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Abstract—To address the problem that fuzzy kernel speaker 

voice recognition method sensitive to outlier and noise as 

well as slow training, a Kernel-function based Possibilistic 

Fuzzy Vector Quantization (KPFVQ) was proposed. The 

method combines typical possibilistic clustering of fuzzy C-

mean, thus suppressing the sensitivity. It also uses kernel 

mapping for vector quantization and match decision on 

voice features in the high-dimensional feature space. The 

characteristic differences among different samples were 

emphasized so that it is easier to distinguish voice and voice, 

voice and noise. The experiment results show that the 

proposed algorithm in the paper can achieve better 

recognition effect both to relatively clean voice and that with 

noise. Its training speed improves greatly as the voice length 

increases, which can achieve the real-time effect.  

 

Index Terms—kernel method, fuzzy C-mean, vector 

quantization, speaker voice recognition 

 

I. INTRODUCTION 

As a biometric authentication technology, speaker 

recognition has broad application prospect in many fields. 

The Vector Quantization (VQ) technology plays a very 

important role in speaker recognition as an efficient data 

compression and encoding method. [1]. However, the 

traditional VQ based on hard clustering strictly divides 

sample feature vectors into regulated class, while 

ignoring varying degrees of overlap between feature 

vectors. In recent years, the Fuzzy C-Means (FCM) 

method based on software division was applied to 

speaker recognition [2], [3]. It introduces uncertainty 

thought through membership function to implement 

effective extension of hard clustering algorithm. Using 

FCM method, the quantization error of code can be 

reduced, the recognition performance of which is 

significantly improved compared with conventional 

methods. However, the above two methods have not 

optimize sample features but directly perform clustering 

with features. Effectiveness of these methods largely 

depends on sample distribution, which plays no effect on 

non-hyper sphere data as well as variety noise pollution 

data. At the same time, the voice feature distribution is 

too complicated to determine its specific structure in 

advance. Therefore, the above clustering algorithms 

cannot accurately describe complex speaker voice 

features. Subsequently, Lin et al. [4] introduced kernel 
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method and fuzzy C-mean clustering into speaker 

recognition. It mainly addressed to term recognition. The 

Fuzzy Kernel Vector Quantization method (FKVQ) used 

Mercer kernel function to map data in mode space into 

high-dimensional space to expand difference among 

features [5]. In this way, complicated speaker voice 

feature can be accurately classified and the recognition 

rate can be improved. After all, FKVQ is based on FCM, 

so it only gets local optimal classification results. In 

addition, it needs normalized constraints on fuzzy 

membership function. The computation complexity 

increases, which limits its applications. The typical idea 

in Possibilistic C-Means (PCM) relaxed constraints on 

sample membership, so it has advantages in the 

processing of outlier and noise data [6]. 

The paper uses improved hybrid C-means clustering, 

namely Possibilistic Fuzzy C-Means (PFCM) that 

combined FCM and PCM for vector quantization design. 

It both takes closely linked membership of sample data 

on feature center into account and considers typical of 

features. The combination of these two not only 

decreased sensitivity to initial value, but also suppressed 

effect on outlier and noise [7]. In addition, kernel learning 

method is likely to achieve better VQ result on 

complicated voice structure. The computation of 

parameters in the high-dimensional space may also be 

simplified. The paper aims at replacing traditional K-

means with kernel-based possibilitic fuzzy C-means 

clustering. It is organized as follows: Section 2 gives VQ 

method based on possibilitic fuzzy C-mean; Section 3 

performs simulation experiment on proposed method and 

analyzes results; Section 4 concludes our work. 

II. VECTOR QUANTIZATION BASED ON POSSIBILITIC 

FUZZY C-MEAN 

A. Kernel Function Method 

In the PFCM, Euclidean distance is used to compute 

ij j iD x v   between gravity vector iv  and voice 

sample vector jx . However, the Euclidean distance is not 

sufficient to describe distance measure of vector 

quantization in the complicated environment. The paper 

uses kernel function to compute ijD .  

Set 1 2{ , , , }NX x x x  as a limited data set in the 

input space Rd; xj is a d-dimensional vector. With non-
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linear mapping ( )  , the input mode space is mapped 

into a high-dimensional feature space H. 
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So the right side of (2) can be rewritten as: 
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B. Possibilitic Fuzzy C-Mean Vector Quantization 

The vector quantization just replaces traditional K-

mean with possibility fuzzy C-mean clustering based on 

kernel function. Expand PFCM algorithm mentioned 

above to high-dimensional space, thus the objective 

function of Kernel-function based Possibilistic Fuzzy C-

Means (KPFCM) can be obtained as: 
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where, m and p are fuzzy weight; a>0, b>0; C is number 

of classes and N is total number of samples;   is a 

constant. In the initialization, there is: 
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where: 
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   T  as typical value matrix, ij C N

u
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as fuzzy membership matrix, ij C d
v
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   V  as central 

vector matrix, where: 
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It can be seen from constraints in (8) that the 

membership of the j-th cluster in xj is related to that of 

other C-1 cluster centers. The iju  shows compatibility of 

xj on the j-th cluster; ijt  is possibility that xj belongs to the 

j-th cluster, which is independent with that xj belongs to 

other C-1 clusters but related to expression of the j-th 

cluster. Thus, the contribution of each sample to every 

cluster can be highlighted. The dissimilarity between 

noise and outlier on each cluster is marked as small 

typical value, the effect of which on cluster can be greatly 

decreased. The first part of objective function in (6) is to 

seek for optimal cluster that impacted by initial state less 

but likely to be affected by noise or outlier. The second 

part of (6) seeks for inherent clusters impacted by initial 

constraints. The combination of two parts will optimize 

the clustering. 

Compute the minimum value of (6) about 
iju , 

ijt  and 

ijv  in turn, there are: 
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As the (11) cannot compute directly, multiple ( )T

iv  

to both sides so that it can be rewritten as: 
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In order to obtain codebook with speaker voice feature, 

estimate central vector of each cluster with (13) after 

clustering. 
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The specific steps for VQ codebook estimation are as 

following: 

Step 1: Initialization. Fix value of a, b, c, m and p, 

where 0a  , 0b  , 1n c  , m  , 1p  . Set initial 

loop value r=1 and maximum loop number as 
maxr . 

Compute value of   with (7) and set V(0) as initial 

cluster center. 

Step 2: The loop steps include: 

(a) Update membership matrix ( )rU with (9). 

(b) Update typical value matrix ( )rT  with (10). 

(c) Update ( , )j iK x v  with (12). 

(d) Add r. 

The loop ends until condition ( ) ( 1)r r   T T  or 

maxr r  is met. 
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Step 3: Compute cluster center using (13) and set it as 

the codebook after estimation. 

C. Speaker Recognition Method 

After obtained training codebook with above algorithm, 

conduct vector quantization on test feature vector 

sequence in the high-dimensional space to compute 

average quantization error as: 
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where, 2 ( ( ), ( ( ))j iD x v r   is the distance of the i-th 

codebook between feature vector xj and the r-th speaker.  

After computation completed, the speaker 

corresponding to codebook with minimum average 

quantization error will be regarded as the recognition 

result. 

1
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r R
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 
                       (15) 

III. SIMULATION EXPERIMENT AND RESULT ANALYSIS 

The experiment data uses ELSDSR voice database [8]. 

There are 23 persons for text-independent speaker 

recognition. Among them, 10 are girls and 13 are boys. 

Each speaker records 8 times. A voice segment of once 

record was selected as training voice and remaining for 

recognition. Firstly, the voice data was conducted 

endpoint detection. The obtained signal is then for pre-

emphasis and Hamming window processing. The pre-

emphasis factor is 0.95; window bandwidth is 256 

sampling points; window shift 80 sample points. The 12-

dimensional Mel Cepstral and its first-order dynamic 

cepstral are extracted, totally 24 dimensions. The first one 

is removed and the remaining 23 dimensions used as 

feature parameters of speaker. 

A. Effect of Outlier and Noise on System Performance 

There are outlier and noise in the voice samples 

inevitably. In order to verify processing of KPFCM on 

outlier and noise in the vector quantizing, the experiment 

was conducted. Firstly, the X10 in 2-dimensional X12 was 

clustered [9], [10], which is a two-dimensional dataset 

with 12 data points. Then, X12 was clustered after added 

noise X11(0, 0) and X12(0, 10). Compare change of cluster 

center before and after clustering, the result is shown in 

Table I. It can be seen that the algorithms all arrive at 

good cluster centers without affect from outlier and noise. 

Added noise data, the cluster centers shifts. The shift of 

KPFCM is the less than that of Fuzzy Kernel C-Means 

(FKCM) and PFCM. 

The membership and typical value of noise is shown in 

Table II. Because of constraints of membership 

normalization in FKCM, two noise points are assigned 

same large value. These two algorithms assign 

corresponding typical value in accordance with 

contribution of sample on cluster result. Two isolated 

noise points have little effect on clustering result, which 

were given small typical values. The sample point 

12 (0,10)X  farther away from vector center is given less 

typical value. The KPFCM algorithm just assigns small 

typical value to noise points. It is inevitably there is noise 

and isolated points in the voice data, so it is impossible to 

make difference only depends on membership, which 

cannot achieve good recognition result. The vector 

quantization algorithm based on KPFCM, namely 

KPFVQ has better performance in respect to effect from 

noise. 

TABLE I.  CLUSTER CENTER OF X12 

Algorithm 
Central Vector 

X10 X12 

FKCM (-3.34, 0)(3.34, 0) (-2.98, 0.54)(2.98, 0.54) 

PFCM (-3.34, 0)(3.34, 0) (-3.00, 0.49)(3.00, 0.49) 

KPFCM (-3.34, 0)(3.34, 0) (-3.13, 0.4)(3.23, 0.4) 

TABLE II.  MEMBERSHIP AND TYPICAL VALUE OF X11 AND X12 

Noise 
FKCM PFCM KPFCM 

U U T U T 

X11 (0.5, 0.5) (0.5, 0.5) (0.012, 0.012) (0.5, 0.5) (0.010, 0.010) 

X12 (0.5, 0.5) (0.5, 0.5) (0.004, 0.004) (0.5, 0.5) (0.002, 0.002) 

B. Training Time Comparison 

A major advantage of KPFVQ is that its training time 

is significantly shorter than that of vector quantization 

based on FKCM, abbreviated as KFVQ. The 2-15s voice 

segments were selected for comparison. The computer 

CPU is Pentium 4 2.4GHz; memory 2GB. The MATLAB 

R2007b was used for simulation. Experiment result is 

shown in Fig. 1. It is seen that the training time of KFVQ 

is significantly longer than that of KPFVQ. It is 

inseparable of algorithm features. When KFVQ falls into 

local optimum, its search efficiency will extremely 

decline and training time significantly increase, while the 

training time of KPFVQ just only slightly increases. 
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Figure 1.  Training time of KFVQ and KPFVQ with different voice 
length. 

C. Comparison of Different Recognition Methods 

In order to examine the impact of kernel function on 

system performance, compare the proposed method 

KPFVQ and Possibilistic Fuzzy Vector Quantization 
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(PFVQ) without kernel function. The codebook capacity 

takes 8, 16, 32 and 64. The error recognition rate curve of 

two methods under different codebook is shown in Fig. 2. 

It can be seen that the KPFVQ can get lower error rate 

under different codebook compared with PFVQ. It 

indicates that the introduction of kernel method enlarge 

distinguishing of speaker characteristics, thus improving 

system performance. 
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Figure 2.  Error recognition rate comparison between KPFVQ and 
PFVQ. 

Then the error recognition rate between KFVQ and 

KPFVQ were compared. Training data with 23 speakers 

was used. The codebook capacity is 16 and training 

speech length is 3-12 seconds. The split method was used 

in the beginning. The parameters were set as follows: 

m=0.15, p=1.15, a=6, b=1, e2=5.5. The experiment result 

is shown in Fig. 3. It can be seen that the proposed 

method KPFVQ can obtain lower rate than KFVQ both in 

short voice and long voice. It is because KPFVQ 

combines advantages of fuzzy clustering and possibilistic 

clustering. The connection between central codebook and 

samples was considered. Meanwhile, the typical idea is 

introduced to avoid impact of bad samples on training. 
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Figure 3.  Error recognition rate comparison between KPFVQ and 

KFVQ. 

D. Comparison of Different Methods under Noise 

Environment 

The error recognition of speaker recognition system 

under noise environment was compared using PFVQ, 

KFVQ and KPFVQ. The training conditions are same as 

above experiments beside voice segment to be recognized 

added 45dB Gaussian noise. The parameters were set as 

follows: m=1.15, p=1.05, a=1, b=6, e2=7.5. The 

recognition result is shown in Fig. 4. Compared with the 

former experiment, the impact of noise on algorithm can 

be decreased by adjusting typical of parameter 

enhancement algorithm. However, PFVQ cannot achieve 

this target, the error recognition rate of which is 

extremely high when the noise increases. 
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Figure 4.  Error recognition rate comparison among PFVQ, KFVQ and 
KPFVQ under noise environment. 

IV. CONCLUSION 

The paper proposed a hybrid C-mean vector 

quantization speaker voice recognition method based on 

kernel and possibilistic fuzzy clustering. With simulation 

experiments, the capability to deal with noise and outlier 

was studied. It is found that KPFVQ has lower sensitivity 

to noise and outlier. The system error recognition rate can 

be decreased and training time greatly reduced. It can be 

seen that KPFVQ has better performance in the 

application of speaker recognition, which is more suitable 

for actual system than fuzzy kernel vector quantization 

method. Although KPFVQ mapped feature vector into 

high-dimensional space to enhance distinguish, the 

selection of kernel function depends on experiments or 

experiences. Therefore, how to determine kernel function 

in accordance with data distribution of speakers is our 

research focus in the future. 
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