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Abstract—We propose a simple and yet effective technique 

for shape-based ear localization. The idea is based on using 

a predefined binary ear template that is matched to ear 

contours in a given edge image. To cope with changes in ear 

shapes and sizes, the template is allowed to deform. 

Deformation is achieved by dividing the template into 

segments. The dynamic programming search algorithm is 

used to accomplish the matching process, achieving very 

robust localization results in various cluttered and noisy 

setups. 

 

Index Terms—ear detection, localization, dynamic 

programming, shape template, segments, edge noise, partial 

occlusion 

 

I. INTRODUCTION 

The use of human ear as a biometric has gained 

attention recently [1], [2]. Having a unique pattern that 

does not change with age or facial expressions, the ear 

seems to serve as a reliable biometric for human 

verification and identification. Beside the use as a 

biometric trait, the ear can be used as a facial feature to 

achieve better head tracking or pose estimation [3]. In 

order to fully automate the ear-based identification/ 

verification techniques, the systems should be able to 

correctly detect the ear position in the acquired images. 

We call this here “ear localization”. 

The ear localization problem comes with many 

challenges that should be dealt with. First of all the ear 

usually constitutes a very small portion of the captured 

image, meaning that the rest of the image should be 

treated as noise or unnecessary clutter. Occlusion caused 

by hair or earrings is another serious challenge. Moreover, 

variations of the ear shape from one user to another 

makes the situation worse. Practical systems should also 

take imaging conditions into considerations. Change in 

lighting conditions, for example, should be tolerated.  

In literature, several ear localization approaches have 

been investigated. Active contours were used in [4] to fit 

the ear in the image. In [5], the authors used deformable 

contours [6] to localize the ear. Hurley et al. [7] 

accomplished the task by applying the so-called “Force 
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field feature extraction”. However, all these contributions 

require an initialization step that is crucial to the success 

of the detection. Without initializing the search around 

the ear in the image, the localization will fail. To avoid 

manual initialization, [1] tries to estimate the ear pit 

location as a starting point for active contour fitting 

algorithm. However, estimating the ear pit location 

involves several steps including preprocessing, skin 

detection, curvature estimation, and surface segmentation 

and classification. Moreover, in order to be able to 

accomplish this task, the nose tip must be reliably 

detected, the matter that adds more complexity to the 

system. Finally, if the ear pit is invisible due to some 

occlusion or any other reason, the system will definitely 

fail. Other researchers relied on AdaBoost classifiers [8], 

[9] in a Viola-Jones-like fashion. The method works well 

and can tolerate occlusion, but processing speed seems to 

be slow. In [8], it is reported that processing time is about 

26 seconds per image. 

In this paper, we present a very robust shape-based ear 

localization technique that can deal with the above-

mentioned challenges. We embrace a template-based 

localization paradigm where single predefined binary 

template of the ear is used to accomplish the task. The 

template is divided into a set of segments that are fed to a 

dynamic programming search algorithm to detect the ear 

in the target images. The algorithm works robustly under 

extensive edge image noise, and can tolerate partial ear 

occlusion. 

Please keep in mind that our goal in this contribution is 

not to identify people using their ear biometrics, but 

rather to localize the ear so that it can be used in 

applications like biometric recognition or verification. 

The paper is organized as follows: Section II 

introduces the concept of ear localization, followed by 

Section III that shows how to achieve the localization 

using dynamic programming. Results are summarized in 

Section IV, and concluding remarks are given in Section 

V. 

II. EAR LOCALIZATION 

Shape-Based detection can in general be achieved by 

either of two ways: Statistical modeling or deterministic 

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 258
doi: 10.18178/ijsps.4.3.258-262



modeling. Statistical modeling, like active shape model 

(ASM) [10], usually requires training of the model using 

a training set of collected shapes. Deterministic modeling, 

on the other hand, relies on object features like edges. 

Since they do not require any training, deterministic 

methods are usually faster and easier to implement. 

Our methodology is classified as deterministic, in 

which we model the ear as a set of contours in an edge 

image. Suppose that a binary template of the ear contour 

is available. The task then is to match the available 

template to the ear contour in the edge image. 

The concept thus is based on storing a single contour 

template of an ear and then using it to match the contours 

present in the edges that are extracted from the query 

image. We search in edge information extracted from the 

acquired image using the very standard Canny edge 

detector. To achieve robust ear localization we use a 

dynamic programming (DP) search algorithm in order to 

insure a globally optimal solution. The procedure is 

abstracted in Fig. 1. 

 

Figure 1. Using template matching with dynamic programming (DP) 
to localize the ear in a query image. 

The scheme possesses several advantages that are able 

to overcome the previously-mentioned challenges. First 

of all, it is robust to illumination changes, since it relies 

only on edge information, which is insensitive to lighting 

changes. Secondly, it is also robust to the presence of 

clutter in the background. Even when the edge image is 

noisy, the detection results are highly reliable, thanks to 

the powerful DP search we are using. It is worth noting 

that we do not put any constraints on the background 

used. The algorithm is assumed to work for any given 

background content. 

Moreover, the allowed template deformations enable 

tolerating scale and orientation changes to certain limit 

(can reach ±50%). This flexibility makes it possible to 

use a single ear template to accomplish localization for 

all system users. I.e., there is no need to store a separate 

template for each user. The technical details are briefly 

described in the following section. 

III. TEMPLATE MATCHING VIA DP 

DP is an algorithm that is used to ensure a globally 

optimal solution of a problem, as it always returns the 

highest score match. It has proven to be successful in 

many contributions [11]-[13]. Hence, we decided to adapt 

the DP algorithm to the task of ear localization. Namely, 

we use DP to search for the best fit of an ear template in a 

given image. Following is a brief clarification of the 

concept. 

As can be seen in Fig. 1, the inputs to the DP module 

are the binary template and the binary edge image. A 

single template is acquired offline and stored to be used 

for online ear detection for all users. Two main issues are 

to be considered here: Template deformation and 

template matching. 

A. Deformable Templates 

In order for the template to be usable, it should adapt 

to different ear shapes and tolerate certain range of 

transformations. This cannot be achieved if it is treated as 

a rigid entity. Instead, it is divided into shorter segments 

that are allowed to move within a certain range during the 

matching process. Deformation is introduced as a result 

of the controlled segment movements. 

 

Figure 2. (left) Original arrangement of two segments (3 pixels each) 
in the template. (middle) Deformation caused by introducing a 1-pixel 

gap between the segments. (right) Deformation caused by introducing a 

1-pixel overlap between the segments. 

The example in Fig. 2 illustrates the concept. It is 

assumed that the template is divided into several 3-pixel 

segments. The left column of the figure shows the 

original spatial arrangements of two segments in the 

template. By allowing the segments to move one pixel, a 

set of deformations can be achieved by introducing a gap 

(middle column) or an overlap (right column) between 

the segments. 

Segments can be shifted to any position in the image to 

be searched, provided that the relative displacement 

between two consecutive segments is not greater than one 

pixel. I.e., if two consecutive segments are shifted by o = 

(ox, oy) and p = (px, py) respectively, then relative 

displacement is governed by: 

|o − p|= max (|ox − px|, |oy − py|) ≤ 1              (1) 

The degree of template flexibility is then governed by 

the segment length. If each segment contains 3 pixels, 

then an overall shrinkage or enlargement of around 1/3 = 

33% can be introduced. 

A mixture of gaps and overlaps will result in a set of 

possible deformations. Fig. 3 shows a random selection 

of possible deformations of a template (upper left) with 

segment length of 2 pixels (up to 50% flexibility). 

 

Figure 3. A random selection of possible deformations of the original 
template (upper left). Each segment is two pixels in length. 

B. Template Matching 

The Viterbi DP algorithm is used for the matching 

process. If the process is viewed as a trellis, each column 

corresponds to a segment, and nodes in that column 
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correspond to possible shift values of that segment in the 

image. Arcs connecting nodes in two consecutive 

columns are governed by (1). 

We search for the path through the trellis that 

maximizes the accumulated score, R. For segment i 

shifted by p, R is given by: 
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             (2) 

where Ω is the set of all possible shifts. V(p,i) is the local 

reward given to node (p,i) and it is equal the number of 

edge pixels segment i will cover if placed at position p.  

When R has been calculated for the last segment the 

algorithm backtracks the optimal path starting from the 

node with the highest R value in the last column. This 

path is returned as the best search result, showing the 

positions to which the template segments should be 

shifted in order to cover the target ear in the image. 

IV. RESULTS 

A. Setup 

To run our experiments, we constructed a dataset of 

212 face profile images downloaded from the internet. 

When collecting the images, we were careful to diversify 

setups and difficulty levels. The database included male, 

female, young, and old face profiles with many noise and 

clutter instances including hair, earrings, and tattoos. 

Within-range transformations (scaling and rotation) were 

also included. 

To assess the detection quality, ground-truth ear 

bounding boxes were defined and saved for each image. 

Fig. 4 shows some samples of the collected images. 

 

Figure 4. Samples of the collected dataset. 

Processing was carried out using a PC with a core 2 

Duo 2.93 GHz Processor with 8 GB of memory. 

A single ear template was acquired offline and used for 

localizing ears in images. Edge images were extracted 

using the standard Canny edge detector. 

For matching with DP, the segment length was set to 2 

pixels. This achieves a flexibility of ±50% of the original 

template size. 

B. Ear Localization 

Ground-truth bounding boxes are used as a comparison 

basis for the ear localization. The receiver operating 

characteristic curve (ROC curve) is chosen as a 

quantitative evaluation measure. The ROC curve depicts 

the correct detection rate versus the average false 

positives per image (FPPI). The highest detection rate 

with the lowest FPPI is desirable.  

 

Figure 5. Performance of the ear detection system in terms of ROC 
curve. 

For our system, the ROC curve is shown in Fig. 5. 

From the figure it can be noticed that our system achieves 

this goal. The system already reaches a detection rate of 

approximately 65% with an FPPI that is close to zero 

(0.02). The best performance is reached with an FPPI of 

0.14 only. At that point the detection rate is 96.2%. An 

FPPI of 0.14 is considered very low in the literature, and 

this proves the robustness of the technique. 

 

Figure 6. Sample results for ear localization. The used edge image is depicted to the right of each result to show how noisy the search space is. 
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Figure 7. Additional sample results for ear localization. Shown results 
demonstrate the robustness of the algorithm to different situations and 

transformations. 

Qualitative localization results are shown in Fig. 6 and 

Fig. 7. The purpose of results shown in Fig. 6 is to stress 

the difficulty of the search space. In most (if not all) of 

the database images, the extracted edge images are very 

noisy constituting a big challenge to any search algorithm. 

Thanks to the robust DP search algorithm and the 

flexibility of the template representation, our system was 

able to accurately localize the ear in the images despite 

the intensive noise present. This can be clearly seen in the 

edge images depicted to the right of the detection results 

shown in Fig. 6. 

Fig. 7 shows extra localization results. The results 

shown in this figure are meant to demonstrate the 

robustness of the algorithm to different situations and 

transformations. First of all, one can notice how the 

detection tolerates different ear shapes for different 

subjects. This is possible due to the segment 

representation of the used ear template. 

Moreover, the system can tolerate changes in ear size 

(up to ±50% of original template size as discussed earlier), 

as can be clearly noticed in the figure. 

Within-range rotation is also robustly handled by our 

algorithm. This can be seen in most of the shown results 

but is more eminent in the first two instances (from the 

left) of the upper row of the Fig. 7. 

Finally, the algorithm can very well handle cases of 

partial ear occlusion, caused by hair and/or earrings. Hair 

occlusion can be observed in the last two instances of the 

upper row of Fig. 7, especially in the last instance where 

occlusion is more eminent. The first three instance of the 

lower row show results with earring occlusion. In all of 

the shown cases the algorithm was able to skirt around 

occlusion and to localize the ear robustly. 

Counter to many existing localization algorithms [8], 

which can only detect the ear up to a bounding box, our 

system is able to define ear contours, making the 

localization results more accurate. This can be clearly 

seen in all results shown in Fig. 6 and Fig. 7. 

V. CONCLUSION 

We presented a technique for robust shape-based ear 

localization in edge images. A dynamic programming 

search, with a binary ear template, is carried out to match 

the corresponding ear contours in the image. A segment 

based representation of the template is adopted in order to 

allow for necessary template deformations. The method 

was tested on a dataset of 212 images containing face 

profiles, each showing an ear instance that can be in a 

noisy surrounding, partially occluded, or moderately 

scaled and/or rotated. The results demonstrated the 

robustness of the technique in localizing ear instances in 

such situations. This was both quantitatively and 

qualitatively illustrated. 
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