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Abstract—The presence of obstruent consonants constitutes 

key landmark events with cues that indicate abrupt acoustic 

discontinuities in the speech signal. Such discontinuities 

allow further analysis and recognition to be performed in 

knowledge-based speech recognition systems. This paper 

describes an acoustical investigation on Thai obstruent 

consonant detection using average level crossing rate 

(ALCR) information. Simple and easy to compute, ALCR 

information alone was successfully used in an automatic 

speech segmentation system for English. Comparable and, 

in some cases, slightly better performance than the spectral-

domain methods using the Mel frequency cepstrum 

coefficients (MFCC) was reported. However, ALCR has 

never been applied to Thai. As a result, the objective of the 

study is to apply ALCR information to ascertain its 

usefulness in detecting significant temporal changes 

involving obstruent consonants in Thai continuous speech. 

Preliminary results suggest that ALCR and RMS energy 

can be combined to detect the phonetic boundary between 

initial obstruent consonant and preceding/following vowel 

or final consonant of the preceding syllable. An experiment 

was conducted on a small speech corpus containing 21 

sentences designed to highlight the occurrences of all 21 

possible leading consonants in various syllable structures. 
The overall detection rate is 83.5% for data from four 

speakers. The proposed method also reduces the insertion 

error due to amplitude variations within a phonetic segment. 
 

Index Terms—average level crossing rate, automatic speech 

segmentation, Thai obstruent detection 

 

I. INTRODUCTION 

In automatic speech recognition systems, the goal is to 

uncover a possible sequence of words from a given 

speech signal. To date, the most successful system is 

based on HMM phone models, and the training of such 

acoustic models depends heavily on large annotated 

speech corpora. HMM-based algorithm is very 

computationally intensive and requires a large amount of 

training data. This is very prohibitive in extending the 

approach to under-resourced languages since no 

significantly large speech corpus exists to provide 

training data for the HMM acoustic models. Alternatively, 

Stevens [1] has proposed a knowledge-based speech 

recognition system which aims at uncovering a word 

sequence by utilizing the knowledge about acoustic 

landmarks and distinctive features determined from the 
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input speech signal. The system consists of three modules: 

landmark detection, feature extraction, and sentence 

reconstruction. Three types of acoustic landmarks (e.g., 

consonant, vowel and glide) are first located in terms of 

time positions or boundaries. Then, a sequence of 

distinctive features bundles, from which a hypothesized 

word sequence is derived, is estimated around those 

boundaries. The final sentence reconstruction involves 

the Lexical Access from Features (LAFF) model based 

on human auditory processing of speech. 

The proposed system described above is considered a 

segment-based approach as opposed to the typical frame-

based approach employed by systems with HMM-based 

acoustic models and n-gram language models. The frame-

based approach is more computationally intensive 

because it treats each consecutive frame of the speech 

signal independently, whereas the segment-based 

approach selectively focuses on those near landmarks 

where acoustic discontinuities occur. It is generally 

agreed that phonetic information, such as the place and 

manner of articulation of segments, is not distributed 

uniformly across an utterance. And, a large amount of 

such information is concentrated at or near acoustic 

landmarks. 

Landmark detection process usually involves some 

types of automatic segmentation algorithm depending on 

the type of landmark being detected. Roughly speaking, 

automatic speech segmentation systems can be separated 

into two categories: implicit (blind) and explicit 

segmentation [2]. First, in the implicit case, the 

segmentation algorithm is designed without any prior 

linguistic knowledge about the phone sequence of the 

input speech signal. On the other hand, the design of the 

explicit type of segmentation algorithm relies on the 

linguistic knowledge associated with the input speech 

signal, such as its phonetic transcription or the knowledge 

of its phoneme sequence and hence the number of 

phonemes present. Thus, the system is only required to 

optimally locate the boundary locations that best coincide 

with the phoneme sequence given. 

In this paper, the focus is on blind or implicit detection 

of consonant landmark, especially the detection of 

obstruent consonants (stops or plosives, fricatives and 

affricates). Obstruent consonants are those that get 

produced by partially or completely blocking the airflow 

from the lungs through the oral cavity. For example, a 

signature acoustic characteristic of stop consonants is the 

complete obstruction (i.e., closure) followed by sharp 
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release of energy while fricatives are produced by partial 

occlusion of the airstream resulting in a noise-like 

turbulence. Affricates are composite speech sounds 

similar to a stop consonant gradually released with 

audible friction like a fricative. In terms of spectral 

behavior, obstruent consonants are very transient and 

dynamical. 

II. RESEARCH MOTIVATION 

Obstruent detection problem has been studied over the 

past decade for various languages [3], [4] and [5]. In [6], 

the energy of six different frequency bands was 

calculated from the broadband spectrogram of the speech 

signal and abrupt change in the amplitude of each band 

energy is located with a two-pass peak-picking algorithm. 

Recently in 2014, Vachhani, Malde, Madhavi, and Patil 

[7] proposed a novel approach to the design of an 

automatic obstruent detection of English using spectral 

transition measure (STM) based on the Mel frequency 

cepstrum coefficients (MFCC) feature. The method does 

not take into account any prior information, such as 

phonetic sequence, speech transcription, and/or number 

of obstruents. The detection efficiency and estimated 

probability are around 77% and 0.77, respectively with a 

30-ms duration agreement criterion and 0.4 STM 

threshold setting. 

Our obstruent consonant landmark detection system 

for Thai continuous speech is based on the first type 

(implicit or blind case) of the segmentation procedures 

described in section I above. The system tries to detect 

the phonetic boundary between initial obstruent 

consonant and preceding/following vowel or final 

consonant of the preceding syllable. It is worth noting 

that HMM models are not used despite high degree of 

segmentation accuracy. Because Thai is an under-

resourced language, no significantly large speech corpus 

exists to provide training data for the HMM acoustic 

models. Since the use of HMM approach is not chosen, it 

is imperative that a simpler alternative method that is 

capable of detecting acoustic boundaries from the input 

speech be found. 

Segmentation algorithms based on time-domain 

features called average level crossing rate (ALCR) and 

Extrema-based signal track length (ESTL) were 

investigated in [8], [9]. Simple and easy to compute, 

ALCR information was successfully used in an automatic 

speech segmentation system for English. Comparable and, 

in some cases, slightly better performance than the 

spectral-domain methods using MFCC’s was reported. 

Accuracy around 80% was reported with computational 

time reduction by approximately 75% compared with that 

of spectral domain methods. As for Thai speech 

segmentation, several types of energy calculations, such 

as absolute, root-mean-square, square, Teager, and 

modified Teager energy, were used for syllable 

segmentation of Thai connected speech based on the local 

extrema of those energy contours [10]. Recently in [11], 

1-D stationary wavelet transform (SWT) whose detail 

coefficient component representing the high frequency 

part of input signal was used to analyze the boundaries of 

syllables. In [12], Theera-Umpon, Chansareewittaya, and 

Auephanwiriyakul proposed a phoneme recognition 

system with soft phoneme segmentation using discrete 

hidden Markov models based on the Mel frequency with 

perceptual linear prediction and the Mel frequency 

cepstrum coefficients. After a careful literature review, 

the use of temporal-based features was not found to have 

been utilized in Thai speech segmentation. Thus, 

following [8], our objective is to apply ALCR 

information to ascertain its usefulness in detecting 

significant temporal changes in Thai continuous speech 

in this paper. A novel method of combining ALCR and 

RMS Energy measures to improve segmentation 

performance is also proposed. 

III. ALCR DESCRIPTION 

In this section, the computation of ALCR and some 

observations on the characteristics of the ALCR contours 

will be described. 

A. Front-End Preprocessing 

The input speech signal was sampled at 22050 

samples/s and quantized to 16 bits/sample. The resulting 

discrete-time sequence was then normalized with respect 

to its maximum to lie within [-1, 1] and then made zero 

mean to get rid of a DC offset. The sequence was then 

pre-emphasized with a first-order low-pass filter 

according to the following LCCDE: 

y[n]=x[n]−0.95x[n−1]                         (1) 

B. ALCR Feature Extraction 

Following [8], the level crossing rate (LCR) at any 

sample point and for a certain level is defined as the total 

of all the level crossings that have occurred for that level 

over a short interval around that sample point divided by 

the interval duration. Then, the average level crossing 

rate (ALCR) at each sample point was obtained by 

summing LCR’s over all levels.  

Let )(tx  be a continuous-time signal. For a set of pre-

defined levels, j , 1 ≤ j ≤ J, where J is a total number of 

levels based on the signal amplitude dynamic range, the 

signal )(tx is said to have crossed the level j  at a given 

time instant  if x( )= j  and )()(   xx j  

or )()(   xx j  for an infinitesimally small 

duration of time  . If the above condition is true, a level 

crossing indicator function is defined as 
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By the same token, consider a discrete-time signal, 

x[n]. Mathematically, for a given sample and level j , a 

level crossing indicator function l(j, n) occurs between 

x[n−1] and x[n] if the following condition is true: 

1, ( [ ] )( [ 1] ) 0
( , )

0

j j
x n x n

l j n
otherwise

    

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       (4) 

The level crossing rate (LCR) for level j  over the 

interval [n1, n2] is then expressed as 
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And, the expression for the average level crossing rate 

(ALCR) over all possible levels is given as 
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To compute the level crossing rate, the distribution of 

levels can be constructed in either a uniform or non-

uniform manner. In this study, our speech samples were 

recorded in a quite environment. Thus, it is safe to 

assume that the signal-to-noise ratio (SNR) is high, and, 

consequently, a high number of levels (80 levels) was 

used with a uniform distribution of levels within the 

normalized dynamic range of the signal between [-1, 1]. 

Regarding the length of the averaging interval (n2-n1=2), 

it is recommended that the interval should be chosen such 

that 2  one pitch period. Since this is just an 

approximation, no accurate pitch extraction is required. 

For a male voice, the pitch typically ranges from 60 to 

150Hz. Thus, for a sampling rate of 22050Hz, one pitch 

period corresponds to 147 to 368 samples. For a female 

voice, the pitch typically ranges from 200 to 300Hz. Thus, 

for a sampling rate of 22050Hz, one pitch period 

corresponds to 74 to 110 samples. For convenience, the 

interval length is kept constant at 400 samples. 

It is noteworthy that ALCR can be calculated for every 

sample location of the input speech sequence. That is, 

ALCR over a certain interval of samples can be 

computed using an analysis window of a given length and 

advancing across the input speech signal by one sample 

at a time. In term of frame-based processing, instead of 

the usual frame step of 10ms, the amount of the frame 

step of the analysis window is only one sample, which is 

equal to the length of the sampling interval (e.g. 0.045ms 

for a sampling rate of 22050Hz). This fact helps increase 

segmentation accuracy (0.045ms vs 10ms) because the 

resolution of the automatic method is now the same as 

that of the manual method, which is at the sampling step 

of 0.045ms. 

The side effect of choosing a small frame step of one 

sample is that the resulting ALCR contour is very choppy 

containing several spurious minima and maxima. This 

can be remedied by moving average filtering the contour. 

To avoid too much smoothing, the window length is 

chosen to be 201 samples, 100 samples on either side of 

the current value of the ALCR contour. 

From the plot of an ALCR contour, it is observed that 

the range of the magnitude of the contour depends on the 

normalized amplitude of the input speech signal, i.e., on 

the recording level. Fig. 1 shows three plots of ALCR 

contours of the same utterance whose magnitude was 

uniformly scaled by 0.5 and 0.25 times the that of the 

original signal. It is interesting to note that while the 

magnitude ranges are different, the overall shape of the 

contours does not basically change. Only subtle 

differences can be detected. This implies that any 

phoneme boundary demarcation process should be 

designed to be insensitive to these differences. This 

means that one should normalize the ALCR contour with 

respect to its maximum so that it lies within [0, 1]. 

 

Figure 1.  Different ALCR contours of an input speech signal whose normalized amplitude is scaled by 0.5 and 0.25 times the original amplitude. (a) 
A plot of speech signal; (b) ALCR contour without amplitude scaling; (c) ALCR contour with amplitude scaling by 0.5; and (d) ACLR contour with 

amplitude scaling by 0.25

C. Boundary Demarcation Process 

In [9], it is reported that ALCR magnitude is directly 

proportional to the product between amplitude and 

frequency of a given sinusoidal signal. Since the speech 

signal can be thought of as a combination of sinusoid of 

different amplitudes and frequencies, temporal changes 

from one phoneme to the next occur with substantial 

changes in amplitude and frequency. By noting the points 

of change in ALCR curve expressed through its valleys, 
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the boundary between phonemes can be detected by 

searching for the locations of valleys or local minima of 

the ALCR curve. This task was proven difficult, and the 

authors recommended setting a threshold for picking 

valleys based on speech properties to avoid insertions and 

deletions. 

In this study, it is proposed that the obstruent detection 

process be performed on the difference between the 

ALCR and the RMS energy contours by detecting the 

zero-crossings of the difference contour. The threshold-

based method was not chosen because fixed thresholds 

limit the algorithm’s ability to capture the range of 

phonetic variation. The next section describes 

segmentation results for obstruents detection and the 

rationale behind the boundary demarcation process. 

IV. EXPERIMENT AND RESULTS 

A. Speech Materials 

The speech corpus contains 21 sentences (listed in 

appendix A) designed to highlight the occurrences of all 

21 possible leading consonants in various syllable 

structures. Within those 21 sentences, there are a total of 

144 obstruents distributed as follows: 19 fricatives, 26 

affricates, 39 voiceless unaspirated stops, 45 voiceless 

aspirated stops, and 15 voiced stops. The algorithm was 

tested on 84 (21 sentences  4 speakers) connected 

speech utterances read by 2 male and 2 female speakers 

in the 22-35 age range. All subjects were mono-dialectal 

speakers of Standard Thai. They were free of any speech 

or hearing disorders by self-report based on a screening 

interview and as later judged by the investigator during 

the recording session. 

Recordings were made in a quiet office using 

recording feature of the Microsoft freeware ‘Speech 

Analyzer’ version 3.1.0 installed on a Dell Latitude 

laptop computer. The digitization is at a sampling rate of 

22050Hz by means of a 16-bit mono A/D converter. 

Speakers were seated and wore a regular Logitech 

computer headset with microphone maintained at a 

distance of 5cm from the lips. Each speaker was asked to 

read those 21 sentences once at their conversational 

speaking rate. Before the recording session began, the 

speakers were allowed to familiarize themselves with the 

sentences. Each session lasted about 20 minutes. 

B. Analysis Results 

For obstruents detection, it is observed that the 

magnitude of the ALCR contour during an obstruent 

portion of the speech signal tends to be higher than the 

magnitude of the RMS energy contour of the same 

segment. It makes sense because for obstruents, its 

frequency is high while the amplitude is low. As 

mentioned before, ALCR magnitude is directly 

proportional to both amplitude and frequency of the input 

speech signal. On the other hand, RMS energy 

calculation depends on the amplitude only, i.e. 
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where xj[.] is the jth sample of the speech sequence x. 

Based on the observation above, obstruent detection 

was performed on the difference between the ALCR and 

the RMS energy contours by detecting the zero-crossings 

of the difference contour. Those zero-crossing points 

correspond to the points where changes in amplitude of 

the speech signal is more pronounced indicating a 

transition from one segment to the other adjacent segment. 

In other words, these points occur at the crossing of the 

ALCR and the RMS energy contours. 

Fig. 2 shows three plots representing various 

calculations and boundary detection results for sentence 

no. 6 of the appendix A. From the middle plot, one can 

see that the magnitude of the ALCR contour is higher 

than that of the RMS energy contour during the ‘c
h
’ 

segments of the speech signal, which is the initial 

consonant of every syllable. On the other hand, the 

magnitude of the ALCR contour is lower than that of the 

RMS energy contour during the rhyme portion of the 

syllable, i.e., the portion containing the nucleus (vowel) 

and the final consonant. The difference between these 

two contours shown superimposed on the speech signal 

clearly indicates distinct boundaries between the affricate 

and the preceding/following sound segment. The bottom 

plot shows the difference contour resulting from 

subtracting the RMS energy contour from the ALCR 

contour shown in the middle plot. The bottom plot also 

shows the segment boundaries demarcating the affricate, 

‘c
h
’, sounds, which are obtained by locating the zero-

crossings of the difference contour. For each ‘c
h
’ segment, 

the boundary on its right side demarcates the boundary 

between the initial consonant and the vowel of that 

syllable whereas the one on its left side demarcates the 

boundary between itself and the final consonant of the 

previous syllable. 

It is important to note again that the horizontal axis 

does not represent the frame index because the 

calculations are done with a frame step of one sample as 

previously mentioned in Section III. In other words, the 

frame index coincides with the sample index. This is 

done to increase segmentation accuracy and to facilitate 

the comparison with manual segmentation. 

To measure performance of the proposed method, 

percent detection efficiency is computed. Detection 

efficiency is defined as the ratio of the total number of 

obstruents detected to the total number of 576 (1444 

speakers) obstruents contained in the 84 test utterances. 

In addition, a detected boundary is considered to match 

with that from manual segmentation if they are within 20-

ms duration agreement of each other. The insertion error 

due to amplitude variation within a phonetic segment was 

eliminated. The insertion error is primarily caused by a 

shallow dip in the ALCR contour (solid contour) of a 

segment (see the middle plot of Fig. 2 at 0.9-1.0 sec, 1.8-

2.0 sec, 2.7-2.8 sec and 3.0-3.1 sec). A 90.3% detection 

rate was obtained in detecting fricatives, affricates, and 

voiceless aspirated stops. However, the detection rate for 

voiced and voiceless unaspirated stops reduces 

significantly to 72.2%. The overall detection rate is 

83.5% for data from the four speakers. 
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Figure 2.  (Top) Spectrogram of sentence #6 along with segment-by-segment phonemic transcription; (middle ) comparison of superimposed solid 
ALCR and dotted RMS Energy contours; and (bottom) the difference contour between ALCR and RMS energy contours superimposed on the speech 

signal, along with the segment boundaries demarcating the ch segment obtained from locating zero-crossings of the difference contour. 

V. CONCLUSIONS AND FUTURE DIRECTIONS 

Preliminary results on the application of ALCR 

information and RMS energy to ascertain their combined 

usefulness in detecting significant temporal changes in 

Thai continuous speech have been presented. The results 

suggest that their difference can be used to detect the 

phonetic boundary between consonant and vowel as well 

as between some consonants. The proposed algorithm is 

based on the characteristic property of ALCR that its 

magnitude is directly related to the product between 

amplitude and frequency of the speech samples. In 

particular, ALCR can be reliably used to detect speech 

landmark based on the presence of Thai obstruents when 

combined with the RMSE energy feature. However, their 

difference fails as an effective acoustic feature for 

detecting the boundary between voiced/voiceless 

unaspirated stops and vowel as can be seen from a low 

detection rate. Results from previous acoustical 

experiments suggest that formant transition between them 

can be used to identify the manner and place of 

articulation of these stops. Thus, it is believed that a 

successful detection scheme must incorporate both 

temporal and spectral domain features in order to 

significantly improve performance. 

As a final note, the next phase of this research is to 

continue assessing performance of this detection 

algorithm using a larger group of speakers (more than 20 

spekers) in order to be certain of the effectiveness of the 

method. Furthermore, although the focus of this paper is 

on the application of the algorithm to Thai continuous 

speech, our goal is to attempt to extend the method to 

other languages. In particular, ongoing experiment is 

being conducted with American English using utterances 

from the standard TIMIT speech database. So far, 

preliminary results are very promising. 
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APPENDIX  SPEECH STIMULI 

The following is a list of utterances comprising the 

speech materials used in the experiment. Phonemic 

transcription and English translation accompany each of 

the Thai sentences. They are designed to highlight the 

occurrences of all 21 possible leading consonants in 

various syllable structures. Although Thai has five 

contrastive tones, no attempt was made to account for 

tone distribution. 

1. สมศรีอยากสักลายเสือท่ีแขนขา้งขวา 
    sǒmsɪ̌ɪ jɑ̀ɑk sɑ̀k lɑɑɪ sɯ̌ɑ tʰɪ̂ɪ kʰɛ̌ɛn kʰɑ̂ɑŋ kʰwɑ̌ɑ 

    ‘SomSri wants to tattoo a tiger pattern on her right 

arm.’ 

2. อรอนงคอ์อกอาการอึดอดัเม่ืออ๊อดออดออ้น 

    ʔɔɔnʔɑnoŋ ʔɔɔ̀k ʔɑɑkɑɑn ʔɯ̀tʔɑ̀t mɯ̂ɑ ʔɔɔ́t ʔɔɔ̀tʔɔ̂ɔn 

    Orn-anong felt uncomfortable when Aut pleaded with 

her. 

3. แว่วค าหวานวา่วนัวานยงัหวานอยู ่
    wɛ̂ɛʊ kʰɑm wɑ̌ɑn wɑ̂ɑ wɑn wɑɑn jɑŋ wɑ̌ɑn jʊ̀ʊ 

    ‘(I) vaguely hear the sweet talk that things are still as 

sweet as yesterday.’  

4. กูเ้กียรติเป็นคนกร้าวแกร่งกวา่ท่ีคิด 

    kʊ̂ʊkɪ̀ɑt pen kʰon krɑɑ̂ʊ krɛ̀ŋ kwɑ̀ɑ tʰɪ̂ɪ kʰɪ́t 

    ‘Kookiat is tougher than I thought.’ 

5. ทหารถอดพระท่ีห้อยคอไวบ้นห้ิง 
    tʰɑhɑ̌ɑn tʰɔ̀ɔt pʰrɑ́ tʰɪ̂ɪ hɔ̂ɪ kʰɔɔ wɑ́ɪ bon hɪ̂ŋ 

    The soldier took off a neck chain of amulets and put it 

on the shelf.’ 

6. ชาญชยัช่างเช่ืองชา้เฉกเช่นชายช่ือชวน 

    cʰɑɑncʰɑɪ cʰâŋ cʰɯ̂ɑŋcʰ́ɑɑ cʰèek cʰên cʰɑɑɪ cʰɯ̂ɯ  

    cʰʊʊɑn 

‘ChanChai was as slow as the man named Chuan.’ 
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7. ยายเม้ียนยา่งเน้ือววัไวย้  าเยน็น้ี 

     jɑɑɪ mɪ́ɑn jɑ̂ɑŋ nɯ́ɑ wɑ́ɪ jɑɑm jen nɪ́ɪ 

    ‘Grandma Mian is roasting some beef for making salad 

tonight.’ 

8. ท่องเท่ียวทัว่ไทยไปกบับริษทัทวัร์สยาม 

    tʰɔ̂ŋtʰɪ̂ɑʊ tʰʊ̂ɑ tʰaɪ paɪ kɑ̀p tʰʊɑ sɑjɑ̌ɑm 

    ‘Travel all over Thailand with Siam Tour Company.’ 

9. สถานบริบาลเด็กเล็กอยูแ่ถวบา้นท่ีบางบวั 
     s̀ɑtʰɑ̌ɑnbɑrɪbɑɑn dèklék jʊ̀ʊ tʰɛ̌ʊ bɑ̂ɑn tʰɪ̂ɪ bɑɑŋbʊɑ 

    ‘The daycare center is located in the vicinity of our 

BangBua home.’ 

10. รายการ คุยคุย้ข่าว คนไม่ค่อยชอบดู 

     rɑɑɪkɑɑn kʰʊɪkʰʊ́ɪkʰɑ̀ɑɪ kʰon mɑ̂ɪ kʰɔ̂ɪ cʰɔ̂ɔp dʊʊ 

     ‘People don’t quite like to watch the KhuiKhuiKhaw 

show.’ 

11. เฟ่ืองฟ้าชอบแดดจดัแต่ไม่ชอบฝน 

      fɯ̂ɑŋfɑ́ɑ cʰɔ̂ɔp dɛ̀ɛt cɑ̀t tɛ̀ɛ mɑ̂ɪ cʰɔ̂ɔp fǒn 

      Bougainvillea likes full sun, but not rain.’ 

12. จนัจิราเป็นคนจูจ้ี้จุกจิกเอาแต่ใจ 
      cɑncɪ̀rɑɑ pen kʰon cʊ̂ʊcɪ̂ɪ cʊ̀kcɪ̀k ʔɑʊ tɛ̀ɛ cɑɪ 

     ‘Chanchira is a self-centered and nitpicking person.’ 

13. เด็กๆ ดึงดนัจะดูแลเด่นดนัยดว้ยกนั 

      dèkdèk dɯŋdɑn cà dʊʊlɛɛ dèndɑ̀nɑɪ dʊɑ̂ɪ kɑn 

     ‘Children insisted on taking care of Dendanai 

together.’ 

14. ตฤณตรอมใจเพราะมองวา่ตวัเองต ่าตอ้ย 
      trɪn trɔɔm cɑɪ pʰrɔ́ mɔɔŋ wɑ̂ɑ tʊɑ ʔeeŋ tɑ̀mtɔ̂ɪ 

      Trin becomes depressed because of his inferiority 

complex.’ 

15. ป้าแป้นถูกส่งไปประจ าท่ีด่านปอยเปต 

      pɑ̂ɑ pɛ̂n tʰʊ̀ʊk sòŋ pɑɪ prɑ̀cɑm tʰɪ̂ɪ dɑ̀ɑn pɔɔɪpèet 

     ‘Aunt Pan is assigned a post at the Poipet border 

control.’ 

16. ลุงหาญชอบลอ้ลลิตาเร่ืองลุกล้ีลุกลน 

      lʊŋ hɑ̌ɑn cʰɔ̂ɔp lɔ́ɔ lɑ́lɪ́tɑɑ rɯ̂ɑŋ lʊ́klɪ́ɪlʊ́klon 

     ‘Uncle Hahn likes to tease Lolita’s clumsiness.’ 

17. เรารู้สึกรันทดหดหู่เม่ือไดย้นิเร่ืองราวร้ายๆ 

      rɑʊ rʊ́ʊsɯ̀k rɑntʰót hòthʊ̀ʊ mɯ̂ɑ dɑ̂ɪ jɪn rɯ̂ɑŋrɑɑʊ rɑ́ɪ  

      rɑ́ɪ 

     ‘We feel depressed and dejected when hearing terrible 

news.’ 

18. แพรวพรรณขึ้นทอดผา้ท่ีงานศพพวงพยอม 

      pʰrɛɛʊpʰɑn kʰɯ̂n tʰɔ̂ɔt pʰɑ̂ɑ tʰɪ̂ɪ ŋɑɑn sòp pʰʊʊɑŋ  

      pʰɑjɔɔm 

     ‘Phraewphan laid a yellow monk robe at 

Phuangphayom’s funeral. 

19. นลินีชอบทั้งขนมจีนน ้ ายาและน ้ าเง้ียว 
      nɑ́lɪ́nɪɪ cʰɔ̂ɔp tʰɑ́ŋ kʰɑ̀nǒmcɪɪn nɑ́ɑmjɑɑ lɛ́ nɑ́ɑmŋɪɑ́ʊ 

      ‘Nalinee likes both Namya and Nam-ngiaw rice 

noodle dish.’ 

20. เธองอแงเพราะหงุดหงิดท่ีไม่มีใครงอนงอ้ 
      tʰəə ŋɔɔŋɛɛ pʰrɔ́ ŋʊ̀tŋɪ̀t tʰɪ̂ɪ mɑ̂ɪ mɪɪ kʰrɑɪ ŋɔɔnŋɔ́ɔ 

      She made a big fuss because everyone ignores her.’ 

21. เขาซ้ือมะม่วงมนัมามากมายเม่ือตอนปีใหม่ 

      kʰɑ̌ʊ sɯ́ɯ mɑ́mʊ̂ɑŋmɑn mɑɑ mɑ̂ɑkmɑɑɪ mɯ̂a tɔɔn  

      pɪɪ mɑ̀ɪ 

      ‘He bought a lot of nutty-flavored mangoes during the 

New Year’s celebration. 
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