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Abstract—Recently, oversampled graph filter banks 

(OSGFBs) have been constructed on graph theory for signal 

processing in [1]-[7]. This paper introduces a new image 

fusion for medical images in OSGFBs. Images are 

decomposed to subband images by spectral graph wavelet 

transform in OSGFBs, revised by a simple fusion rule, and 

synthesized back to make a fused image. Since the OSGFBs 

have good capability to decompose regular/irregular signals, 

the proposed algorithm shows better performance than 

traditional fusion algorithms even with a simple fusion rule. 

The proposed algorithm is effective particularly for medical 

images. Visual and numerical performance comparisons of 

the proposed algorithm with traditional image fusion 

algorithms are included for medical, multifocus, and 

infrared images.  

 

Index Terms—image fusion, graph filter banks, medical 

images, oversampled, graph signal processing 

 

I. INTRODUCTION 

Traditional signal analysis and processing techniques 

such as wavelets, Fourier analysis, etc., are well designed 

to handle regular signals (e.g., images and videos etc.). 

However, it is a challenging task to apply the traditional 

signal processing techniques to irregular signals obtained 

through world-wide web, social network, traffic network, 

power grid, biological systems etc. In order to deal with 

those irregular signals, graph theories have recently been 

merged to signal processing in [1]-[7]. Good tutorials for 

graph signal processing are in [2], [3]. Particularly, 

traditional filter bank theory in wavelets has been evolved 

for graphs as well in [1], [4] and extended to oversampled 

introduced in [1], [4], [6], [7] are based on a Laplacian 

matrix, which is attained through an adjacent matrix 

representing connectivity of each node in a graph. The 

(OS) GFBs are applicable to regular/irregular signals and 

show outperforming results to wavelet filter banks [4], [6], 

[7] even for regular signals. Traditional signal analysis 

techniques such as discrete Fourier transform, Discrete 

Wavelet Transform (DWT), Curvelet Transform (CVT), 

Nonsubsampled Contourlet Transform (NSCT) etc., have 

been essential for many applications such as image fusion, 

image denoising/enhancement etc. Image fusion is to 

integrate many images taken from multiple image sensors, 
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temporal views, and/or limited optical lenses etc., in order 

to get a single image, which can be better recognized by 

human beings and/or machines [8]. Image fusion has 

been studied for medical applications, security 

surveillance, computer visions, astronomy, and remote 

sensing etc. Many image fusion algorithms in frequency 

domain have a mainstream concept: transforming images 

to frequency domain, modifying coefficients in frequency 

domain based on fusion rules, and transforming it back to 

temporal domain. The common concept was implemented 

with various different transforms such as DWT [9], 

NSCT [10], [11], CVT [12]-[14] etc. This paper applies 

Spectral Graph Wavelet Transform (SGWT) [15] in 

OSGFBs with a simple fusion rule choosing maximum 

transform coefficients. Even with the simple fusion rule, 

the proposed fusion algorithm in OSGFBs shows 

outperforming results to other image fusion algorithms 

based on DWT and CVT. This paper will introduce a new 

image fusion algorithm as follows: Section II introduces 

OSGFBs, and Section III explains a simple fusion rule 

applied in OSGFBs. Experimental results for medical, 

multifocus, and infrared images are shown in Section IV. 

Conclusions are followed in Section V. 

II. OVERSAMPLED GRAPH FILTER BANKS 

Graph signal processing is formulated on a matrix 

called adjacency matrix expressing connectivity of each 

node in regular/irregular signals [1]-[7]. Let’s consider a 

graph denoted by 𝒢 = {𝒱, ℰ}, where 𝒱 and ℰ respectively 

denote sets of nodes and edges in a graph. To make the 

adjacency matrix, 𝐴0 , from an undirected graph having 

the same weight of 1, equation (1) is defined [1], [4], [6], 

[7], [15]: 

𝐴0(𝑚, 𝑛) =  {
  1   𝑖𝑓 𝑛𝑜𝑑𝑒𝑠 𝑚 𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑,

0                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

In (1), 𝐴0(𝑚, 𝑛) ∈ ℜ𝑁𝑜×𝑁𝑜  implies a (m, n) element in 

the adjacency matrix, 𝐴0, where 𝑁0 is a number of nodes 

in a given graph. For instance, 𝑁0 = 𝑀𝑁 for a (𝑀 × 𝑁) 

image. Using the adjacency matrix, the normalized 

Laplacian matrix denoted by L is calculated as (2) [15]: 

𝐿 = 𝐷− 
1

2(𝐷 − 𝐴0)𝐷− 
1

2                       (2) 

= 𝐼 − 𝐷− 
1
2𝐴0𝐷− 

1
2 

where D is a diagonal matrix obtained by 𝐷(𝑚, 𝑚) =
∑ 𝐴0(𝑚, 𝑛)𝑛 . Many topics of graph signal processing 
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 Filter  Banks (GFBs) cases in [6], [7]. The Graph



such as graph frequencies, graph Fourier transform etc., 

are related to the eigenvalue problems of the Laplacian 

matrix [1]-[7], [15]. Like traditional wavelet filter banks, 

perfectly reconstructable GFBs were developed in [1] for 

orthogonal cases and in [4] for biorthogonal cases with 

down/up sampling concepts utilizing node colors. The 

GFBs developed in [1], [4] are all critically sampled 

GFBs. Those critically sampled GFBs, which are 

designed with bipartite subgraphs, show similar filter 

bank structures to wavelet filter banks [1], [4]. Any image 

can be modeled as a 4 colorable graph [1], [4], [6], [7], 

and critically sampled GFBs can handle 4 colorable 

graphs (i.e., images) with rectangular and diagonal 

subgraphs within a similar structure to wavelet filter 

banks. Although GFBs have a similar structure to wavelet 

filter banks, GFBs are different in designed 

analysis/synthesis filters for graph signals and in down/up 

sampling for colors [1]-[7]. Analysis / synthesis filters in 

GFBs are newly designed for graph signals by 

considering the various constraints such as perfect 

reconstruction, zero DC responses etc., [1], [4]. Since 

oversampled filter banks are effective in some 

applications such as signal analysis, denoising etc., those 

critically sampled GFBs were extended to OSGFBs in [6], 

[7] with an idea to append additional nodes while keeping 

bipartite subgraphs. Since a rectangular subgraph can be 

oversampled by appending same nodes with a diagonal 

subgraph in images (or vice versa), an efficient 

oversampling was achieved in [6], [7]. With the simple 

efficient oversampling in [6], [7], all nodes in bipartite 

subgraphs (i.e., rectangular and diagonal subgraphs) are 

processed at the same time in OSGFBs, and it leads to an 

effective finer signal decomposition as shown in [6], [7]. 

To decompose images in OSGFBs, a revised adjacency 

matrix must be provided because appended nodes for 

oversampling are considered as well. It can be obtained 

through (3) [6], [7]: 

𝐴̃ =  [
𝐴0 𝐴01

𝐴01
𝑇 0𝑁−𝑁0

]  ∈ ℜ𝑁× 𝑁        (3) 

where 𝐴0 is the original adjacency matrix in (1), which is 

obtained from a given graph, and 𝐴01  is an adjacency 

matrix of appended nodes for oversampling. Notice 

0𝑁−𝑁0
 is a zero matrix of (𝑁 − 𝑁0) × (𝑁 − 𝑁0). Using 

the revised adjacency matrix 𝐴̃  in (3), the revised 

Laplacian matrix for OSGFBs is calculated by (4), which 

is similar to (2) [6], [7]: 

𝐿̃ = 𝐷̃− 
1

2(𝐷̃ − 𝐴̃)𝐷̃− 
1

2                        (4) 

= 𝐼 − 𝐷̃− 
1
2𝐴̃𝐷̃− 

1
2 

where 𝐷̃  is a diagonal matrix calculated by 𝐷̃(𝑚, 𝑚) =
∑ 𝐴̃(𝑚, 𝑛)𝑛 . The revised Laplacian matrix, 𝐿̃ , is then 

applied to the SGWT as given in (5) [1], [15]: 

𝑇𝑔𝒇 = ∑ 𝑔(𝜆𝑘)𝑓̅𝑁
𝑘=1 (𝑘)𝒖𝒌                      (5) 

where 𝒇 = [𝒇𝟎;  𝒇𝟏] ∈ ℜ𝑁× 1  is an oversampled graph 

signal vector in this paper and  𝑇𝑔 = 𝑔(𝐿̃)  is a graph 

wavelet operator with a spectral graph kernel function, 𝑔, 

behaving a bandpass filter [15]. In making the 

oversampling graph signal, 𝒇, a given image is changed 

to a vector, 𝒇𝟎 ∈ ℜ𝑁0× 1 , and a clever way in [7] to 

choose appended graph signal, 𝒇𝟏 ∈ ℜ𝑁1× 1 , is used in 

this paper. In equation (5), 𝑓 ̅is a graph Fourier transform 

defined in [1], [6], [15], and 𝒖𝒌 is the kth eigenvector of 

𝐿̃ in (4). The graph wavelet operator can be approximated 

by k degree polynomials such as 𝑇𝑔̂ = 𝑔̂(𝐿̃) = ∑ 𝑎𝑙𝐿̃
𝑙𝑘

𝑙=0  

(e.g., Chebyshev polynomials) [1], [15]. A 

computationally efficient calculation of (5) utilizing 

approximate 𝑇𝑔̂ in a Chebyshev recurrence form is shown 

in [15]. With scaled bandpass kernels, 𝑔(𝑡𝜆), other low 

pass kernels denoted by ℎ(𝜆) were originally designed to 

satisfy perfect reconstruction and zero DC responses for 

critically sampled GFBs [1], [4]. The same concept is 

extended to design M-channel GFBs in [6] and leads to 

OSGFBs in [7], which is implemented in this paper for an 

image fusion application. The OSGFBs applied to image 

fusion in this paper is shown in Fig. 1, where 𝐻𝑖  for i=0, 

1, 2, 3 and 𝐺𝑖  – which are filters in corresponding 

synthesis OSGFBs – are perfectly reconstructable graph 

filters designed in [6], [7] for oversampled graph signals. 

 

Figure 1.  One decomposition level of analysis OSGFBs for image 

fusion. 

In Fig. 1, J implies down sampling for each color and 

OS implies oversampling. Notice OSGFBs can process 

an image in rectangular and diagonal direction at the 

same time using the appended graph signal. In Fig. 1, 𝒇 is 

simply made by  𝒇 = [𝒇𝟎;  𝒇𝟏] , where  𝒇𝟏 = 𝒇𝟎 , for 

oversampling. However, notice that 𝐴0 for 𝒇𝟎 and 𝐴01 for 

𝒇𝟏  are obtained from a rectangular subgraph and a 

diagonal subgraph respectively. Those oversampled 

settings provide finer eigenvalues of Laplacian matrix as 

well as simultaneous processing of each node in 

rectangular and diagonal connections [6], [7]. Notice that 

the finer eigenvalues of Laplacian matrix affect the 

SGWT in (5). Since any image can be expressed by 

bipartite subgraphs having 4 different color nodes, the ith 

subband graph signal (i.e., ith subband image) is denoted 

by 𝑠𝑖,𝑐 , where 𝑐 ∈ {𝑟, 𝑔, 𝑦, 𝑏} for red, green, yellow, and 

blue color nodes respectively in an image. In Fig. 1, 𝑠𝑖,𝑐 

stands for color nodes, 𝑐, in the ith subband signal. In this 

paper, notices that total 16 subband graph signals of 𝑠𝑖,𝑐 

are available even at the decomposition level of 1 because 

4-channel OSGFBs are used. For an image fusion 

application, the final edge is obtained through AND 

operation of edges in two input images. Notice in Fig. 1 

that 𝐴0  matrix is constructed by applying edge-aware 
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image graph in [16] to an averaged image of two input 

images. Each subband graph signal obtained through Fig. 

1 is shown in Fig. 2. In Fig. 2, all subband graph signals 

are obtained for a medical image given in Fig. 3 through 

64 x 64 block processing to avoid too big matrix size of 𝐿̃ 

in (4).  

 

Figure 2.  All subband graph signals, 𝑠𝑖,𝑐, obtained through Fig. 1. 

 

Figure 3.  Medical images tested for image fusion in OSGFBs of Fig. 1. 

III. A FUSION RULE IN OSGFBS 

In this paper, all subband signals in Fig. 2 are modified 

through a simple fusion rule. Many different fusion rules 

have been proposed as given in [8]-[14] in order to 

modify transform coefficients using pixel by pixel 

processing and/or using the information (e.g., activities) 

of neighboring pixels. Most fusion algorithms use two 

different ways: one for the lowest frequency subband and 

the other for high frequency subbands. For instance, 

averaging without a threshold [10] or with a threshold 

[11], inter-subband consistency [14], and sparse 

representation [8] were used for the lowest frequency 

subband, to name a few. Choosing maximum magnitude 

of transform coefficients was widely employed for high 

frequency subbands utilizing region energy of 

neighboring pixels [10], directional contrasts [11], 

transform coefficients of each pixel [8], [14]. In this 

paper, a simple rule choosing maximum magnitude of 

graph wavelet coefficients in OSGFBs is adopted for high 

frequency subbands, and averaging of two graph wavelet 

coefficients is used for the lowest frequency subband as 

given in (6) and (7): 

𝑠̃0,𝑟 = (𝑠0,𝑟
𝐴 + 𝑠0,𝑟

𝐵 )/2                           (6) 

𝑠̃𝑖,𝑐 =  {
   𝑠𝑖,𝑐

𝐵          𝑖𝑓 |𝑠𝑖,𝑐
𝐵 | ≥ |𝑠𝑖,𝑐

𝐴 | 

  𝑠𝑖,𝑐
𝐴                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (7) 

where 𝑖 = 0,1,2, 3, 𝑐 ∈ {𝑟, 𝑔, 𝑦, 𝑏}, except for 𝑠̃0,𝑟. 

In (6) and (7), notice that two equations are applied to 

every node in each color, where superscript A and B 

imply two given input images for fusion processing. 

Equation (6) is for the lowest frequency suband, 𝑠̃0,𝑟, and 

equation (7) is for other high frequency subbands in 

OSGFBs. The modified graph wavelet coefficients 

through (6) and (7) are denoted by 𝑠̃𝑖,𝑐  in Fig. 1. After 

applying the fusion rule, those 𝑠̃𝑖,𝑐  subband signals pass 

through synthesis OSGFBs to obtain a fused image. 

Synthesis OSGFBs have the exact same structure with 

Fig. 1 except for 𝐺𝑖 , up-samplers, and under-sampling 

parts which are counterparts corresponding to 𝐻𝑖 , 

downsamplers, and oversampling respectively. In other 

words, under-sampling in synthesis OSGFBs is the 

counterpart of OS in Fig. 1 to make the same length of 

signal with that of the original signal, 𝒇𝟎. In this paper, 

under-sampling is achieved by equation (8), which is an 

average of two fused signals: 

𝒇̂𝑓𝑢𝑠𝑒𝑑 =  ( 𝒇̂𝟎
𝑓𝑢𝑠𝑒𝑑

+ 𝒇̂𝟏
𝑓𝑢𝑠𝑒𝑑

 )/2                 (8) 

In (8), notice  𝒇̂𝟎
𝑓𝑢𝑠𝑒𝑑

 and  𝒇̂𝟏
𝑓𝑢𝑠𝑒𝑑

 respectively denote a 

fused graph signal for original and appended images in 

OSGFBs. 

IV. EXPERIMENTAL RESULTS 

The proposed fusion algorithm is tested for 10 medical 

images (i.e., 5 pairs for the image fusion) as given in Fig. 

3. 

Images in the first and second row of Fig. 3 

respectively imply the subscript “A” and “B” in (6) and 

(7). To begin with, two pair images denoted by “A” and 

“B” are respectively decomposed through OSGFBs in Fig. 

1. Then, the SGWT coefficients in the same subbands of 

“A” and “B” are fused by (6) and (7) in this paper. As the 

last step, the final fused image is obtained by (8) after 

passing through synthesis OSGFBs. The results in this 

paper are compared with other traditional image fusion 

algorithms utilizing DWT [9] and CVT [13]. The results 

of fused images are given in Fig. 4. As shown in Fig. 4, 

the proposed algorithm outperforms two other fusion 

algorithms even with the simple fusion rule in (6) and (7). 

For fair comparison, decomposition level for DWT is set 

as 4, and the number of scales for CVT is also set as 4 

(i.e., it means 5 including the coarsest scale) to obtain Fig. 

4. Whereas, notice that the proposed algorithm is kept 

with decomposition level of 1 to obtain Fig. 4, because 

OSGFBs in Fig. 1 have total 16 subbands even at 

decomposition level of 1. Since OSGFBs are providing 

finer spectral wavelet coefficients with simultaneous 

process of rectangular and diagonal subgraphs [6], [7], 

the results of the proposed fusion algorithm in Fig. 4 

show clearer images than DWT and CVT fusion 

algorithms. Visually, the proposed algorithm brings to 

better perception in Fig. 4.  
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Figure 4.  Fusion results for the test images in Fig. 3. 

TABLE I.  PERFORMANCE COMPARISON FOR MEDICAL IMAGES 

DECOMPOSITION LEVEL FOR UP-SAMPLERS PROPOSED ALGORITHM 

AND NUMBER OF UP-SAMPLERS ARE ALL SET AS 1 

Fusion 

algorithms 
SD NFMI Qabf 

DWT 50.5549 0.8623 0.4489 

CVT 49.7091 0.8614 0.4159 

Proposed 68.3933 0.8736 0.6129 

TABLE II.  PERFORMANCE COMPARISON FOR MEDICAL IMAGES  WITH 

DECOMPOSITION LEVEL / NUMBER OF SCALES = 4 FOR DWT/CVT, AND 

DECOMPOSITION LEVEL = 1 FOR THE PROPOSED ALGORITHM 

Fusion 

algorithms 
SD NFMI Qabf 

DWT 60.4533 0.8635 0.5354 

CVT 57.4019 0.8712 0.5206 

Proposed 68.3933 0.8736 0.6129 

 

In order to quantify the fusion performance, popular 

feature mutual information (NFMI) in [17], Qabf in [18], 

are calculated. The three fusion metrics – SD, NFMI, and 

Qabf – are respectively to measure overall contrast, 

amount of information obtained from two input images, 

and overall edge information transferred to the fused 

image. Results of the three fusion metrics are shown in 

Table I and Table II. Notice that Table I is the result with 

decomposition level of 1 for DWT and the proposed 

algorithm. Similarly, the number of scales for CVT is 

also set as 1 (i.e., 2 including the coarsest scale) to obtain 

Table I. Additionally, since DWT and CVT need to be 

considered in the same number of subbands in frequency 

domain, DWT is set with decomposition level of 4, and 

CVT is also set with 4 for the number of scales, while 

keeping the proposed algorithm with decomposition level 

of 1. Those results are in Table II. As shown in Table I 

and Table II, the proposed algorithm outperforms DWT 

and CVT. Significant performance improvements are 

noticed in the proposed algorithm visually as shown in 

Fig. 4 and numerically as shown in Table I/Table II. 

Particularly, the proposed algorithm significantly 

improves transferred edge information and contrast 

respectively measured by Qabf and SD.  

The proposed algorithm is tested further for other 

images such as infrared and multifocus images. For visual 

comparison, some sample results of infrared and 

multifocus images are included in Fig. 5.  

 

Figure 5. Fusion results for multifocus (1st and 2nd rows) and infrared 
(3rd and 4th rows) images. 

Numerical performance measures for infrared and 

multifocus images are in Table III and Table IV, where 

total 20 images are tested (i.e., 5 pairs for infrared and 

multifocus images). Visual results in Fig. 5 and numeral 

results in Table III/Table IV show that the proposed 

algorithm is also comparable with DWT and CVT fusion 

algorithms for infrared and multifocus images as well, 

even with the simple fusion rule at decomposition level of 

1. 

TABLE III.  PERFORMANCE COMPARISON FOR INFRARED IMAGES  WITH 

DECOMPOSITION LEVEL /NUMBER OF SCALES = 4 FOR DWT/CVT, AND 

DECOMPOSITION LEVEL = 1 FOR THE PROPOSED ALGORITHM 

Fusion 

algorithms 
SD NFMI Qabf 

DWT 38.6844 0.8821 0.5949 

CVT 37.2353 0.8903 0.5774 

Proposed 39.2101 0.8798 0.5923 
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three metrics, Standard Deviation (SD), normalized 



TABLE IV.  PERFORMANCE COMPARISON FOR MULTIFOCUS IMAGES  

WITH DECOMPOSITION LEVEL / NUMBER OF SCALES = 4 FOR DWT/CVT, 
AND DECOMPOSITION LEVEL = 1 FOR THE PROPOSED ALGORITHM 

Fusion 

algorithms 
SD NFMI Qabf 

DWT 54.4329 0.8761 0.7014 

CVT 54.1933 0.8792 0.7155 

Proposed 52.9928 0.8677 0.7006 

V. CONCLUSIONS 

In this paper, a new image fusion algorithm for 

medical images is proposed by applying the SGWT in 

OSGFBs with a simple fusion rule. The proposed 

algorithm utilizes finer spectral decomposition capability 

attained from OSGFBs, which are designed through 

graph signal processing. Significant performance 

improvement for medical images is observed by the 

proposed algorithm. Furthermore, comparable 

performance results with other fusion algorithms such as 

DWT and CVT are also observed by the proposed 

algorithm for infrared and multifocus images. 
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