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Abstract—The calibration process of the EMG input system 

is often not straightforward because it requires knowledge 

of muscle anatomy. The lack of a guide makes it difficult for 

untrained users to perform the calibration. This paper 

proposes a systematic method for identifying muscles in the 

lower forearm for EMG input for a control system. 

Palpation was used on a single subject to identify the major 

muscles and their locations. A coordinate system was then 

used to record the positions of the muscles. Seven major 

muscles which are considered robust to electrical 

interference and skin shift were identified, and their 

coordinates recorded. 

 

Index Terms—palpation, EMG, human machine interface, 

synthetic system 

 

I. INTRODUCTION 

EMG is commonly used as an input for machine 

control. In the category of machine control, the EMG has 

been widely applied as a control signal for prosthesis for 

amputees [1]. For able bodied operators, EMG provides 

an alternative input for teleoperation of robots and 

machines [2] and [3]. Regardless of the end application of 

EMG, the underlying reason behind EMG is to provide a 

method of input to a computing system. In relation, EMG 

has also been explored as a wearable input interface for 

computing devices [4] and [5]. 

Traditional HMI such as joysticks, buttons and levers 

have provided reliable input. However, in cases where the 

operator needs to be mobile and hands-free, these input 

methods may not be optimal. With the development of 

sensors and software, surface Electromyography (EMG) 

is emerging as a potential alternative to traditional HMI. 

Over the last decades, EMG has gained a lot of attention 

since it is a non-invasive interface. Since EMG signals 

are electrical signals harvested from the contraction of 

muscles, the operator can be free from physical control 

the machines. 

                                                           
Manuscript received August 13, 2015; revised December 7, 2015. 

Despite the development of algorithms to decode and 

process EMG signals, the quality of the raw input signal 

remains an important issue. The EMG signal is 

physiological in nature and thus, subjected to subject 

variation [6]. Variations can take place as difference in 

size and origin-insertion points of muscles, and the 

characteristics of the EMG signal it produce. As a result, 

the procedure of calibrating an EMG input system is 

often not as straight-forward as desired. A system created 

for a single user can take up to 30 minutes of calibration 

[2]. Precision also comes at a cost. While it is possible to 

obtain precise control from individual fingers, the setup 

requires placement of up to 10 electrodes, some laid over 

deep muscles [7]. Pronation and supination causes 

considerable shift to muscle locations of the thumb and 

extensor indicis [8]. 

II. METHODOLOGY 

An operator of the EMG interface will need an 

intimate anatomic knowledge of the muscular system if 

he were to do his own setup. The setup procedure is 

impractical for real-world applications such as a machine 

operator in a manufacturing environment, or an electronic 

product consumer. In this case, this user would desire a 

wearable sensor device that is simple to setup and robust 

to ambient electrical noise. Therefore, we aim to address 

the problem by designing an EMG sensing sleeve that 

targets major muscles which are less prone to rotation 

shift, and minimize the number electrodes, while 

maximizing the usable muscle area. 

It is worthwhile to look into the aspect of the muscles 

that are responsible for the EMG signals. The main 

objective of this work is to identify and discriminate the 

muscles in the forearm. The approximate location of the 

muscles in the forearm was recorded with a coordinate 

system introduced in [9]-[11]. The benefit of marking the 

muscles by a coordinate system is two-fold. First, users 

with little anatomic knowledge can perform the electrode 

placement setup and calibration quickly, and second, the 
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muscle locations recorded with the coordinate system can 

be used to construct a wearable sensor device.  

Emphasis was placed on identifying the center and end 

of the muscle bulk, as it will give the highest EMG signal. 

Gestures that were studied include flexion and extension 

of the wrist, ulnar and radial deviation of the wrist, and 

flexion and extension of fingers and thumb, shown in Fig. 

1. Muscles that shift during pronation and supination are 

considered complex and therefore not viable for simple 

EMG electrode placement. Thus, the focus of the 

experiment is to determine the muscles that are 

significant, and thus easy to identify. 

 

Figure 1.  Gestures made by muscles of the lower forearm. 

There are 15 muscles in the human forearm [12]. From 

a mechanical viewpoint, the human forearm is 

redundantly over-actuated. For example, there are five 

muscles that flex the wrist. In practice however, over-

actuation provides additional strength to the action. 

For the experiment, a healthy, male subject was 

examined. First, palpation was used in conjunction with 

muscle contraction. The subject was asked to perform 

gestures while the muscles were palpated. The area of 

skin where the muscle bulks most during the action 

represents the muscle belly.  

A coordinate system to map the muscle locations was 

specified where the forearm was segmented with a grid. 

The place where the corresponding muscle showed the 

most contraction was marked. Fig. 1 shows the grid with 

the optimum locations of the FCU, FCR and FDS 

muscles. There are two reference points that were defined, 

also shown in Fig. 2(a) and Fig. 2(b). The first is an 

origin defined by a center line that is defined as the 

midpoint of the medial and lateral epicondyle, which 

intersects with the midpoint of the ulna-radius styloid. 

The size of each grid is 2cm×2cm. Since the skin 

stretches during action, a second stationary reference 

point is required. This point is defined by the olecranon 

point of the elbow, and its location is (6, -1) from the grid 

origin. The grid was established when the forearm is in a 

supinated position, which is accepted as neutral in 

anatomy sense. Fig. 3(a) shows the amount of skin shift 

in neutral position, while Fig. 3(b) shows further 

deviation during forearm pronation. The skin and 

underlying muscles closer to the elbow are less prone to 

shifting during rotation. 

  
(a)                                           (b) 

Figure 2.  Location of the grid (a) origin and reference point (b). 

 
(a) 

 
(b) 

Figure 3.  Deviation of the forearm skin in neutral (a) and pronated 

position (b). 

Wet electrodes were used to acquire the resulting EMG 

waveforms during the six gestures. The gestures were 

performed with the wrist in neutral position, pronation 

and supination. The signals were recorded with the GW 

Instek GDS 2104A digital storage oscilloscope and 

Matlab was used to reconstruct the signals. 

III. RESULTS 

A total of seven significant muscles has been found by 

palpation. Tendons will slide while muscles will bulk 

while muscles will be more apparent with load. These 

muscles are larger and do not shift considerably during 

pronation and supination of the forearm. Although FPL 

and APL can be found by palpation, they were found to 

shift during pronation and supination. Therefore, 

electrode placement cannot be considered to be robust. 

The PLG, FDS, EDM, EPL and EI muscles that control 

the thumb, index finger and little finger are difficult to 

distinguish by palpation. This is because these muscles 

are anatomically proximate to each other. Moreover, 

thesemuscles have origins in the middle of the ulna and 

radius, which shifts under the skin layer during pronation 

and supination of the forearm.  
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TABLE I.  RESULTS OF PALPATION AND MUSCLE COORDINATES 

Muscles not prone to 

shift during rotation of 

the forearm, α 

Significant 

Muscles affected 
by rotation of the 

forearm, β 

Muscles 

insignificant to 

palpation, γ 

FDS (3,6) FPL (-1,6) PLG insignificant 

FCR (3,2) APL (-4,6) FDP  (3,6)*(FDS) 

FCU (2,2)   EDM Insignificant 

EDT (-3,3)   EPL (-4,6)*(EPB) 

ECRL (-2,1)   EXI insignificant 

ECRB (-2,1)*(ECRL)   EPB (-4,6)*(EPL) 

ECU (-4,1)     

 

All major muscles and their coordinates are listed in 

Table I. These coordinates were found to be in agreement 

with [13]. The algorithm of gesture can be generally 

defined as G = (α+β+γ) where G is the action while α, β 

and γ are the muscle groups, as defined in Table I. 

Therefore, the algorithm of the gestures associated to all 

forearm muscles can be defined in (1). The “+” sign is a 

logical OR operator. 

G =   

(1) 

We define the gesture of Hand_open and Hand_close 

in (2) as a function of the fingers and thumb. 

                 (2) 

In addition, since the ECRL and ECRB are physically 

close to each other and essentially similar function-wise, 

we combined their functions in (3). This simplifies the 

number of variables and also increases the surface area of 

the muscles. 

ECR = ECRL + ERCB                        (3) 

The complexity of the equations can be reduced if the 

muscles defined in β and γ are omitted with elimination 

defined as Y={G|G(α\β\γ)}, or simply Y={α}. This yield 

to: 

(4) 

As a result, we have defined six gestures that are 

potentially easier to harvest and also robust to rotation. 

The gestures are listed in Table II. 

TABLE II.  GESTURES THAT POTENTIALLY PRODUCE GOOD EMG 

SIGNALS 

Hand Open  
Wrist Flex 

Hand Grasp 
Wrist Extend 

Wrist Abduct Wrist Adduct 

 

From the table, there are six major actions that can be 

classified without major deviations due to muscle shift 

caused by rotation of the forearm. Due to the larger 

usable area of the muscles, we expect the design of the 

EMG sleeve to be simpler. In addition to the six major 

actions, it is possible to expand the range of actions by 

defining several actions with signals tapped from a single 

channel. Kim et al. has shown that signals from a single 

channel can be utilized to define up to four actions [3].  

A biopotential amplifier circuit, shown in Fig. 4 has 

been developed in order to acquire the EMG signals. The 

circuit was designed to have a gain of 650 and a bandpass 

region of 20-700Hz. The EMG signals were recorded 

with a Digital Storage Oscilloscope (DSO) and later 

reconstructed with Matlab. 

 

Figure 4.  EMG sensing circuit. 

The proposed grid layout was tested for signal fidelity 

of the gestures when forearm rotation is introduced. A 

sample of wrist adduction (radial deviation) recorded 

over the FDS at location (2, 2) is shown in Fig. 5. 
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Figure 5.  Result of EMG signals during wrist rotation test. 

A visual observation shows that general maintained 

fidelity during the pronation and supination. This shows 

that the targeted muscle was still above the electrode even 

during wrist rotation. However there is some minor 

variation in term of the amplitude of the EMG signal, and 

its baseline noise. The same trend was observed over the 

other muscles in the test. The measured RMS in the 

individual channels is provided in Table III. 

TABLE III.  RMS AMPLITUDE OF WRIST FLEXION 

Position RMS (V) 

Neutral 0.1174 

Pronated 0.0793 

Supinated 0.0648 

 

Although the proposed electrode grid showed general 

robustness during rotation, crosstalk is still an issue. Fig. 

6 shows the EMG recording for wrist extension acquired 

over the EDT muscle. Although the gesture of wrist 

extension is due to the extensor muscles, some EMG 

signals are picked up in the flexor muscles. However, 

crosstalk is completely responsible for the signal 

duplication. In reality, the flexor and extensor muscles 

work in an agonist-antagonist pair. Most gestures require 

contraction of both muscles to maintain position. 

 

Figure 6.  Crosstalk of EMG signals during wrist extension. 

Fig. 7 shows the EMG result of radial deviation. 

Although the muscle activity appears to be crosstalk, 

close inspection will reveal that the signals across the 

channels are not entirely identical, suggesting there 

indeed is muscle activity. For the radial deviation, we 

expected dominant muscle activity in the radialis muscles, 

however, the data showed almost equal. 

 

Figure 7.  Crosstalk of EMG signals during wrist extension. 

IV. CONCLUSION AND FUTHER WORKS 

This paper proposes a method for locating muscles for 

surface EMG harvesting, which we hope will simplify the 

calibration process of an EMG input system. A grid 

system was used and the major muscles were found. We 

were able to define six gestures that we consider robust to 

noise and muscle shift.  

The test results show that EMG distortion due to 

pronation and supination can be generally avoided with 

the proposed guidelines. However crosstalk between 

channels cannot be averted because the surface EMG 

acquisition method covers a large area and EMG signals 

can be picked up easily from nearby muscles. The main 

issue found in this research is that a gesture can be a 

result of more than one muscle in contraction. 

Future research will be directed to studying the cause 

and effects of crosstalk, and how it can be minimized. A 

larger sample of users will be used, with use of test 

equipment. If the muscles defined by the coordinate 

system are repeatable for other users, then we can explore 

the possibility of realizing a wearable sensor device for 

multiple users. 

NOMENCLATURE 

Flexor Capri Radialis (FDS), Flexor Capri Ulnaris 

(FCU), Flexor Digitorum Superficialis (FDS), Palmaris 

Longus (PLG), Flexor Pollicis Longus (FPL), Flexor 

Digitorum Profundus (FPL), Extensor Capri Radialis 

(ECRL), Extensor Capri Brevis (ECRB), Extensor 

Digitorum (EDT), Extensor Digitorum Minimi (EDM), 

Extensor Capri Ulnaris (ECU), Abductor Pollicis Longus 

(APL), Extensor Pollicis Longus (EPL), Extensor 

Pollocis Brevis (EPB), Extensor Indicis (EXI), proximal, 

middle and distal phalanx of finger <P,M,D>, metacarpal, 

proximal and distal phalanx of thumb <T,P,D>. 
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