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Abstract—Although lattice reduction aided decoding 

improves the decoding performance, it has a performance 

gap to Maximum Likelihood (ML) decoding increasing with 

the lattice dimension. In view of this, efficient suboptimal 

decoding algorithms that can narrow the gap are desirable. 

In this paper, an efficient Best-First Derandomized 

Sampling (BFDS) decoding algorithm is proposed to achieve 

near optimal performance. The existing DS algorithm 

recently proposed adopts breadth-first search and a 

probability threshold pruning strategy to generate the 

candidate lattice point list, without making full use of 

sampling probabilities. Different from the existing DS 

algorithm, the cumulative sampling probability, which is the 

product of sampling probabilities of each sampled integer, is 

taken into account to generate a list by best-first search 

strategy, which brings complexity reduction compared to 

the existing DS algorithm without performance loss. 

Moreover, to enhance the performance, statistical properties 

of the cumulative sampling probability are considered to 

build candidate list instead, which yields better performance. 

It is shown that the proposed BFDS algorithm has much 

lower complexity compared to the known DS algorithm 

without performance loss. In addition, the further improved 

algorithm considering statistical information outperforms 

those without considering statistical information.  
 

Index Terms—lattice reduction, derandomization sampling, 

lattice decoding 

 

I. INTRODUCTION 

Multi-Input Multi-Output (MIMO) system with 

multiple antennas at transmitter and receiver has been 

adopted in wireless communication systems, which can 

break through Shannon capacity limit of single-input 

single-output system and exponentially increase the 

capacity of communication system. Decoding for MIMO 

system can be considered as the Closest Vector Problem 

(CVP) [1]-[3] whose worst-case complexity increases 

exponentially with the lattice dimension, such as 

Maximum Likelihood Decoding (MLD) realized by 

Sphere Decoding (SD) [4]-[7] in MIMO system. 

In order to reduce the complexity, suboptimal 

algorithms for solving CVP, such as Linear Decoding 

(LD) and Successive Interference Cancellation (SIC) 

algorithms have been widely adopted, which suffer from 

inferior performance compared to MLD. To bridge the 

performance gap, Lattice Reduction (LR) technique [8]-

                                                           

[11] has been proposed to combine with suboptimal 

decoding algorithms, referred to as Lattice-Reduction-

Aided Decoding (LRAD), which achieves full diversity 

in uncoded MIMO system [12]-[14]. However, LRAD 

exhibits a widening gap to MLD performance as the 

dimension increases [15], [16]. 

To narrow the gap between LRAD and MLD, the 

Randomized Sampling (RS) decoding has been proposed 

in [17], [18] recently. It adopts Kleins sampling algorithm 

[19] to randomly sample lattice points, which applies 

randomized rounding according to Gaussian distribution 

instead of standard rounding and selects the best one 

among all the samples. However, due to the 

randomization, two defects exist in RS decoding, that is, 

inevitable sampling repetitions resulting in unnecessary 

complexity and performance loss resulting from some 

lattice points with small sampling probabilities in the 

early levels being neglected. To avoid these two defects, 

the Derandomized Sampling (DS) decoding has been 

proposed in [20] to remove the randomization and 

generate a deterministically sampling process. It admits a 

tree structure and the final candidate list is generated by 

traversing the tree with breadth-first search and a 

probability threshold pruning strategy. However, this 

method only considers sampling probability information 

as the threshold pruning rule and does not make full use 

of this information. 

To decrease complexity and increase efficiency, it is 

necessary to prune the tree nodes that are less likely to 

lead to the optimal solution and find the list of the most 

likely to contain the optimal lattice point with the 

smallest possible complexity. The key to reduce the 

complexity is to design an efficient search strategy that 

can find the better candidate list as fast as possible, i.e. 

with the minimum number of nodes visited. In this paper, 

an efficient best-first Derandomized Sampling (DS) 

decoding algorithm referred to as BFDS is proposed to 

exploit the cumulative sampling probability, the product 

of sampling probabilities of each sampled integer, to 

generate a candidate list based on best-first search 

strategy, which brings complexity reduction compared to 

the existing DS algorithm without performance loss. 

Further, statistical properties of the cumulative sampling 

probability are considered as path metrics to build a 

candidate list instead, which yields better performance. 

Setting the initial sample size K  and the length of 

candidate lattice point list L  appropriately, the trade-off 
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between performance and complexity of the proposed 

algorithms can be realized flexibly. 

The rest of the paper is organized as follows. Section II 

introduces the system model and briefly reviews the 

lattice decoding knowledge. In Section III, the BF search 

strategy is introduced and BFDS algorithm is proposed 

based on this search strategy. And then, the BFDS 

algorithm is further improved. Simulation results are 

presented and discussed in Section IV. Finally, the paper 

is concluded in Section V. 

Notation: Upper and lower case boldface letters denote 

matrices and column vectors respectively. Superscript 
T

, 
1
 denote transpose and inverse respectively. Superscript 

C
 denotes that the element is complex. 

r
n

I  is the 
r r

n n  

identity matrix. 
i

b  indicates the i-th column of matrix B , 

,i j
b  for the (i, j)-th entry of matrix B , and b

i
 the i-th 

entry of vector b . The ℜ and ℑ denote the real and 

imaginary parts of a complex number.   denotes the 

2-norm. x  indicates rounding to the closest integer to 

x, while x    to the closest integer smaller than or equal 

to x. 

II. SYSTEM MODEL AND LATTICE DECODING 

A. System Model 

Consider a MIMO system model with 
t

n  transmit 

antennas and 
r

n  receive antennas. The received signal 

vector is denoted by: 
c


c c
y   Bx  + n                                (1) 

where B ,  
1 2

, , ,
t

T
c c c

n
x x x

c
x  and 

c
n  denote the 

 ,
r t r t

n n n n   channel matrix, the 1
t

n   transmitted 

symbol vector, and the noise vector with zero mean and 

covariance 
2

r
N n
I . Let 

i

c
x  , where  denotes the 

symbol alphabet of M-QAM modulation and the average 

transmission power of each antenna is normalized to one. 

The entries of B  are i.i.d. complex Gaussian random 

variables with zero mean and unit variance. We assume a 

quasi-static channel environment, i.e., channel is 

invariant during a block and changes independently from 

block to block. Moreover, we assume that perfect 

Channel State Information (CSI) is available at the 

receiver. 

Then, the equivalently 2 2
r t

n n  real-value system is 

written as: 

    
 

   

      
      

      

c c c

c c c

y B B x n

B By x n
          (2) 

The real-valued QAM constellations  can be 

considered as the shift and scaled version of a 

consecutive integer set , i.e.   1/ 2,...,1/ 2
T

a  , 

where the factor a  depends on energy normalization. For 

instance, we have  M / 2, , M / 2 1    for M-

QAM modulation. 

According to the lattice theory, an n-dimensional 

lattice in the m-dimensional Euclidean space 
m

 is the 

set of integer linear combinations of n linearly 

independent vectors 
1 2
, , ...,

m

n
h h h  [8], [9]: 

   
1

| , 1,
n

i i i

i

x x i n


  H h          (3) 

where  is integer set, and  
1

=
n

H h h  is referred to 

as a basis of the lattice . In the matrix form, we have 

 :
n

 Hx x . The matrix 
'

H = HT  generates the 

same lattice as H , if and only if the matrix T  is 

unimodular, i.e. T  contains only integers and the 

determinant of T  is 1 . 
After scaling and shifting, (2) is simplified as a n m  

real value system as follows: 

y = Hx + n                                  (4) 

where 2
t

n n , 2
r

m n  and 
m n

H  can be 

interpreted as the basis matrix of the decoding lattice. The 

data vector x  belongs to a finite subset 
n
. 

B. Lattice Reduction Aided Decoding 

Given the model in (4), the ML decoding is computed 

as follows: 
2

ˆ  = arg min  - 
n

x

x y Hx                         (5) 

which corresponds to solving a Closest Vector Problem 

(CVP) in the lattice  H . ML decoding can be 

realized by the sphere decoding, whose expected 

exponential complexity makes it difficult to be widely 

used. So, the LRAD is often preferred due to its 

acceptable complexity. 

Lattice reduction technology can transform the basis 

H  into a basis consisting of roughly orthogonal vectors 

 = H HT , where T  is an unimodular matrix. Therefore, 

we can get the equivalent system model: 
1

 = +  =  + ,  =  
y Hx n H z n z T x                (6) 

Then, based on the reduced basis, conventional 

decoders (ZF or SIC) are adopted to obtain the estimate 

ẑ , which is then transformed back into the original signal 

space by ˆ ˆ = x Tz . In the LR-aided SIC decoding, after 

QR-decomposition of the reduced channel matrix

 = H QR , (6) is rewritten as: 

T
 =  =  +  y Q y Rz n                           (7) 

At the each decoding level , 1, , 1i n n   , the pre-

detection signal 
i

z  is calculated as: 

,1

,

ˆ
n

i i j jj i

i

i i

y r z
z

r

 

 



                         (8) 
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where the decision ˆ
i

z  is obtained by rounding 
i

z  to the 

nearest integer as 
î iz z . The decoding procedure 

begins at the level n and continues until the level 1 is 

detected. 

C. Sampling Decoding 

Different from the LR-aided SIC decoding, the pre-

detection signal 
i

z  is not rounded to the closest integer 

but to the integers around 
i

z  randomly according to the 

following discrete Gaussian distribution [17], [19]. 

   

 

2

2

ˆ

ˆ

ˆ

ˆ ,
j

i i i

j

i i i

j

i

c z zj

i i

c z z

i

z

P z e s

s e

 


 





 
                        (9) 

where 
2

,i i i
c Ar , ˆ

j

i
z  represents the sampled integer 

around 
i

z  and j is the index. Specifically, 
1

ˆ
i

z  denotes the 

closest integer to 
i

z  while 
2

ˆ
i

z  denotes the second closest 

integer and so on. The parameter A which affects the 

variance of sampling probabilities is given as 
2

,
log min

i i i
A r , where the parameter 1   related 

with the sample size K set initially satisfies 

 
21

2

n

K e


  [17]. 

Generally, we can approximate distribution (9) by 2N-

point discrete distribution [17]. 

   

 

 

2

2

ˆ

ˆ

ˆ

ˆ ,

1, , , ,

j

i i i

j

i i i

j

i

c z zj

i i

c z z

i

z

i i i

P z e s

s e

N z N z z N

 

 





 

   

   (10) 

In fact, 3-point approximation is sufficient as the 

probability in the central 3 points is almost one. In this 

paper, we choose N=2. 

III.  BEST-FIRST DS DECODING 

Reference [15] demonstrates that LRAD exhibits a 

widening gap to MLD performance as the dimension 

increases. In order to narrow the gap, the DS decoding is 

proposed recently to generate a deterministically 

sampling process by breadth-first search and a probability 

threshold pruning strategy. However, this scheme only 

considers sampling probability information as the 

threshold pruning rule and does not make full use of this 

information. In this section, to reduce complexity and 

increase efficiency, a new Best-First Derandomized 

Sampling (BFDS) decoding algorithm is proposed to 

make full use of sampling probability information, which 

exploits the cumulative sampling probability, the product 

of sampling probabilities of each sampled integer, to 

generate a candidate list based on best-first search 

strategy. Moreover, to enhance the performance, the 

BFDS decoding algorithm is improved by considering 

statistical properties of the cumulative sampling 

probability. 

A. BFDS Decoding Algorithm 

As mentioned before, DS decoding admits a tree 

structure as shown in Fig. 1 that has n+1 layers of nodes 

with a virtual root node at layer n+1. 

3

6ẑ
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6ẑ
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2ẑ1

2ẑ1
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Figure 1.  An illustrative example of the tree structure in the 

derandomized sampling decoding for a 3×3 system. ˆ , ( 1, 2, ..., )
i

i lz  

denote the candidate lattice points, where i is the index of the candidate 

lattice point. 

The cumulative sampling probability of a node in layer 

 , 1, , 1i i n n   , which is the product of the 

sampling probabilities in the path generated by traversing 

the tree from the root node to this node, is defined as its 

cost. In general, the cumulative sampling probability 

 ˆ
i i

CSP z  of a node ˆ
i

z  in layer i can be written as: 

     

 

 

   

2

2
2

, , ,1

2

, ,1

2
2

,
,

ˆ

ˆ ˆ

ˆ ˆ

ˆ
ˆ

ˆ ˆ k k k

n

k k k k j j k k kj k

n

k k j j k k kj k

n
n

n
k k j jj kk k j jj k k i

n n
c z z

i i k k

k i k i

n
A r y r z r z

k

k i

n
A y r z r z

k

k i

n nA y r z
A y r z

k k

k i k i

CSP z P z e s

e s

e s

e s e s

 

 


 

 

 

   



  



   

 

 
  

 







 
  

 





 

(11) 

Specially, the cumulative sampling probability of a 

leaf node in layer 1 is named as full path cumulative 

sampling probability, which is denoted as follows: 

   

 
2

,

1

2

1 1

1

ˆ

1

ˆ

1

ˆ ˆ

n
n

k k j jj k

k

n

k

k

nA y r z

k

k

n

A

k

k

CSP z P z

e s

e s







  



  





 









y Rz

           (12) 

where 
2

ˆy Rz  represents the distance between the 

candidate lattice point and the received signal. And, the 
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smaller the distance is, the larger the 
1

CSP  becomes. 

MLD can be considered as the CVP problem which is to 

find the lattice point that is the closest to the received 

signal. Therefore, finding the leaf node that has minimum 

distance is equivalent to finding the one with maximum 

cumulative sampling probability.  

According to the above analysis, a new and efficient 

Best-First (BF) search strategy based on cumulative 

sampling probability is proposed, which adopts the 

cumulative sampling probability as path metric to explore 

the tree. Specific details are as follows: By traversing the 

tree from the root node to the leaf node, the algorithm 

always gives the expansion priority to the node with the 

largest cumulative sampling probability in the node list. 

Thus, the leaf node with the largest full path cumulative 

sampling probability can be obtained firstly. Then, add 

this lattice point into the candidate lattice point list. And, 

get another candidate lattice point by finding the leaf 

node with the second largest full path cumulative 

sampling probability, and so on. At last, some candidate 

lattice points with larger full path cumulative sampling 

probability are obtained. The number of the candidate 

lattice points is set initially according to the trade-off 

between performance and complexity. 

The proposed BFDS algorithm can be described as 

Algorithm 1 in details (for level index , 1, ..., 1i n n  ): 

Algorithm 1 BFDS algorithm 

Initialization: a node list   that contains the virtual root 

node only, an empty candidate lattice point list   with 

the maximum list size L, and a sample size K. 

Input: y , n, R , T , K , L  

Output: x̂  

1         
21

2

n

K e


 ; 

2   2

,
log min

i i i
A r ; 

3        while  (  is not overflow) 

4    i = current decoding layer 

5   
,1

,

ˆ
n

i i j jj i

i

i i

y r z
z

r

 

 



;

 

6   
2

,i i i
c A r  ; 

7      for    j = 1:4 

8             
2

ˆ

ˆ
j

i i i
c z zj

i i
P z e s

 
 ; 

9          ˆ
j

i
E z  = round (  ˆ

j

i
kP z ); 

10          if  ˆ 1
j

i
E z 

 

11  ˆ
j

i
z  is ignored; 

12          else
 

13  let ˆ ˆ
j

i i
z z  as a children node; 

                            update sample size as  ˆ
j

i
k kP z   

16           end if 

17             put the children nodes into   and remove 

their parent node from  ; 

18    end for 

19    Select the best with the largest k   from  ; 
20    while (the best node is a leaf node) 

21 Take the best node as a candidate lattice 

point and add it into  ;

  

                       

If   is overflow 

  break; 

         end if

 22 Remove the best node from   and select 

another best node from   

25      end 

update the decoding layer; 
26         end 

27      for j = 1:L 

28 ˆ ˆ = 
j j

x T z ; 

29      end for 

30      
2

ˆ

ˆ ˆarg min
j

j
 

x

x y  Hx  

In Algorithm 1, one thing to note is that the update 

sample size    ˆ ˆ
n

j

i j

j i

kP z K P z


   is just the product 

of cumulative sampling probability and constant K. That 

is, the cumulative sampling probability is a by-product in 

updating the sampled size k. So, we actually need not 

calculate the cumulative sampling probabilities of nodes, 

but only update sample size k and select the node with the 

largest k from  . 

B. BFDS Complexity Analysis 

As the illustrative example of the BFDS decoding 

shown in Fig. 2, BFDS decoding only generates 

( )L l l K   candidate lattice points with relative larger 

full path cumulative sampling probabilities. Compared to 

Fig. 1, we can observe that some nodes in the BFDS 

decoding are not expanded to the leaf node, which results 

in fewer nodes visited. This is because the best-first 

search is adopted to find the candidate lattice points that 

are more likely to be the optimal lattice point in the list 

obtained in Fig. 1. 

The computational complexity of the known DS 

algorithm in [20] is 
2

( )K O n , where 
2

( )O n  is the 

computational complexity generated by calculation of the 

sampling probability in case for 1K  . Therefore the 

computational complexity of BFDS decoding can be 

denoted by 
2

( )L O n , which is lower than the known DS 

algorithm [20]. 

By varying parameter K and L, the decoder enjoys a 

flexible trade-off between performance and complexity. 

Let K maintain a constant, with the increment of L the 

performance of BFDS decoding improves gradually and 

finally obtains the same performance with the known DS 

decoding. Of course, the complexity will also increases 

gradually with the increment of L since more candidate 

lattice points will be sampled. But, the BFDS algorithm 

can achieve the same performance with fewer number of 

nodes visited and a lower complexity compared to the 

known DS algorithm. As K increases, the performance of 
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BFDS decoding becomes getting close to the MLD 

performance. And the near-optimum performance can be 

achieved by a moderate size K. Thus, the proposed 

decoder can enjoy a flexible performance between SIC 

and near-ML by adjusting K and L. 
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4ẑ

1

3ẑ1
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Figure 2.  An illustrative example of the BFDS decoding for a 3×3 

system. ˆ , ( 1, 2, ..., )
i

i Lz  denote the candidate lattice points, where i 

is the index of the candidate lattice point with the i-th largest full path 

cumulative sampling probability. 

C. Improved BFDS Decoding Algorithm 

The BFDS algorithm proposed in the previous section 

is an efficient lattice decoding algorithm, which can bring 

complexity reduction compared to the known DS 

algorithm. However, path metric based on the cumulative 

sampling probability ignores the fact that nodes in the 

node list   may come from different layers and thus 

their cumulative sampling probabilities do not necessarily 

reflect the “goodness” of these nodes. For example, a 

node A in a lower layer whose cumulative sampling 

probability is smaller than that of node B in an upper 

layer may likely to be a better node. Based on this, the 

BFDS algorithm is improved by exploiting statistical 

properties of the cumulative sampling probability, which 

takes the layer information of the node into account to 

make nodes from different layers be explored on a fairer 

basis. 
In the improved BFDS algorithm, natural logarithm of 

the cumulative sampling probability of each node at layer 

, 1, ,1i n n    can be written as: 

 

 
2

,

ln ,

ˆ , ln

i i i i

n n
n

i k k j j i kj k

k i k i

G CSP A D S

D y r z S s


 

    

     
       (13) 

And the cumulative distribution function (cdf) of 

cumulative sampling probability is considered as follows: 
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  (14) 

where 
2

2 /
i N

D   follows the chi-square distribution with 

 1n i   degrees of freedom, so its cdf is calculated as 

[21]: 

 
 
 

1 ,
2 2

F ; , 0
1

2

i
D

n i x

x i x
n i

 
 

 
          (15) 

where     is the Gamma function and     is the 

incomplete Gamma function. The improved BFDS 

algorithm expands the node which has the maximum cdf 

calculated by (14) instead of the maximum cumulative 

sampling probability denoted by (11).  

According to the properties of cdf, in sorting two 

nodes from different layers where the node in a upper 

layer with a larger cumulative sampling probability, i.e., 

for ,
i j

i j g g  , sorting rule based on cdf may or may 

not give priority to this node, i.e., the inequality 

( ; ) ( ; )
i j

G i G j
F g i F g j  may or may not hold. 

In fact, except the path metric adopted is different in 

these two algorithms, the other steps are similar. In the 

improved BFDS algorithm, the nodes are selected with 

the largest cumulative distribution function instead of the 

largest cumulative sampling probability and we need to 

calculate the natural logarithm of the cumulative 

sampling probability according to (13). Then input the 

calculated natural logarithm into (14) in place of g to 

obtain the cdf of the children node.  

IV.  SIMULATION RESULTS 

In this section, the performance and complexity of the 

two proposed algorithms are evaluated in a 10×10 MIMO 

system with 64-QAM by simulation. In this paper, we use 

the number of nodes visited, i.e., the number of nodes 

preserved in the tree, to denote the actual complexity 

involved. Let Eb denotes the average power per bit at the 

receiver, for the SNR, we have 

 2

0 2
log

b r N
E N n M   , where the modulation level 

M=64 for 64-QAM, 
2

N
  is the noise power. 

 

Figure 3.  Comparison of bit error rate of different algorithms. 
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Fig. 3 shows the Bit Error Rate (BER) of the BFDS 

decoding algorithm compared with other decoding 

algorithms. Obviously, under the help of LLL reduction 

( 0.99  ), all the randomized and derandomized 

sampling decoding algorithms get considerable gains 

over the LR-aided SIC, even in case for the BFDS 

decoding algorithm with K=15, L=1. With the increment 

of L, the BFDS decoding performance improves 

gradually. Specially, the BFDS decoding algorithm with 

K=15, L=7 and K=30, L=9 achieve the same performance 

as the known DS algorithm with K=15 and K=30 

respectively. With the increment of K, the BFDS 

decoding performance gradually approaches the ML 

performance. 

Fig. 4 shows the complexity comparison of the BFDS 

decoding algorithm with the known DS decoding 

algorithm. From Fig. 4, we observe that with the 

increment of L the average number of nodes visited in 

BFDS algorithm increases gradually, but the BFDS 

algorithm can achieve the same performance as the 

known DS decoding with fewer number of nodes visited. 

For example, the BFDS algorithm with K=15, L=7 

obtains the same performance as the DS algorithm with 

K=15, but having fewer average number of nodes visited. 

Moreover, this advantage will become more and more 

apparent as K increases. So, the BFDS algorithm can 

finally achieve the near-optimum performance with much 

lower complexity compared to the known DS decoding 

algorithm. 

 

Figure 4.  Average number of nodes visited of different algorithms. 

In Fig. 5 and Fig. 6, we respectively compare the error 

performance and the complexity of the improved BFDS 

decoding to the BFDS decoding algorithm with K=15, 

L=1, 3, 5. It is seen that with the same L, the improved 

BFDS decoding algorithm exhibits significantly better 

error performances than the BFDS decoding algorithm at 

the cost of a little increased complexity, such as L=3, but 

when L=1 the complexity is also reduced. However, 

when the improved BFDS decoding algorithm with L=3 

and the BFDS decoding algorithm with L=5 are 

compared, the improved BFDS decoding algorithm can 

achieve a slightly better error performance than the BFDS 

decoding algorithm with even lower complexity. 

 

Figure 5.  Comparison of BER of different algorithms with K=15. 

 

Figure 6.  Average number of nodes visited of different algorithms with 
K=15. 

Fig. 7 and Fig. 8 display the error performance and the 

complexity comparison of the improved BFDS decoding 

algorithm to the BFDS decoding algorithm with K=30 

and L=1, respectively. Similar to the case for K=15 and 

L=1 shown in Fig. 5 and Fig. 6, both the error 

performance and the complexity are improved in the 

improved BFDS decoding algorithm. 

 

Figure 7.  Comparison of bit error rate of different algorithms with 

K=30. 
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Figure 8.  Average number of nodes visited of different algorithms with 
K=30. 

V. CONCLUSIONS 

In this paper, to reduce complexity, a new Best-First 

Derandomized Sampling (BFDS) decoding algorithm is 

proposed to make full use of sampling probability 

information to generate a candidate list by best-first 

search and a probability threshold pruning strategy. 

Moreover, to enhance the performance, the BFDS 

algorithm is improved by exploring the nodes in the node 

list based on the cumulative distribution function of 

cumulative sampling probability instead of cumulative 

sampling probability itself, which takes both the 

cumulative sampling probability and the layer 

information of the nodes into account. The simulations 

show that the BFDS algorithm has much lower 

complexity compared to the known DS algorithm without 

performance loss. By varying K and L, the decoder can 

enjoy a flexible trade-off between performance and 

complexity. And the further improved algorithm 

considering statistical information outperforms those 

without considering statistical information in a lower 

complexity. 
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