introducing the fractional delays in the polyphase 

component of the prototype filter is proposed in [25]. 

This eliminates the need for adaptive cross filters and 

hence the unknown system is modeled more accurately in 

a closed loop scheme. 

In this paper the problem of identification of secondary 

path in ANC systems using delayless subband adaptive 

filtering is investigated. To avoid injection of auxiliary 

noise in ANC applications it is highly desirable to 

identify the secondary path using the existing music or 

speech signals. Due to the non-stationary nature of these 

signal adaptation of filter weights is challenging task. 

Here the performances of two adaptive subband filters for 

such applications in terms of speed of convergence, 

achievable minimum mean square error, and 

computational complexity are compared. The remainder 

of the paper is organized as follows. In Section II, the 

structure of the delayless frequency domain adaptive 

system identification is introduced. Different weight 

transformation schemes and computational complexity of 

different algorithms are compared in Section III. 

Simulation results are presented in Section IV and finally 

concluding remarks are given in Section V. 

II. DELAYLESS FREQUENCY DOMAIN ADAPTIVE 

FILTERING 

The block diagram of the delayless frequency domain 

active sound control system is shown in the Fig.2. The 

adaptive filter W(z) is implemented directly in the time 

domain to avoid delay caused by collecting N samples. 

The convolution is performed by multiplication in the 

frequency domain. It is to be noted that although full 

band filter weights is in the time domain all the filter 

updating is performed in the frequency domain. In Fig. 1 

P(z) in the block diagram represents the transfer function 

from the noise source to the error source. Convolution of 

the reference signal x(n) with the primary path impulse 

response, gives the desired signal d(n). The length of the 

primary adaptive filter is L. The reference signal in the 

secondary path is decomposed into subband signals by 

using polyphase FFT. A DFT filter bank, is constructed 

from the K length prototype filter by modulation. The 

analysis filters of an M-channel DFT filter bank are 

obtained as:  

𝐻𝑖(𝑧) = 𝐻(𝑧𝑒−𝑗2𝜋𝑖/𝑀), 𝑖 = 0,1, . . . 𝑀 − 1         (1) 

here, H(z) is the real valued prototype low pass filter with 

a cutoff frequency of π/M. Shifting of low pass filters to 

the right by the multiples of 2π/M gives the complex 

modulated bandpass filters. The impulse response 

coefficients of 𝐻𝑖(𝑧)  and 𝐻𝑀−1(𝑧)  are complex 

conjugates of each other. Therefore, for real valued 

signals only the first M/2+1 subbands need to be 

processed. The pseudo error signal is also decomposed 

into number of subbands using the same DFT filter bank 

as above. Here, e(n) is the residual noise from the error 

sensor. The weight adaptation is applied on the subfilters 

using the subband signals 𝑢𝑖,𝐷(𝑘) and 𝑒𝑖,𝐷(𝑘). A subband 

regressor 𝑢  for the subfilters 𝑤𝑖(𝑘)  of length 𝑀𝑠 , is 

defined as follows:  

𝑢𝑖(𝑘) ≡ [𝑢𝑖,𝐷(𝑘), 𝑢𝑖,𝐷(𝑘 − 1), . . . 𝑢𝑖,𝐷(𝑘 − 𝑀𝑠 + 1)]𝑇  (2) 

for i=0,1,...,M-1, where D=M/2 is the decimation factor. 

Each column of u holds a subband regression vector. The 

use of FFT to decompose the signals into subbands leads 

to significant amount of computational savings; however, 

it introduces circular convolution and circular correlation. 

This can be further nullified by overlapping of input 

samples.  

 

Figure 2.  Delayless active sound control using subband. 

Delayless subband system eliminates the signal path 

delay caused by the analysis and synthesis filter banks. 

The fullband filtered reference signal and the pseudo 

error signal is decomposed into number of subbands 
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using analysis filters in the DFT filterbanks. All the 

subband signals are downsampled by the decimation 

factor 𝐷. Subband weight adaptation is done by closed 

loop feedback mechanism. The fullband error signals are 

fed to subband adaptive filters which finally converges to 

optimal Weiner solution. The filter weights in each 

subband are adjusted using complex normalized LMS 

algorithm defined as: 

𝑤𝑖(𝑘 + 1) = 𝑤𝑖(𝑘) +
𝜇𝑢𝑖

∗(𝑘)

‖𝑢𝑖(𝑘)‖2 𝑒𝑖,𝐷(𝑘)             (3) 

here, 𝜇 is the step size for the adaptation algorithm. Its 

value affects the convergence speed, steady state error 

and stability of the adaptive filter. The subbands adaptive 

weight vector of 𝑚𝑡ℎ subband are defined as: 

𝑤𝑚(𝑛) = [𝑤𝑚0
(𝑛) 𝑤𝑚1

(𝑛). . . 𝑤𝑚𝑃−1
(𝑛)]𝑇        (4) 

These weights are then transformed from subband to 

fullband by weight transformation scheme. The filter 

weights are transformed into frequency domain by 𝑀𝑠 

point FFT; this results in 

𝑊(𝑘) = 𝐹𝐹𝑇[𝑊(𝑘)] = [𝑊0(𝑘) 𝑊1(𝑘). . . 𝑊𝑁−1(𝑘)]𝑇  (5) 

where 𝑤𝑖(𝑘)  is the subband adaptive weights. These 

weights are properly stacked and then inverse 

transformed every 𝑁 samples to get the wide band filter 

coefficients [1].  

𝑤(𝑘) = 𝐼𝐹𝐹𝑇[𝑊(𝑘)]

= [𝑤(𝑘𝑁 − 1)𝑤(𝑘𝑁 − 2) … 𝑤(𝑘𝑁 − 𝑁)]𝑇  (6) 

III. DIFFERENT WEIGHT TRANSFORMATION SCHEMES 

The weight transformation is greatly dependent on the 

characteristics of the analysis filter bank used for the 

subband decomposition. Two different weight 

transformation schemes are explained below. 

A. Frequency Sampling Method [25] 

In this method DFT filterbank consists of complex 

modulated bandpass filters. As the subband signals are 

complex valued, subband adaptive weights are also 

complex valued. Weight transformation maps the 

complex subband tap weights into an equivalent set of 

real valued full band tap weights. The weight 

transformation consists of the following steps: 

1. For the first M/2+1 subbands the weight vectors are 

transformed by the FFT to obtain Ms DFT coefficients for 

each subband. 

2. The DFT coefficients obtained above are stacked to 

form the first L/2 points of an L element vector from 

index 0 to L/2-1. It is completed by setting L/2th point to 

zero and then using the complex conjugate values from 

index 1 to L/2-1 in reversed order. The inverse FFT of the 

L element vector gives the fullband tap weights. 

The frequency stacking rules are listed as follows:  

1. For 𝑙 ∈ {0; 𝐿/2 − 1}, 𝑊(𝑙) = 𝑊𝑝(𝑞) , where 𝑊(𝑙) 

and 𝑊𝑝(𝑞)  denote the FFT coefficients of the fullband 

filter and the 𝑝𝑡ℎ  subband filter, respectively; 𝑝 =
[𝑙𝑀/𝐿]  where [.] denotes the rounding towards the 

nearest integer; and 𝑞 = 𝑙2𝐿/𝑀 , where 𝑎𝑏  denotes a 

modulus b.  

2. For 𝑙/𝐿/2, 𝑊(𝐿/2) = 0 

3. For 𝑙 ∈ {𝐿/2 + 1; 𝐿 − 1}, 𝑊(𝑙) = 𝑊(𝐿 − 1)∗.  

B. DFT Filter Bank with Fractional Delays [26] 

Weight transformation for critically decimated 

subband adaptive filtering can be done by using DFT 

filterbank by using lowpass prototype filter as 𝑀th band 

filter. Analysis DFT filter bank with fractional delays can 

be obtained by using last polyphase component as 

𝐸𝑁−1(𝑧) = 𝑧−Δ𝑖𝑛𝑡  where Δ𝑖𝑛𝑡  denotes the integer part of 

the delay. Also, the length of the adaptive subfilters needs 

to be increased by one sample for accurate modelling of 

the unknown system. The subband tap weights to full 

band weight transformation can be done through the 

following steps: 

1. Compute an 𝑁 point IFFT on each of 𝑀𝑠 columns of 

the matrix formed by impulse response of the adaptive 

subfilters 𝑊𝑖(𝑧). This result gives the impulse response 

of the fractionally delayed polyphase component 

𝐺𝑖
′(𝑧) = 𝐺𝑖(𝑧)𝑧𝑖/𝑁 , where 𝐺0(𝑧), . . . , 𝐺𝑁−1(𝑧)  are the 

polyphase component of the fullband filter 𝑊(𝑧). 

2. Take 𝐺0(𝑧) = 𝐺0
′ (𝑧) , for the first polyphase 

component. For the consequent components the impulse 

response of 𝐺𝑖
′(𝑧) is convolved with the fractional delay 

𝐸𝑖−1(𝑧) as: 

𝐺𝑖(𝑧)𝑧−(𝛥𝑖𝑛𝑡+1) = 𝐺𝑖
′(𝑧)𝐸𝑖−1(𝑧)                (7) 

3. Discard the first polyphase component, discard the 

last sample and for the subsequent samples discard the 

first Δ𝑖𝑛𝑡 + 1 samples and retain the next 𝑀𝑠 − 1 samples. 

The fullband filter can be constructed from these 

polyphase components as: 

𝑊(𝑧) = ∑ 𝐺𝑖

𝑁−1

𝑖=0

(𝑧𝑁)𝑧−1                          (8) 

The computational complexity of the delayless 

subband structure can be divided into these parts: 

 Filter bank operations 

 Subband weight adaptation 

 Fullband filtering 

 Weight transformation 

TABLE I.  COMPUTATIONAL COMPLEXITIES OF CLOSED LOOP DELAYLESS SUBBAND ADAPTIVE FILTER STRUCTURE 

Sections Morgan and Thi Merched et al. 

Filter bank operations 4(
𝐾

𝑀
+ 𝑙𝑜𝑔2𝑀) 2(

𝐾

𝑀
+ 𝑙𝑜𝑔2𝑀) 

Subband weight adaptation 16
𝐿

𝑀
 4(

𝐿

𝑀
+ 1) 

Fullband filtering 𝐿 𝐿 

Weight transformation [2𝑙𝑜𝑔2 (
2𝐿

𝑀
) + 𝑙𝑜𝑔2𝐿] 𝐽  [(1 +

𝑀

𝐿
) 𝑙𝑜𝑔2 +

𝐾(𝑀 − 1)

𝑀2
] 𝐽 
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The detailed breakdown of computational requirements 

of two weighting transformation schemes is listed in 

Table I. In both algorithms by increase in the number of 

subbands delayless structure impose less computational 

burden. Besides, computational complexity for Merched 

algorithm [25] is less than Morgan algorithm [26]. In 

Table I, K is length of analysis filterbanks, M is number 

of subbands, L is length of fullband filter, and J is the 

value ranges from 1 to 8. 

IV. SIMULATION RESULTS 

Simulations were done in MATLAB to verify the 

performance of the proposed delayless subband 

identification algorithm. Two different types of signals 

were used as the excitation signal to identify the 

secondary path. Speech signal with sampling frequency 

of 16KHz was considered for this purpose. The reason for 

selection of this signal type is that, unlike white noise, 

speech signal can be sent through the secondary 

loudspeakers in an integrated audio and ANC system 

without disturbing the listeners. This aids to avoid 

injection of auxiliary annoying noise during the operation 

of system. Further to that it is worthy to note that this 

signal has a non-stationary nature that makes adaptive 

identification of secondary path a challenging task. The 

plot of spectrum of speech signal in Fig. 3 shows that the 

energy of the signal is mostly concentrated around lower 

frequencies. 

 

Figure 3.  Single sided amplitude spectrum of speech. 

The primary and secondary path transfer functions P(z) 

and S(z) are chosen as the state space models identified 

using the techniques described in [27]. These models are 

then transferred into respective transfer functions. The 

reference signal x(n) in Fig. 2 is subjected to polyphase 

FFT in a block of 1024 samples in each iteration. The 

prototype low pass filter used to achieve DFT filterbank 

has the order of 255. It has passband edge frequency at 6 

KHz and cutoff frequency of π/8. The band pass filters in 

the subbands are the frequency shifted version of the 

prototype low pass filter. The length of the full band 

adaptive weight vector is 1024. M=32 subbands filter 

bank is used with each subband having 8M weight 

vectors. The value of the stepsize µ has been set 

differently for different structures. For Merched et al., it 

has been set to 0.3, however, the stepsize for Morgan 

structure is set to be 0.2 for the speech signal. Step sizes 

are chosen such that fastest possible response is achieved 

before the adaptive algorithm goes unstable. 

 

Figure 4.  Convergence in terms of mean square error (in dB): Speech 

(Merched vs NLMS). 

 

Figure 5.  Convergence in terms of mean square error (in dB): Speech 

(Morgan vs NLMS) 

The minimum mean square error of the identification 

error after convergence of the adaptive algorithms for the 

speech signal compared to the time-domain NLMS 

algorithm are plotted in Fig. 4 and Fig. 5. The advantage 

of using the subband structure is that one achieves a 

faster convergence rate compared to full band NLMS 

scheme. In the open loop structure MSE is high as the 

fullband error signal is not minimized. Therefore, it is 

significantly reduced by closed loop subband structure. 

To compare the algorithms in terms of the speed of 

convergence the normalized misalignment calculated as 

the norm of the adaptive weight vectors below: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = 20𝑙𝑜𝑔10
‖𝑤(𝑘)−𝑏‖

‖𝑏‖
   (9) 

where 𝑏 is the optimum weights. The learning curves for 

both algorithms by plotting the normalized misalignment 
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in front of speech signal are shown in Fig. 6. The results 

are compared with respect to the time-domain NLMS 

algorithm. As can be seen Merched algorithm performs 

much better than the two others in terms of achievable 

minimum mean square error and speed of convergence. 

 

Figure 6.  Normalized misalignment learning curves for the speech 
signal. 

V. CONCLUSION 

Analysis and synthesis filter banks are essential parts 

of the subband adaptive filtering. However, they tend to 

increase the overall signal path. In this paper, the 

performances of two frequency domain delayless 

adaptive filters for identification of the secondary path in 

an ANC system are compared. Two common types of 

audio signals, i.e. music and speech signals are used for 

this purpose. Simulation results show that due to the 

wideband and non-stationary nature of such signals 

commonly used time-domain NLMS algorithm will fail 

to give an accurate result. Nevertheless, among subband 

algorithms Merched is performing significantly better 

than the others both in terms of convergence speed and 

achievable minimum mean square error. This is due to 

the fact that the use of fractional delay in the weight 

transformation scheme will cancel aliasing effects in 

subbands. It is also proved that this algorithm is less 

computational complex than the others. 
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