
Network Element Simulation Based on Log Files

Bahadır Taşdemir, İzzet Çelik, Ferit Ünlü, Caner Reşber, and Ömer Sönmez
Alcatel-Lucent, İstanbul, Turkey

Email: {bahadir.tasdemir, izzet.celik, ferit.unlu, caner.resber, omer.sonmez}@alcatel-lucent.com

Abstract—There are a great variety of network elements in

use at built systems. These network elements are uniquely

configured and lively working under critical and non-

critical jobs. In order to maintain the systems, unexpected

situations must be handled as soon as possible, especially for

the systems which are serving to the customers. However, it

is not very easy to reproduce the same occurred incidents

because of being ought to provide the same configuration or

some of the access restrictions. Log based network element

simulator is providing a real simulation of a network

element behavior at any previous time depending on the log

files. Assume that there is a product that is provided to a

customer and it generated an error. When the customer

reports the issue, just demanding the log file will be enough,

and then the simulator will parse the log file and start to act

like the NE depending on the request and response

information where the situation occurred. The logs are kept

when the error was occurred so the behavior will be the

same with that specific time interval of the related NE. 

Index Terms—logging, network element, simulation,

simulator, communications, network access

I. INTRODUCTION

Network element (NE) is defined as a facility or

equipment used to provide a telecommunications service.

Such term also includes features, functions, and

capabilities that are provided by means of such facility or

equipment, including subscriber numbers, databases,

signaling systems, and information sufficient for billing

and collection, or used in the transmission, routing, or

other provision of a telecommunications service [1].

Today’s most commonly used systems are constructed of

wide networks that contain a great variety of those

network elements. All those network elements are

installed mostly with different configurations. Those

network element configurations contain wide range of

settings and additional-constructions (e.g. blades [2]).

Almost every system is private hence access to these

systems and network elements are forbidden. If

something unexpected occurs during a process and some

transactions, the situation must be returned back to

normal for sure by reproducing the incident. However,

fixing the system does not preclude blocking it; the

maintenance must not be harmful or must not break the

access restriction rules to a private region or device.

Log Based Network Element Simulator is fed with the

log files that are generated by the related NEs thus the

behavior at the related time of the NE is identically

Manuscript received January 3, 2015; revised June 30, 2015.

simulated. The simulator parses the log file, generates

request & response pairs and gives responses to the

requests identical to the ones that are generated by the

related NE. This provides; the real behavior, not breaking

the connection restrictions, not accessing to the NE on

site, not needing to create and configure an identical NE,

not needing to keep a live device for maintenance, fast

response to the system needs and device type

independence on support.

II. NETWORK SECURITY

One of the main reasons of the network access problem

is the control of the activities for the security issues.si

Access control contains what a user can do and what

programs executing on behalf of the users are allowed to

do. By this, access control seeks to prevent the activities

that can break the security issues.

Controlling the access is not a complete solution for

the security of a system; it must be enhanced with

auditing. Access control is concerned with limiting the

activity of legitimate users. It is enforced by a reference

monitor which mediates every attempted access by a user

(or program executing on behalf of that user) to objects in

the system. The reference monitor consults an

authorization database in order to determine if the user

attempting to do an operation is actually authorized to

perform that operation. Authorizations in this database

are administered and maintained by a security

administrator. The administrator sets these authorizations

on the basis of the security policy of the organization.

Users may also be able to modify some portion of the

authorization database, for instance, to set permissions for

their personal files. Auditing monitors and keeps a record

of relevant activity in the system [3].

III. RELATED WORK

There are different kinds of simulators for network

elements that can be investigated at the following.

SONET Network Element Simulator: “A network

simulator for use as a testing tool for a network

management system includes an input device for

inputting data containing network elements, their

attributes, and information about their configuration, for

storage in memory. User-Defined scenario instructions

for specifying particular network behavior and user

directives are input in real time, or in advance of

simulation. The simulator includes an input/output

processing component that receives commands from the

network management system and user-scenario data or

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 192
doi: 10.18178/ijsps.4.3.192-197

directives and forwards received commands and

directives to a response generator processing component

that generates appropriate responses in accordance with

the network element behavior data stored in memory.” [4]

SNMP Simulator: “Typical use case for this software

starts with recording a snapshot of SNMP objects of

donor Agents into text files using “snmprec.py” tool

shipped with Simulator distribution. Or if you’d better

query your donor SNMP Agent with Net-SNMP's

snmpwalk tool, that information could also be used as a

source of information by the Simulator. Another option is

to generate snapshots directly from MIB files with

“mib2dev.py” tool. The latter appears useful whenever

you do not posess a physical donor device. Once you

have your snapshots at hand, Simulator script

“snmpsimd.py” could be run over the snapshots

responding to SNMP queries in the same way as donor

SNMP Agents did at the time of recording.” [5].

IV. NETWORK LOGGING

For security and other reasons, the network must be

logged regularly and in a healthy way. But it must be

applied meticulously:

Logging can cause problems at two extreme ways.

A. Too Little Logging

Too little logging is an obvious problem for the

network. When a problem is identified, there may be

insufficient information to reproduce what happened.

B. Too Much Logging

The opposite may also be true. Too much logging

masks the situation and often leads to poor security

practices. For example, security devices may generate

enormous amounts of logs for later analysis, but the

analysis may be performed only when some specific

problem is encountered. The logs may accumulate into a

larger and larger queue that may be deleted or trimmed

before the data analysis is complete.

Too little logging, too much logging, and too little

analysis are still important and noteworthy problems [6].

V. LOG BASED NE SIMULATOR

Here, the main specialty of the Log Based Network

Element Simulator is the practical production phase that

takes a very short time to provide simulation (also it is a

detailed process even for the network simulators [7]).

Generally network elements simulators expect some

configurations and preliminaries but Log Based

Simulator cuts out this part off by taking the advantage of

logging mechanism. Just acquiring the processed network

element log file and providing into the log based

simulator is sufficient for the preparation, an identical NE

imitation would be ready within minutes.

A. Procedure

For the log based network element simulator, the steps

are processed as (see Fig. 1):

Figure 1. Log based network element simulation process

B. Network Element

Network Element is the device that is placed inside a

network and processes the dedicated job.

C. Log File

Log file is created by the network element or by a

process running on the network to be able to keep a track

of the job.

D. Parsing Log File

Parsing log file is the process of analyzing and

investigating the file to be able to detect the requests that

are sent to the NE and responses that are created by it.

E. Data Generation

Data generation is the creation process of the data

structure consists of requests and responses for handling

the transaction traffic.

F. Prepared Settings

This file contains the needed settings for the simulator

to be used on the network element simulation such as port

number, user name, password etc.

G. Simulator

Simulator is the machine that is connected to the

network and runs the log based NE simulator. After the

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 193

first run, this machine will behave identical to the NE

which the log files are taken from.

The parsing mechanism is constructed by regex

patterns that are catching permanent log blocks. Those

patterns (date, time, send/receive and etc. see Fig. 2) are

used at the logging phase of the project that runs on the

related network element.

Figure 2. Log file parsing system regex patterns

When the data between those blocks are captured the

needed data structure (see Fig. 3) is constructed to make

the simulator ready. Here, a list with a sequential

indexing mechanism is used to store request and response

data and the response to the requests in an order (order in

the log file) to provide data independence between same

request character sequences.

Figure 3. Data structure class definition

Then the system runs on a server machine by the

power of Java SSH library [8]. The running thread opens

a connection per device connection request. When a new

connection is created, the index of the request & response

pairs’ list is resets and starts from beginning. This

provides requester to get blocks of request constructions.

Also, the main index can be reset any time by sending a

command to the simulator (see Fig. 4).

Figure 4. Sample default commands used in simulator

The network element simulator parses the log file’s

requests and responses with “exact characters” that the

NE logged, so when a request is sent to the simulator, the

request must be constructed with the identical characters

which are logged to the file, otherwise the response will

not be generated because the unavailability of request

recognition.

VI. USAGE

There are main steps must be processed to run and use

the Log Based Network Element Simulator.

A. Configuration

The configuration of the simulator is created very

handy to provide user friendliness. There is a file called

“SSH_SIM.properties” (see Fig. 5) contains all of the

configurations needed.

Figure 5. NE simulator settings file (just a sample)

1) ssh.simulator.host

This setting keeps the host information of the network

element simulator. It totally depends on the server

machine that runs the simulator. The server’s host address

must be placed here.

2) ssh.simulator.port

A port number suitable for the simulator must be

entered here. This port mustn’t be used by any other

processes on the server.

3) ssh.simulator.logfilepath

In this line, the file path of the log file that is going to

be used by the simulator is given. The path must be

correct to start the simulator properly.

4) ssh.simulator.is.delaying.active

While the NE’s working, there some delays happen

because of the network connection transactions. If the

behavior is demanded to be identically the same with the

delaying times than this setting must be set to “true”.

5) ssh.simulator.is.command.echo.in.response.active

When a request is sent to a network element, the

response comes with a command echo which contains the

sent request. If this is a demanded behavior for the

simulator then this setting must set to “true”. Otherwise it

can be set to “false”.

6) ssh.simulator.username

While establishing a connection to an NE, a username

& password credentials must be provided for the security.

This field is for the username.

7) ssh.simulator.password

This field is for the second credential “password”.

8) ssh.simulator.initial.prompt

As soon as connected to an NE, it produces an initial

prompt that indicates it is ready. Here, it can be set for the

simulator.

9) ssh.simulator.command.refresh

As described before, simulator executes responses to

the given commands with the same order where the

request & response pairs stated inside the parsed log file.

If the request blocks are demanded to send in a random

order than this feature must be set to “true” to let

simulator search each command from the beginning in

the case when the command is not found in the next place

of the index.

B. Simulator Installation to a Server

To install the simulator to a server machine, the files of

it must be sent to a specific folder of the target but it

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 194

mustn’t be forgotten that the machine must have a JVM

installed on it because the simulator is developed by

using Java Programming Language and it is a Java

Executable File (see Fig. 6).

Figure 6. Simulator transmission using filezilla

C. Running the Simulator

As accomplishing all the needed settings for the

simulator now it is time to run it on a demanded server

machine. Here a linux server is used for the sample.

1) Connect to the server

Here the connection is made via putty (see Fig. 7).

Figure 7. Server connection via putty

2) Access to the file location

The location must be switched to the simulators path

(see Fig. 8).

Figure 8. Simulator location access

3) Start the simulator

The simulator must be started as a process inside the

server machine to let it open even being disconnected to

the machine. The process is provided by using the linux

process starting commands (see Fig. 9 and Fig. 10).

Figure 9. Starting the simulator process

Figure 10. Checking if simulator started with “ps-ef” linux command

D. Connecting to the Simulator

To connect to the simulator, the IP of the server

machine and the port number of the simulator must be

achieved (see Fig. 11 and Fig. 12).
In Fig. 12, the values are taken from the settings file as

mentioned before.

Figure 11. Simulator access

Figure 12. First connection to the simulator

E. Using the Simulator

By completing the simulator creation steps, an

imitation of the related NE is provided to use at any

dedicated process. Here some commands placed inside

the log file will be tested to show how the simulator is

running (see Fig. 13).

Figure 13. Sample log file

In the Fig. 11, a sample log file which contains some

request & response pairs is shown. Here, the line contains

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 195

“[SEND]” patterns holds the request and the line contains

“[RECV]” pattern holds the response data. When the

command “view performance statistics interval” is sent to

the simulator the response is taken immediately (see Fig.

14).

Figure 14. Requests are run on the simulator

When the requests placed inside the log file are sent to

the simulator, the responses are produced as placed at the

same log file. The structure of the log file is not the main

concern; here the logged data usage for the simulation is

important.

VII. SYMPTOMS

When something unexpected happens with a network

element the incident must be investigated. For most of the

times, the NE is either cannot be reachable or restricted to

be reached. Also, the identical NE is very hard to find

apart from the live system with the exact configurations.

If the incident causes a critical issue then the things start

to become more complicated.

As hard as the identical network element creation is,

also when there needed to be a network constructed with

more than one NE, it is really hard to find all of them at

the same time and place. By using the log based network

element simulator, more than one network element

simulation instance can be created and there can be a

network constructed with those NEs. This will decrease

the money cost of the work as well as decreasing the

needed time and work effort.

In addition to the network element simulation, log

based network element simulator also decreases the

process time runs on the network for a dedicated job (see

Fig. 15).

Figure 15. Performance of network application

With the log based network element simulator, just the

log files generated by the related NE are needed. Within a

couple of minutes, NE replication is live and ready to be

processed. With this availability, the connection, testing,

running commands, applications and etc. become very

handy and this provides better systems, applications and

maintenances.

VIII. CONCLUSION

Log based network element simulator provides an

identical replication of the network elements currently

running on the live (mostly critical) systems to test,

debug, develop new product and maintain it. The little

interventions into networks will be able to done within

minutes and the systems won’t even be affected by this.

The usage area of the log based network element

simulator is not limited with just the NEs; it can simulate

any device that generates logs and works connected to a

network, such as a call simulator.

For the possible future works of the project, there can

be a very usable interface that enables users to easily

create network element simulators at any time and

amount. This platform provides the serving of the

multiple users at a time at any number of network

elements thus the users and servers won’t be blocked and

the main processes would go on without being blocked.

Simulating an NE by log files that are generated under

some processes provides a better workaround for testing

and development phases of the network projects.

REFERENCES

[1] Certiorari to the United States Court of Appeals for the Eighth

Circuit, Verizon Communs. Inc. v., FCC, 535 U.S. 467, 492, 2002.

[2] Blade server definition. [Online]. Available:
http://searchdatacenter.techtarget.com/definition/blade-server

[3] R. S. Sandhu and P. Samarati, “Access control: Principle and

practice,” IEEE Communications Magazine, vol. 32, pp. 40-48,
Sep. 1994.

[4] SONET network element simulator. [Online]. Available:
http://www.google.com/patents/US6108309

[5] SNMP simulator. [Online]. Available:

http://snmpsim.sourceforge.net/
[6] P. W. Dowd and J. T. McHenry, “Network security: It’s time to

take it serious,” Computer, vol. 31. pp. 24-28, Sep. 1998.
[7] N. Golmie, A. Koenig, and D. Su, “The NIST ATM network

simulator: Operation and programming,” NISTIR 5703, U.S.

Department of Commerce, Aug. 1995.
[8] Apache MINA. [Online]. Available: http://mina.apache.org/sshd-

project/

Bahadır Taşdemir was born in Batman,

Turkey on 1988. He studied computer science
in department of computer engineering at

Dokuz Eylul University between 2009 and
2013. He worked at Turkcell after graduating

in 2013 as a consultant software developer.

Currently, he is working at Alcatel-Lucent as a
senior software developer. His research

interests are simulation & emulation tools,
artificial intelligence.

Izzet Çelik was born in Tokat in 1978. He
holds a bachelor’s degree of computer science

from Bilkent University. He worked as
software developer at Telenity and Sony

Eurasia ISC. Currently, he is employed as

solution architect at Alcatel-Lucent. His

interests are tool development and automation

in IMS parameter auditing, architectural
improvements in parameter auditing tools.

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 196

Ferit Ünlü was born in Izmir, Turkey on 1982.
He studied engineering physics at Istanbul

Technical University in 2005. He started to

study computer engineering master degree at
Bahcesehir University in 2009. Since 2005 he

has been working as a java software developer
for banking and telecom companies. Currently,

he is working at Alcatel-Lucent as an expert

software developer.

Caner Resber was born in Malatya, Turkey on

1990. He graduated from computer engineering
at Anadolu University in 2013. Currently, he is

working at Alcatel-Lucent as software

developer. He is interested in simulation &
emulation tools, high performance computing

and cloud solutions.

Ömer Sönmez was born in Izmir, Turkey on
1988. He graduated from Anadolu University

Department of Computer Engineering in 2011.

Currently, he is working as a senior software
developer at Alcatel-Lucent. Big Data, Java,

Android development are among his interests.

International Journal of Signal Processing Systems Vol. 4, No. 3, June 2016

©2016 Int. J. Sig. Process. Syst. 197

