
Parallel Processing of Ray Tracing on GPU with

Dynamic Pipelining

Mekhriddin Rakhimov

Fazliddinovich

Computer Engineering Faculty, TUIT, Tashkent, Uzbekistan

Email: raximov022@gmail.com

Yalew Kidane Tolcha
Department of Computer Science, KAIST, South Korea

Email: yalewkidane@kaist.ac.kr

Аbstract—This article describes the technologies of parallel

processing of ray tracing using central processing unit (CPU)

and graphics processing unit (GPU). The one problem of

parallel processing of ray tracing is imbalance among the

pixels computation which leads to performance degradation.

A serious disadvantage of ray tracing is performance. Other

algorithms use data coherence to share computations

between pixels, while ray tracing normally starts the process

anew, treating each eye ray separately. However, this

separation offers other advantages, such as the ability to

shoot more rays as needed to perform spatial anti-aliasing

and improve image quality where needed. There are some

problems with the possibility of realization of the parallel

processing of ray tracing in stream processing on multicore

processors with the required acceleration. 

Index Terms—ray tracing, parallel processing, acceleration,

dynamic pipelining, the workload balancing, CUDA

I. INTRODUCTION

In computer graphics, ray tracing is a technique for

generating an image by tracing the path of light through

pixels in an image plane and simulating the effects of its

encounters with virtual objects. The technique is capable

of producing a very high degree of visual realism, usually

higher than that of typical scanline rendering methods,

but at a greater computational cost. This makes ray

tracing best suited for applications where the image can

be rendered slowly ahead of time, such as in still images

and film and television visual effects, and more poorly

suited for real-time applications like video games where

speed is critical. Ray tracing is capable of simulating a

wide variety of optical effects, such as reflection and

refraction, scattering, and dispersion phenomena [1].

Different ways to construct the image may vary the

speed of, as well as quality, realistic and beautiful newly

constructed image. Naturally, methods are to paint a more

realistic picture, and require large computational

resources. Of course, we do not consider the known bad

practices, which are slow, and draw badly. We want only

find best way to the workload balancing on CPU and

GPU. However, the three-dimensional scene is not only

Manuscript received April 14, 2015; revised July 13, 2015.

one of the geometric details; it is not conceivable without

light, because otherwise it simply, we would not have

seen. A Z-buffer method allows drawing only the

geometry of the scene. What to do? The exact physical

model of light propagation is very complex. We can talk

about some approximations to natural light. Requires that

the shaded places where not exposed to direct light rays,

it was dark, away from sources of light-light. To create a

realistic, in terms of illumination, the image of the scene

began to use pre-calculated texture, so-called lightmap,

containing the values of static objects in the scene

lighting. This texture is applied in place with the usual

texture of the material, and it darkens depending on the

position of the object on the stage, his illumination.

Naturally, this requires complete static scenes and light

sources because of miscalculation lightmap are extremely

long. Unlike the Z-buffer, ray tracing was originally

designed for the construction of realistic images with

complex lighting model. But the ray tracing is slow

processing on CPU. To expedite the processing of ray

tracing, we must use parallel methods.

In graphics literature, many techniques were proposed

to accelerate the computation, including specific data

structures and more efficient algorithms. In particular, we

are interested in exploring the parallelism of ray tracing

in this paper. The parallelization of ray tracing comes

from the fact that each pixel has no interaction with the

other pixels and its color computation is totally

independent. The back tracing of lights can be done in

parallel for all the pixels. CUDA is potentially suitable

for this job: GPUs have hundreds of cores which can

trace the lights of the pixels simultaneously. Therefore, a

naive approach to parallelize the problem in GPU is

creating a thread for every pixel to render the color in

parallel [2]. But has some problems with the workload

balancing. We solve this problem with the separation of

the pixels of object and the pixels of background.

This paper assesses the resulting acceleration and way

of workload balancing.

II. STATEMENT OF A PROBLEM

Most high-quality, photorealistic renderings are

generated by global illumination techniques built on top

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 209
doi: 10.18178/ijsps.4.3.209-213

of ray tracing [3]. Ray tracing has lots of advantages over

the earlier rendering method. The advantage of ray

tracing is that it traces the lights bouncing among objects,

which allows a much more realistic simulation of lighting

over other rendering methods. A natural capability of ray

tracing is to simulate reactions, reflections, and shadows,

which are difficult using other algorithms. The

computation can be naturally parallelized due to the

independency among pixels. Ideally, if every pixel

requires the same computation workload and GPU has N

cores, the speedup of the parallelized ray tracing would

be N, compared with serial implementation in a single

core processor (assume their clock rate is around the

same). However, this assumption is not true: some pixels

require more computation than the others. Imagine that

the light from a pixel has no intersection with objects, the

color of the pixel is just the background color; the

computation workload of this pixel is very light. On the

other hand, if the light intersects with an object, then the

color of the pixel should be the color of the object, which

may include the color of other objects that have

reflections on it. The computation workload for such light

is heavier.

Figure 1. Comparison of workload for different pixels.

In Fig. 1, demonstrates the variety of workloads among

pixels. Workload for pixels in the background region are

minimum in the sense that the tracing will return after

one step, as the light only “intersects” with the

background. On the other hand, workload for pixels in

the boxed region is high. The red ball, green ball and the

blue ball reflect onto each other multiple times. When we

trace the light starting from this region, the number of

steps is much more than the background region.

Unbalanced workload hurts the performance. The total

execution time of the algorithm is bound by the pixels

whose computing time is the longest. Thus, the benefit

gained through parallelism is greatly limited. More

importantly, adding more cores doesn't solve the problem

as the “busiest” pixels are still computed by a single core.

This means that future processors with more cores cannot

improve the execution time, but only reduces the parallel

efficiency, which is a very bad news for a parallel

implementation [2].

Therefore, taking all these problems determine the

following parameters: firstly we convert 3D scenes into

2D scenes and secondly the 2D scenes separate to pixels

of background and pixels of objects.

III. THE CONCEPT OF THE PROBLEM DECISION

Firstly we considered questions of parallel processing

at different pixels of the 3D scenes of ray tracing. In ray

tracing processing systems operating in real time, a

greater role is played by the acceleration computing

processes. The use of GPU processors gives a significant

increase in processing speed, but still very few algorithms

and methods, especially in ray tracing for rendering

images with computers, capable of working efficiently on

multi-core processors in the mode of stream processing.

The development of methods of ray tracing for rendering

3D images implemented at high speed on a new parallel

system is necessary.

Stream processing in ray tracing technologies should

be considered as new methods that include the following

elements of the preparation and execution of rendering

3D scenes.

Adaptive partitioning is widely used in parallel

computation to partition the job so that each partition has

around the same workload. For the problem of ray tracing,

ideally we would like to estimate, in reasonable time, the

workload for the pixels so that we may partition the

pixels into regions with various sizes that have the same

workload. However, this is prohibitively difficult. The

estimation can’t be done without intensive computation,

due to the complexity of light traveling among 3D objects

[2]. People tried to develop different algorithm to identify

objects to separate pixels with less computation from

pixels with high computation. Such approaches introduce

complex algorithm to find the block objects which incurs

a lot of unnecessary computation. On the other hand,

algorithms which are based on balance estimation

statically and dynamically are introduced. In this

approach even if the complex object identification is

eliminated, groups of pixels at the boundary experience

significant performance degradation.

In the ray tracing for rendering images the

effectiveness of the developed parallel algorithm depends

on the software implementation of the medium: the CPU,

mechanisms for creating execution threads in the

operating system, the number of threads [4]. Evaluating

the effectiveness of ray tracing will test on GPU

processors. GPU is a separate unit of a personal computer

or game console, performing graphics rendering. Modern

GPUs are very efficient process and display computer

graphics. Due to the pipelined architecture specialized

they are much more effective in the processing of

graphical information than typical CPU. Graphics

processor in modern display adapters used as three-

dimensional graphics accelerator [5]. GPUs are becoming

increasingly powerful and ubiquitous; researchers have

begun exploring ways to tap their power for non-graphic

or general-purpose (GPGPU) applications. The main

reason behind this evolution is that GPUs are specialized

for computationally-intensive and highly parallel

operations—required for graphics rendering and therefore

are designed such that more transistors are devoted to

data processing rather than data caching [6]. For software

development we used the architecture CUDA.

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 210

CUDA (Compute Unified Device Architecture) -

software and hardware architecture of parallel computing,

which can significantly increase the computational

performance through the use of graphics processors from

NVIDIA. CUDA SDK allows programmers to implement

a special simplified dialect of the C programming

language algorithms feasible on GPU NVIDIA, and

include special features in the text of a C program. The

CUDA architecture gives developers the discretion to

arrange access to a set of instructions and graphics

accelerator control his memory [7].

NVIDIA heralded its “Fermi” architecture, released in

2010 on its GTX 480 video card, as a major advance in

parallel processing. It was based on a collection of four

Graphics Processing Clusters (or GPCs), each of which

contained a raster engine and four Streaming

Multiprocessor (or SM) units. Each SM, in turn,

contained 32 CUDA processing cores, 16 texture units,

and a polymorph engine. The GTX 680's GPCs use a

similar design, but with a couple of key differences. Each

SM is now a “next-generation Streaming Multiprocessor”,

which abbreviated as SMX; each SMX contains 192

CUDA cores, for a total of 1,536 cores in the entire

Kepler GPU—which suggests potential for considerably

greater performance; and the polymorph engines have

been redesigned to deliver twice of the performance of

those used in Fermi, for what NVIDIA calls “a significant

improvement in tessellation workloads”. But because all

those CUDA cores also run at a lower clock speed than

Fermi's did, the GPU as a whole uses less power even as

it delivers more performance [8].

Based on the new Kepler architecture dynamic

Parallelism in CUDA enables a CUDA kernel to create

and synchronize new nested work, using the CUDA

runtime API to launch other kernels, optionally

synchronize on kernel completion, perform device

memory management, and create and use streams and

events, all without CPU involvement.

Figure 2. Dynamic parallelism in CUDA.

NVIDIA call the launching kernel the “parent”, and the

new grid it launches the “child”. Child kernels may

themselves launch work, creating a “nested” execution

hierarchy. As shown in Fig. 2, CPU launches “parent”

kernel (A B C). After this, kernel B in the GPU can also

launches other “child” kernels (X Y Z). Launches may

continue to a depth of 24 generations, but this depth will

typically be limited by available resources on the GPU.

All child launches must complete in order for the parent

kernel to be seen as completed. For example in the Fig. 2,

kernel C will not be able to begin execution until kernel Z

has completed, because kernels X, Y and Z are seen as

part of kernel B.

IV. REALIZATION OF THE CONCEPT

To implement the idea we will divide the work into

some steps. So after converting 3D scenes into 2D scenes,

we can process the pixels of object separately.

A. First Finding Objects

Most frequently in problems recognizers images are

considered monochrome image that gives an opportunity

to consider the image as a function of the plane (Fig. 3).

If we consider a point set in the plane T, where the

function x (x, y) expresses each pixel in the image of its

characteristics - brightness, transparency, optical density,

such a function is a formal record of the image.

Figure 3. Block diagram of algorithm offending objects.

Color TracePath(Ray r) {

if (depth == MaxDepth)

 return Black; //Bounced enough times.

r.FindNearestObject();

if (r didn’t hit anything)

 return Black; // Nothing was hit.

Material m = r.hitObject->material;

 Color emittance = m.emittance;

//Pick a random direction from here.

Ray newRay;

newRay.origin = r.hitPoint;

newRay.direction=

SampleRandomDirection (r.hitPoint);

Color reflected= TracePath(newRay);

// Compute the material interactionfloat

cos_theta = dot(newRay.direction,

r.normalWhereObjWasHit);

float attenuation = 2 * m.reflectance * cos_theta;

// Apply the Rendering Equation here.

return emittance + (attenuation * reflected);

}

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 211

http://www.pcmag.com/article2/0,2817,2361874,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=tessellation&i=52767,00.asp

The above pseudo code is taken from Wikipedia which

shows naïve implementation of path tracing in this

algorithm. It could be easy to group pixels after the

nearest object is found but that is not simple rather it is

complex. Different algorithm is being developed to

reduce the complexity of finding object and it is still open

research area.

B. Static Block Assignment

In ray tracing, the color in an image most likely

changes gradually from pixel to pixel which indicates that

the difference between workloads of adjacent pixels tends

to be the very small. Therefore dividing the pixel in to

groups making each group to have similar computation

time will increase the performance as a whole. In static

block assignment workload is more evenly distributed

compared to the naive implementation. This contributes

to the speedup compared to any straight forward

implementation [2].

C. Dynamic Block Assignment

The dynamic implementation is similar to the static

implementation, in the sense that the pixels are also

divided into groups. Unlike the static method, which

computes for pixels in predetermined groups, the

dynamic approach allows the blocks of threads to fetch

groups dynamically.

With dynamic scheduling higher throughput can be

achieved with some overhead in scheduling. Such type of

implementation can be improved by reducing the

involvement of CPU in scheduling treads each time

before Kepler NVDIA introduced Fermi architecture. In

this architecture dynamic scheduling of threads is not

possible. Every time when new scheduling is needed host

device involve. This introduces significant performance

degradation.

D. Dynamic Pipeline Assignment

Figure 4. Dynamic scheduling.

In this article we introduce a new concept based on the

dynamic scheduling capability of the new Kepler GPU

architecture. In the speculative allocation, pixels are

allocated based on their neighborhood. In this case pixels

with different computation could be assigned to same

block which makes the block to take maximum of the

computation time. This can be observed in the diagram

presented (the execution of parallel threads will take the

maximum amount of time allocated for either of two). In

the Dynamic Pipelining algorithm, our new approach, we

dynamically assign threads a pixel for a single trace. In

such approach if there is sufficient computation space for

all pixels, it will take only the maximum tracing time. For

example let’s assume we have two SM which consist of

two SP and 6 pixels to be calculated. On the baseline [1],

a pixel which has the higher number of depth of trace

path cause performance imbalance as shown in Fig. 4.

Then, the number of processing of the TracePath is 4

times because the imbalanced computation is assigned to

same block.

But if we dynamically regroup the threads upon the

depth of computation for each pixel as shown in Fig. 5,

we can reduce the number of processing of the TracePath.

Figure 5. Dynamic pipeline scheduling.

V. CONCLUSION

By using CUDA Dynamic Parallelism, algorithms and

programming patterns that had previously required

modifications to eliminate recursion, irregular loop

structure, or other constructs that do not fit a flat, single-

level of parallelism can be more transparently expressed.

Runtime solution can be assigned to the next grid. This

will significantly reduce the time required to reschedule

by minimizing the communication between CPU and

GPU.

Due to the fact that, in recursive ray tracing, each ray

tracing depends on the previous ray, the performance is

bounded by the maximum depth.

Ignoring the scheduling and by properly track and

design pixels distribution among the workers we expect

the performance on the dynamic pipelining is limited

only by the maximum depth. Therefore the maximum

computation will be the equal to the time required to

process the pixel with longest recursive array.

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 212

REFERENCES

[1] A. Appel, “Some techniques for shading machine renderings of

solids,” in Proc. AFIPS Conference, NY, 1968, pp. 37-45.

[2] L. Chen, H. Das, and S. J. Pan, “An implementation of ray tracing

in CUDA,” CSE 260 Project Report, Dec. 4, 2009.

[3] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing

on programmable graphics hardware,” in

, pp. 703-712.

[4] M. Musaev, “Parallel computing in digital signal processing,”

Scientific Technical and Information-Analytical //
no. 3, pp. 5-10, 2013.

[5] M. Ebersole, “Intro to GPU computing,” presented at the NVIDIA

meeting, Santa Clara, CA, Sep. 25, 2012.

[6] NVIDIA. NVIDIA CUDA compute unified device architecture

programming guide, version 1.1. [Online]. Available:

http://developer.download.nvidia.com/compute/cuda/1 1/NVIDIA

CUDA Programming Guide 1.1.pdf

[7] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and J. D. Owens,

“Efficient computation of sum-products on GPUs through

software-managed cache,” in Proc. 22nd Annual International

Conference on Supercomputing - ICS '08, 2008, pp. 309-318.

[8] M. Murray. (Mar. 23, 2012). Nvidia’s Kepler architecture: 6

things you should know. [Online]. Available:

http://www.pcmag.com/article2/0,2817,2402021,00.asp

Mekhriddin Rakhimov Fazliddinovich, from

Uzbekistan, was born on August 20, 1988. He

obtained Bachelor of Information Technology

from the Tashkent University of Information
Technologies (TUIT) in 2012, and Master in

Applied Informatics from Tashkent University
of Information Technologies (TUIT) in 2014.

He published some papers in different journals.

He is junior researcher and assistant-teacher at
the department Computer systems, Tashkent

University of Information Technologies (TUIT), Uzbekistan since 2014.
Currently his interest is in the field of parallel image processing using a

new parallel computing platform and programming models. He is

currently researching parallel digital image processing and parallel
processing of ray tracing technique for rendering images with GPU

processors.

Yalew Kidane Tolcha, from Ethiopia, was
born on October 11, 1987. He received his

Bachelors from Addis Ababa University (AAU),

Addis Ababa Institute of Technology (AAiT)
with Electrical and Computer Engineering in

2011. He has worked as an assistant lecture at
AAU, AAiT starting from same year he

graduated. He is currently attending his Masters

in Computer Science at School of Computing,
Korean Advanced Institute of Science and

Technology (KAIST). His research interests are Internet of things, big
data analysis, and Cyber physical system.

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 213

TUIT Bulletin,

,
2002

Proc. ACM SIGGRAPH

