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Abstract—The presence of obstruent consonants constitutes
key landmark events with cues that indicate abrupt acoustic
discontinuities in the speech signal. Such discontinuities
allow further analysis and recognition to be performed in
knowledge-based speech recognition systems. This paper
describes an acoustical investigation on Thai obstruent
consonant detection using average level crossing rate
(ALCR) information. Simple and easy to compute, ALCR
information alone was successfully used in an automatic
speech segmentation system for English. Comparable and,
in some cases, slightly better performance than the spectral-
domain methods using the Mel frequency cepstrum
coefficients (MFCC) was reported. However, ALCR has
never been applied to Thai. As a result, the objective of the
study is to apply ALCR information to ascertain its
usefulness in detecting significant temporal changes
involving obstruent consonants in Thai continuous speech.
Preliminary results suggest that ALCR and RMS energy
can be combined to detect the phonetic boundary between
initial obstruent consonant and preceding/following vowel
or final consonant of the preceding syllable. An experiment
was conducted on a small speech corpus containing 21
sentences designed to highlight the occurrences of all 21
possible leading consonants in various syllable structures.
The overall detection rate is 83.5% for data from four
speakers. The proposed method also reduces the insertion
error due to amplitude variations within a phonetic segment.

Index Terms—average level crossing rate, automatic speech
segmentation, Thai obstruent detection

I. INTRODUCTION

In automatic speech recognition systems, the goal is to
uncover a possible sequence of words from a given
speech signal. To date, the most successful system is
based on HMM phone models, and the training of such
acoustic models depends heavily on large annotated
speech corpora. HMM-based algorithm is very
computationally intensive and requires a large amount of
training data. This is very prohibitive in extending the
approach to under-resourced languages since no
significantly large speech corpus exists to provide
training data for the HMM acoustic models. Alternatively,
Stevens [1] has proposed a knowledge-based speech
recognition system which aims at uncovering a word
sequence by utilizing the knowledge about acoustic
landmarks and distinctive features determined from the
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input speech signal. The system consists of three modules:
landmark detection, feature extraction, and sentence
reconstruction. Three types of acoustic landmarks (e.g.,
consonant, vowel and glide) are first located in terms of
time positions or boundaries. Then, a sequence of
distinctive features bundles, from which a hypothesized
word sequence is derived, is estimated around those
boundaries. The final sentence reconstruction involves
the Lexical Access from Features (LAFF) model based
on human auditory processing of speech.

The proposed system described above is considered a
segment-based approach as opposed to the typical frame-
based approach employed by systems with HMM-based
acoustic models and n-gram language models. The frame-
based approach is more computationally intensive
because it treats each consecutive frame of the speech
signal independently, whereas the segment-based
approach selectively focuses on those near landmarks
where acoustic discontinuities occur. It is generally
agreed that phonetic information, such as the place and
manner of articulation of segments, is not distributed
uniformly across an utterance. And, a large amount of
such information is concentrated at or near acoustic
landmarks.

Landmark detection process usually involves some
types of automatic segmentation algorithm depending on
the type of landmark being detected. Roughly speaking,
automatic speech segmentation systems can be separated
into two categories: implicit (blind) and explicit
segmentation [2]. First, in the implicit case, the
segmentation algorithm is designed without any prior
linguistic knowledge about the phone sequence of the
input speech signal. On the other hand, the design of the
explicit type of segmentation algorithm relies on the
linguistic knowledge associated with the input speech
signal, such as its phonetic transcription or the knowledge
of its phoneme sequence and hence the number of
phonemes present. Thus, the system is only required to
optimally locate the boundary locations that best coincide
with the phoneme sequence given.

In this paper, the focus is on blind or implicit detection
of consonant landmark, especially the detection of
obstruent consonants (stops or plosives, fricatives and
affricates). Obstruent consonants are those that get
produced by partially or completely blocking the airflow
from the lungs through the oral cavity. For example, a
signature acoustic characteristic of stop consonants is the
complete obstruction (i.e., closure) followed by sharp
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release of energy while fricatives are produced by partial
occlusion of the airstream resulting in a noise-like
turbulence. Affricates are composite speech sounds
similar to a stop consonant gradually released with
audible friction like a fricative. In terms of spectral
behavior, obstruent consonants are very transient and
dynamical.

Il. RESEARCH MOTIVATION

Obstruent detection problem has been studied over the
past decade for various languages [3], [4] and [5]. In [6],
the energy of six different frequency bands was
calculated from the broadband spectrogram of the speech
signal and abrupt change in the amplitude of each band
energy is located with a two-pass peak-picking algorithm.
Recently in 2014, Vachhani, Malde, Madhavi, and Patil
[7] proposed a novel approach to the design of an
automatic obstruent detection of English using spectral
transition measure (STM) based on the Mel frequency
cepstrum coefficients (MFCC) feature. The method does
not take into account any prior information, such as
phonetic sequence, speech transcription, and/or number
of obstruents. The detection efficiency and estimated
probability are around 77% and 0.77, respectively with a
30-ms duration agreement criterion and 0.4 STM
threshold setting.

Our obstruent consonant landmark detection system
for Thai continuous speech is based on the first type
(implicit or blind case) of the segmentation procedures
described in section | above. The system tries to detect
the phonetic boundary between initial obstruent
consonant and preceding/following vowel or final
consonant of the preceding syllable. It is worth noting
that HMM models are not used despite high degree of
segmentation accuracy. Because Thai is an under-
resourced language, no significantly large speech corpus
exists to provide training data for the HMM acoustic
models. Since the use of HMM approach is not chosen, it
is imperative that a simpler alternative method that is
capable of detecting acoustic boundaries from the input
speech be found.

Segmentation algorithms based on time-domain
features called average level crossing rate (ALCR) and
Extrema-based signal track length (ESTL) were
investigated in [8], [9]. Simple and easy to compute,
ALCR information was successfully used in an automatic
speech segmentation system for English. Comparable and,
in some cases, slightly better performance than the
spectral-domain methods using MFCC’s was reported.
Accuracy around 80% was reported with computational
time reduction by approximately 75% compared with that
of spectral domain methods. As for Thai speech
segmentation, several types of energy calculations, such
as absolute, root-mean-square, square, Teager, and
modified Teager energy, were used for syllable
segmentation of Thai connected speech based on the local
extrema of those energy contours [10]. Recently in [11],
1-D stationary wavelet transform (SWT) whose detail
coefficient component representing the high frequency
part of input signal was used to analyze the boundaries of
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syllables. In [12], Theera-Umpon, Chansareewittaya, and
Auephanwiriyakul proposed a phoneme recognition
system with soft phoneme segmentation using discrete
hidden Markov models based on the Mel frequency with
perceptual linear prediction and the Mel frequency
cepstrum coefficients. After a careful literature review,
the use of temporal-based features was not found to have
been utilized in Thai speech segmentation. Thus,
following [8], our objective is to apply ALCR
information to ascertain its usefulness in detecting
significant temporal changes in Thai continuous speech
in this paper. A novel method of combining ALCR and
RMS Energy measures to improve segmentation
performance is also proposed.

I1l.  ALCR DESCRIPTION

In this section, the computation of ALCR and some
observations on the characteristics of the ALCR contours
will be described.

A. Front-End Preprocessing

The input speech signal was sampled at 22050
samples/s and quantized to 16 bits/sample. The resulting
discrete-time sequence was then normalized with respect
to its maximum to lie within [-1, 1] and then made zero
mean to get rid of a DC offset. The sequence was then
pre-emphasized with a first-order low-pass filter
according to the following LCCDE:

y[n]=x[n]—0.95x[n—1] 1)
B. ALCR Feature Extraction

Following [8], the level crossing rate (LCR) at any
sample point and for a certain level is defined as the total
of all the level crossings that have occurred for that level
over a short interval around that sample point divided by
the interval duration. Then, the average level crossing
rate (ALCR) at each sample point was obtained by
summing LCR’s over all levels.

Let x(t) be a continuous-time signal. For a set of pre-

defined levels, 77;, 1 <j<J, where J is a total number of

levels based on the signal amplitude dynamic range, the
signal x(t) is said to have crossed the level 7; at a given

time instant 7 if X(7 )=7; and X(z —A) <n; <X(z+A)
or x(z—A)>n; >x(z+A) for an infinitesimally small

duration of time A . If the above condition is true, a level
crossing  indicator  function is  defined as
I(j,t) =5 (t—7) and the level crossing rate for level 7;

over atime interval (t,t,) can be computed by

t
Lt t) = —— [1(j. @
t

(t; -t) y

By summing over all levels, the ALCR is given by

ALCR(t;, t,) =

J t
> {J‘I(j,t)dt] 3)

(t-t) 3 4



International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

By the same token, consider a discrete-time signal,
x[n]. Mathematically, for a given sample and level 7;, a

level crossing indicator function I(j, n) occurs between
x[n—1] and x[n] if the following condition is true:

L aml-n)(dn-1-7,) <0
G =4

otherwise
The level crossing rate (LCR) for level 7; over the
interval [ny, n,] is then expressed as

L S

2~ N1i=n,

4)

L(j,ny,np)= (5)

And, the expression for the average level crossing rate
(ALCR) over all possible levels is given as

J
ALCR(nl!nZ): ZL(J,n lan)
j=1

(6)

To compute the level crossing rate, the distribution of
levels can be constructed in either a uniform or non-
uniform manner. In this study, our speech samples were
recorded in a quite environment. Thus, it is safe to
assume that the signal-to-noise ratio (SNR) is high, and,
consequently, a high number of levels (80 levels) was
used with a uniform distribution of levels within the
normalized dynamic range of the signal between [-1, 1].
Regarding the length of the averaging interval (n,-n;=2A),
it is recommended that the interval should be chosen such
that 2A one pitch period. Since this is just an
approximation, no accurate pitch extraction is required.
For a male voice, the pitch typically ranges from 60 to
150Hz. Thus, for a sampling rate of 22050Hz, one pitch
period corresponds to 147 to 368 samples. For a female
voice, the pitch typically ranges from 200 to 300Hz. Thus,
for a sampling rate of 22050Hz, one pitch period

corresponds to 74 to 110 samples. For convenience, the
interval length is kept constant at 400 samples.

It is noteworthy that ALCR can be calculated for every
sample location of the input speech sequence. That is,
ALCR over a certain interval of samples can be
computed using an analysis window of a given length and
advancing across the input speech signal by one sample
at a time. In term of frame-based processing, instead of
the usual frame step of 10ms, the amount of the frame
step of the analysis window is only one sample, which is
equal to the length of the sampling interval (e.g. 0.045ms
for a sampling rate of 22050Hz). This fact helps increase
segmentation accuracy (0.045ms vs 10ms) because the
resolution of the automatic method is how the same as
that of the manual method, which is at the sampling step
of 0.045ms.

The side effect of choosing a small frame step of one
sample is that the resulting ALCR contour is very choppy
containing several spurious minima and maxima. This
can be remedied by moving average filtering the contour.
To avoid too much smoothing, the window length is
chosen to be 201 samples, 100 samples on either side of
the current value of the ALCR contour.

From the plot of an ALCR contour, it is observed that
the range of the magnitude of the contour depends on the
normalized amplitude of the input speech signal, i.e., on
the recording level. Fig. 1 shows three plots of ALCR
contours of the same utterance whose magnitude was
uniformly scaled by 0.5 and 0.25 times the that of the
original signal. It is interesting to note that while the
magnitude ranges are different, the overall shape of the
contours does not basically change. Only subtle
differences can be detected. This implies that any
phoneme boundary demarcation process should be
designed to be insensitive to these differences. This
means that one should normalize the ALCR contour with
respect to its maximum so that it lies within [0, 1].
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Figure 1. Different ALCR contours of an input speech signal whose normalized amplitude is scaled by 0.5 and 0.25 times the original amplitude. (a)
A plot of speech signal; (b) ALCR contour without amplitude scaling; (c) ALCR contour with amplitude scaling by 0.5; and (d) ACLR contour with
amplitude scaling by 0.25

C. Boundary Demarcation Process

In [9], it is reported that ALCR magnitude is directly
proportional to the product between amplitude and
frequency of a given sinusoidal signal. Since the speech
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signal can be thought of as a combination of sinusoid of
different amplitudes and frequencies, temporal changes
from one phoneme to the next occur with substantial
changes in amplitude and frequency. By noting the points
of change in ALCR curve expressed through its valleys,
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the boundary between phonemes can be detected by
searching for the locations of valleys or local minima of
the ALCR curve. This task was proven difficult, and the
authors recommended setting a threshold for picking
valleys based on speech properties to avoid insertions and
deletions.

In this study, it is proposed that the obstruent detection
process be performed on the difference between the
ALCR and the RMS energy contours by detecting the
zero-crossings of the difference contour. The threshold-
based method was not chosen because fixed thresholds
limit the algorithm’s ability to capture the range of
phonetic  variation. The next section describes
segmentation results for obstruents detection and the
rationale behind the boundary demarcation process.

IV. EXPERIMENT AND RESULTS

A. Speech Materials

The speech corpus contains 21 sentences (listed in
appendix A) designed to highlight the occurrences of all
21 possible leading consonants in various syllable
structures. Within those 21 sentences, there are a total of
144 obstruents distributed as follows: 19 fricatives, 26
affricates, 39 voiceless unaspirated stops, 45 voiceless
aspirated stops, and 15 voiced stops. The algorithm was
tested on 84 (21 sentences x 4 speakers) connected
speech utterances read by 2 male and 2 female speakers
in the 22-35 age range. All subjects were mono-dialectal
speakers of Standard Thai. They were free of any speech
or hearing disorders by self-report based on a screening
interview and as later judged by the investigator during
the recording session.

Recordings were made in a quiet office using
recording feature of the Microsoft freeware ‘Speech
Analyzer’ version 3.1.0 installed on a Dell Latitude
laptop computer. The digitization is at a sampling rate of
22050Hz by means of a 16-bit mono A/D converter.
Speakers were seated and wore a regular Logitech
computer headset with microphone maintained at a
distance of 5¢cm from the lips. Each speaker was asked to
read those 21 sentences once at their conversational
speaking rate. Before the recording session began, the
speakers were allowed to familiarize themselves with the
sentences. Each session lasted about 20 minutes.

B. Analysis Results

For obstruents detection, it is observed that the
magnitude of the ALCR contour during an obstruent
portion of the speech signal tends to be higher than the
magnitude of the RMS energy contour of the same
segment. It makes sense because for obstruents, its
frequency is high while the amplitude is low. As
mentioned before, ALCR magnitude is directly
proportional to both amplitude and frequency of the input
speech signal. On the other hand, RMS energy
calculation depends on the amplitude only, i.e.

j+n2

> x50 M

2 M1i=jon,

1

ERMS(j:nlnnz):\/n
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where x;[.] is the jth sample of the speech sequence x.

Based on the observation above, obstruent detection
was performed on the difference between the ALCR and
the RMS energy contours by detecting the zero-crossings
of the difference contour. Those zero-crossing points
correspond to the points where changes in amplitude of
the speech signal is more pronounced indicating a
transition from one segment to the other adjacent segment.
In other words, these points occur at the crossing of the
ALCR and the RMS energy contours.

Fig. 2 shows three plots representing various
calculations and boundary detection results for sentence
no. 6 of the appendix A. From the middle plot, one can
see that the magnitude of the ALCR contour is higher
than that of the RMS energy contour during the «ch
segments of the speech signal, which is the initial
consonant of every syllable. On the other hand, the
magnitude of the ALCR contour is lower than that of the
RMS energy contour during the rhyme portion of the
syllable, i.e., the portion containing the nucleus (vowel)
and the final consonant. The difference between these
two contours shown superimposed on the speech signal
clearly indicates distinct boundaries between the affricate
and the preceding/following sound segment. The bottom
plot shows the difference contour resulting from
subtracting the RMS energy contour from the ALCR
contour shown in the middle plot. The bottom plot also
shows the segment boundaries demarcating the affricate,
c™. sounds, which are obtained by locating the zero-
crossings of the difference contour. For each ‘c™ segment,
the boundary on its right side demarcates the boundary
between the initial consonant and the vowel of that
syllable whereas the one on its left side demarcates the
boundary between itself and the final consonant of the
previous syllable.

It is important to note again that the horizontal axis
does not represent the frame index because the
calculations are done with a frame step of one sample as
previously mentioned in Section Ill. In other words, the
frame index coincides with the sample index. This is
done to increase segmentation accuracy and to facilitate
the comparison with manual segmentation.

To measure performance of the proposed method,
percent detection efficiency is computed. Detection
efficiency is defined as the ratio of the total number of
obstruents detected to the total number of 576 (144x4
speakers) obstruents contained in the 84 test utterances.
In addition, a detected boundary is considered to match
with that from manual segmentation if they are within 20-
ms duration agreement of each other. The insertion error
due to amplitude variation within a phonetic segment was
eliminated. The insertion error is primarily caused by a
shallow dip in the ALCR contour (solid contour) of a
segment (see the middle plot of Fig. 2 at 0.9-1.0 sec, 1.8-
2.0 sec, 2.7-2.8 sec and 3.0-3.1 sec). A 90.3% detection
rate was obtained in detecting fricatives, affricates, and
voiceless aspirated stops. However, the detection rate for
voiced and voiceless unaspirated stops reduces
significantly to 72.2%. The overall detection rate is
83.5% for data from the four speakers.



International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

¢ w1 & ¢ @ Pkt bg & oaw ¢ tm f w 1

N
Z 10000
>
2
§ 5000
o
o
= 0
©

> 1 T - T
=1 5 — ALCR
g 5 H RMS Energy .. :
%5 & \/\\ M\J\/\ \m\v
=z 1 15 2

1c"u:l11:]‘uit“’(‘lnc"\imx]ck @ ke tgp & oa ¢ tm f w 1

g il T | T
kg
52

Qo
5 £
S<. i

1

0 0.5 1 15

2 25 3
Time (s)

Figure 2. (Top) Spectrogram of sentence #6 along with segment-by-segment phonemic transcription; (middle ) comparison of superimposed solid
ALCR and dotted RMS Energy contours; and (bottom) the difference contour between ALCR and RMS energy contours superimposed on the speech
signal, along with the segment boundaries demarcating the ¢" segment obtained from locating zero-crossings of the difference contour.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Preliminary results on the application of ALCR
information and RMS energy to ascertain their combined
usefulness in detecting significant temporal changes in
Thai continuous speech have been presented. The results
suggest that their difference can be used to detect the
phonetic boundary between consonant and vowel as well
as between some consonants. The proposed algorithm is
based on the characteristic property of ALCR that its
magnitude is directly related to the product between
amplitude and frequency of the speech samples. In
particular, ALCR can be reliably used to detect speech
landmark based on the presence of Thai obstruents when
combined with the RMSE energy feature. However, their
difference fails as an effective acoustic feature for
detecting the boundary between voiced/voiceless
unaspirated stops and vowel as can be seen from a low
detection rate. Results from previous acoustical
experiments suggest that formant transition between them
can be used to identify the manner and place of
articulation of these stops. Thus, it is believed that a
successful detection scheme must incorporate both
temporal and spectral domain features in order to
significantly improve performance.

As a final note, the next phase of this research is to
continue assessing performance of this detection
algorithm using a larger group of speakers (more than 20
spekers) in order to be certain of the effectiveness of the
method. Furthermore, although the focus of this paper is
on the application of the algorithm to Thai continuous
speech, our goal is to attempt to extend the method to
other languages. In particular, ongoing experiment is
being conducted with American English using utterances
from the standard TIMIT speech database. So far,
preliminary results are very promising.

ACKNOWLEDGEMENT

This research is supported in part by a faculty research
grant from the Citadel Foundation. The author wishes to

©2016 Int. J. Sig. Process. Syst.

acknowledge the assistance and support from Mrs.
Suratana Trinratana, Vice President and Chief Operation
Officer, and her staff of the Toyo-Thai Corporation
Public Company Limited, Bangkok Thailand, during the
speech data collection process. The author would also
like to thank the Citadel Foundation for its financial
support in the form of a research presentation grant.

APPENDIX SPEECH STIMULI

The following is a list of utterances comprising the
speech materials used in the experiment. Phonemic
transcription and English translation accompany each of
the Thai sentences. They are designed to highlight the
occurrences of all 21 possible leading consonants in
various syllable structures. Although Thai has five
contrastive tones, no attempt was made to account for
tone distribution.

1. aufieondnaradoniuvudiaun
somsi1 jaak sak laar stxa thir khgen khdaan khwdaa
‘SomSri wants to tattoo a tiger pattern on her right
arm.’

2. 85ﬂuﬂf{ﬂ’ﬂﬂﬂWﬂ‘Iigﬂﬁ’mﬂﬂgﬂﬂﬂﬂﬂgﬂu
?o0Nn?anon 200K 2aakaan ?urt?at mdia 205t 205t?50n
Orn-anong felt uncomfortable when Aut pleaded with
her.

3. whfmuiunudimanueg
wéeu k"am wdan waa wan waan jan wdan jou
‘(I) vaguely hear the sweet talk that things are still as
sweet as yesterday.’

4, fRvsaduaundunsanhiiaa
koukiat pen k"on krado krén kwaa thir khit
‘Kookiat is tougher than I thought.’

5. nusneanseiinosnefuuiia
thahdan thdot phrd thir hdr koo war bon hin
The soldier took off a neck chain of amulets and put it
on the shelf.’

6. MaFetudesdunnisunetoru
chaanchar chan chiranchaa chéek chén chaar chiiru
chuvuan
‘ChanChai was as slow as the man named Chuan.’

218
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. efoudhaite 1 3tuduil
jaar mian jaan niia war jaam jen nit
‘Grandma Mian is roasting some beef for making salad
tonight.’
. eudionta Ing Ui sniaaem
thdnthiao thGa thar par kap thva sajaam
‘Travel all over Thailand with Siam Tour Company.’
. Ao adndneguonhuiinai
satrdanbartbaan déklék jou theu baan thir baagbua
‘The daycare center is located in the vicinity of our
BangBua home.’
10. 579ms3 Radevn auliAssveug
raatkaan khoikhoikhaar khon mar khsr chdop dow
‘People don’t quite like to watch the KhuiKhuiKhaw
show.’
11. desthrouuaasaus liveury
faranfaa chdop deet cat tée mar cdop fon
Bougainvillea likes full sun, but not rain.’
12. ii”u%ﬁﬁ]uﬂuiﬁgﬂ%mamd%
canciraa pen kPon cGucii cokeik ?av tee car
‘Chanchira is a self-centered and nitpicking person.’
13. @ne Asuazquaduaiodaein
dekdek dumdan ca dovlee déndanar duar kan
‘Children insisted on taking care of Dendanai
together.’
14. aquinsenlumsizuessedides
trin troom car p"rd moon wda tua ?een tamtdr
Trin becomes depressed because of his inferiority
complex.’
15. thuflugnaalihlszfiianiooa
paa pén thduk son par pracam thir daan pooipeet
‘Aunt Pan is assigned a post at the Poipet border
control.’
16. qunayveudeadmitesqnagnau
lon hdan ¢h3op 150 ldlitaa rdarany 15klirldklon
‘Uncle Hahn likes to tease Lolita’s clumsiness.’
17. s¥dnsunanayileldsuiossnien
rav réuswik ranthét hothdo mdia dar jin rdiagraao rar
rax
‘We feel depressed and dejected when hearing terrible
news.’
18 lLWi’JWiﬁﬂ!"ﬁuVIﬂﬂP%ﬁ\ﬂuﬁWW’NWEJﬂlJ
pPreeuphan ki thiot phda thir naan sop phovary
p'ajoom
‘Phraewphan laid a
Phuangphayom’s funeral.
19. uatveutavudmhemaziide:
nalini c"5op than k"andmern ndamjaa 1€ ndamniao
‘Nalinee likes both Namya and Nam-ngiaw rice
noodle dish.’
20. sosonumaizngandad liilassoude
t"aa noonee phrd ndtyit thir mar mi kPrar noonndo
She made a big fuss because everyone ignores her.’
21. mdeuziahmmnnineiienend i
khdo strir madmdaagman maa maakmaar muia toon
pir mar

yellow monk robe at
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‘He bought a lot of nutty-flavored mangoes during the
New Year’s celebration.
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