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Abstract—In this paper a new method for calculating 

competence of a classifier in the feature space is presented. 

The idea of method is based on relating the response of the 

classifier with the decision profile of a test object which is 

evaluated using K nearest objects from the validation set. 

The measure of competence reflects this relation and rates 

the classifier with respect to the similarity of its response to 

the decision profile of a test object in a continuous manner. 

Two multiclassifier systems (MCS’s) representing the 

dynamic classifier selection (DCS) and dynamic ensemble 

selection (DES) strategies are developed using proposed 

measure of competence. The performance of proposed 

MCS’s was compared against seven multiple classification 

systems using six benchmark datasets taken from the UCI 

Machine Learning Repository and Ludmila Kuncheva 

Collection. The experimental investigations clearly show the 

effectiveness of the combining multiclassifier system in 

dynamic fashion using proposed measure of competence 

regardless of the ensemble type used (homogeneous or 

heterogeneous).  
 
Index Terms—multiclassifier system, dynamic ensemble 

selection, measure of competence 

 

I. INTRODUCTION 

In the last two decades multiclassifier systems (MCS’s) 

which combine responses of set of classifiers are 

intensively developed. The reason is that different 

classifiers offer complementary information about the 

object to be classified and therefore MCS can achieved 

better classification accuracy than any single classifier in 

the ensemble [1], [2].  

For the classifier combination two main approaches 

used are classifiers fusion and classifiers selection. In the 

first method, all classifiers in the ensemble contribute to 

the decision of the MCS, e.g. through sum or majority 

voting [3]. In the second approach, a single classifier is 

selected from the ensemble and its decision is treated as 

the decision of the MCS. The selection of classifiers can 

be either static or dynamic. In the static selection scheme 

classifier is selected for all test objects, whereas dynamic 

classifier selection (DCS) approach explores the use of 

different classifiers for different test objects [4].  

Recently, dynamic ensemble selection (DES) methods 

have been developed which first dynamically select an 

ensemble of classifiers from the entire set (pool) and then 
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combine the selected classifiers by majority voting [5]. In 

this way a DES based system takes advantage of both 

selection and fusion approaches.  

In the most methods, the base classifiers are selected 

from the pool on the base of their individual accuracy 

measure called competence in a local region of the 

feature space. These methods differ in algorithms for 

determining classifier competence and ways of defining 

the local regions.  

In [6] two methods were proposed where the local 

accuracy (competence) of classifier is calculated as a 

simple percentage of correct classified samples from the 

validation set. In the first method called OLA (overall 

local accuracy) local accuracy is calculated in the region 

containing K-nearest validation objects of a test object. 

Whereas in the LCA (local class accuracy) method 

classifier competence is determined considering only 

these validation objects from the K-nearest neighbors set 

which belong to the same class into which unknown 

object is assigned.  

In [7], [8] two methods using probabilistic model were 

developed. The idea of the first method is based on 

relating the response of the classifier with the response 

obtained by a random guessing. The measure of 

competence reflects this relation and rates the classifier 

with respect to the random guessing in a continuous 

manner. In this way it is possible to evaluate a group of 

classifiers against a common reference point. Competent 

(incompetent) classifiers gain with such approach 

meaningful interpretation, i.e. they are more (less) 

accurate than the random classifier.  

In the second method, first a randomized reference 

classifier (RRC) is constructed which, on average, acts 

like the classifier evaluated. Next the competence of the 

classifier evaluated is calculated as the probability of 

correct classification of the respective RRC. 

Interesting method called MCB (Multiple Classifier 

Behavior) was proposed in [9]. In this method the 

competence is defined as the classification accuracy 

calculated for a subset of validation set which is 

generated as follows. First the MCB’s is calculated for a 

test object and its K-nearest validation objects as a vector 

whose elements are class labels assigned by all classifiers 

in the ensemble. Next, similarity between the MCB’s are 

calculated using the averaged Hamming distance. Finally, 

the objects in the validation set that are the most similar 

to test object are used to generate the subset.  
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In this paper a new method for calculating competence 

of a classifier in the feature space is developed. In the 

proposed method, first the so-called decision profile of 

classified object is determined using K-nearest validation 

objects. The decision profile indicates the class with the 

greatest chance of being true class together with the value 

of this chance. Next, the decision profile is compared 

with the response produced by the classifier and the 

competence is calculated according to the similarity rule: 

response closer to the profile – classifier more competent. 

In a nutshell, originality of proposed approach consists 

in other use of the validation set. In the methods 

described above, the validation set is directly used for 

calculation of local accuracy of classifier, i.e. its local 

competence. However, in the proposed method, 

validation set is used for estimate the classification 

profile of a test point and competence of a classifier is 

determining by relating its response to this estimation. 

The paper is divided into four sections and organized 

as follows. In Section 2 the measures of classifier 

competence are presented and two multiclassifier systems 

using proposed measures of competence in a dynamic 

fashion are developed. The performance of proposed 

MCS’s were compared against seven multiple classifier 

systems using six databases taken from the UCI Machine 

Learning Repository and Ludmila Kuncheva Collection. 

The results of computer experiments are described in 

Section 3 and Section 4 concludes the paper. 

II. MULTICLASSIFIER SYSTEM 

A. Preliminaries 

In the multiclassifier system we assume that a set of 

trained classifiers 𝛹 = {𝜓1, 𝜓2, … , 𝜓𝐿}  called base 

classifiers is given. A classifier 𝜓𝑙  ( 𝑙 = 1,2, … , 𝐿)  is a 

function 𝜓𝑙: 𝑋 → ℳ from a feature space to a set of class 

labels ℳ = {1,2, … , 𝑀}. Classification is made according 

to the maximum rule: 

𝜓𝑙(𝑥) = 𝑖 ⇔ 𝑑𝑙𝑖(𝑥) = max𝑗∈ℳ 𝑑𝑙𝑗(𝑥),   (1) 

where [ 𝑑𝑙1(𝑥), 𝑑𝑙2(𝑥), … , 𝑑𝑙𝑀(𝑥)]  is a vector of class 

supports produced by 𝜓𝑙 . Without loss of generality we 

assume, that 𝑑𝑙𝑗(𝑥)  ≥ 0 and ∑ 𝑑𝑙𝑗𝑗 (𝑥) = 1. 

The ensemble 𝛹  is used for classification through a 

combination function which, for example, can select a 

single classifier or a subset of classifiers from the 

ensemble, it can be independent or dependent on the 

feature vector x (in the latter case the function is said to 

be dynamic), and it can be non-trainable or trainable [1], 

[3]. The proposed multiclassifier systems use both 

dynamic classifier selection (DCS) and dynamic 

ensemble selection (DES) strategies with trainable 

selection/fusion algorithms. The basis for dynamic 

selection of classifiers from the pool is a competence 

measure 𝑐(𝜓𝑙 , 𝑥) of each base classifier (l=1, 2, …, L), 

which evaluates the competence of classifier 𝜓𝑙  i.e. its 

capability to correct activity (correct classification) at a 

point 𝑥 ∈ 𝑋. 

In this paper trainable competence function is proposed 

what leads to the assumption that a validation set 

containing pairs of feature vectors and their 

corresponding class labels is available, viz: 

𝑉 = {(𝑥1, 𝑗1), (𝑥2, 𝑗2), … , (𝑥𝑁 , 𝑗𝑁)}; 𝑥𝑘 ∈ 𝑋, 𝑗𝑘 ∈ ℳ  (2) 

The next subsection describes the procedure of 

determining competence measure 𝑐(𝜓𝑙 , 𝑥) of classifier 𝜓𝑙  

using validation set (2) in detail.  

B. Measure of Classifier Competence 

For the calculation of the classifier competence 

𝑐(𝜓𝑙 , 𝑥) at a point x, the so-called K-neighborhood of x, 

i.e. K nearest neighbors of x from validation set V is used. 

However, in contrast to other methods [5]-[7], [9], [10] 

the K-neighborhood is not used directly to evaluate the 

local accuracy of classifier, which is the basis for 

calculation of competence at a point x.  

In the proposed method, first the K-neighborhood is 

used to determine the so-called decision profile of an 

object x. The decision profile determines the class 

number with the greatest chance of being true class 

together with the normalized (from the interval [0,1]) 

value of this chance. For the probabilistic model of 

classification task the decision profile can be interpreted 

as the greatest a posteriori probability of a class at a point 

x. 

Next, the decision profile is compared with the support 

produced by classifier 𝜓𝑙  at a point x for the same class. 

Finally, competence is calculated according to the 

following rule: the competence is maximum and equal to 

1 if the decision profile and the classifier support are 

identical and the competence decreases with increasing 

difference between the decision profile and classifier 

support.  

In order to determine decision profile of x let first 

define decision value of a validation object 𝑥𝑘  ( 𝑘 =
1,2, … , 𝑁) as follows: 

𝐷𝑗(𝑥𝑘) = {
1   for  𝑗 = 𝑗𝑘

0   otherwise
                         (3) 

Decision values (3) of validation objects from the jth 

class (𝑗 ∈ ℳ) belonging to the K-neighborhood 𝑉𝐾(𝑥) of 

a point 𝑥 ∈ 𝑋  create for a point x the class-dependent 

decision profile 𝐷𝑗(𝑥) . The class-dependent decision 

profile 𝐷𝑗(𝑥) is a result of the cumulative influence of 

validation objects from 𝑉𝐾(𝑥)  and from the jth class 

where the influence of each validation object 𝑥𝑘 ∈ 𝑉𝐾(𝑥) 

decreases as the distance between x and 𝑥𝑘  increases. 

This interpretation allows for using the potential function 

model [8] to determine the class-dependent decision 

profile of x as follows:  

𝐷𝑗(𝑥) = ∑ 𝐷𝑗𝑥𝑘∈𝑉𝐾(𝑥): 𝑗𝑘=𝑗 (𝑥𝑘) 𝐺(𝑥, 𝑥𝑘),   𝑗 ∈ ℳ   (4) 

where 𝐺(𝑥, 𝑥𝑘)  is a non-negative potential function 

decreasing with the increasing distance between 𝑥 and 𝑥𝑘. 

Although any given metric can be used in the definition 

of the distance 𝑑𝑖𝑠𝑡(𝑥, 𝑥𝑘)  and potential function 

𝐺(𝑥, 𝑥𝑘) can has any form, in this study we propose an 

Euclidean distance:  

𝑑𝑖𝑠𝑡(𝑥, 𝑥𝑘) = √(𝑥 − 𝑥𝑘)𝑇(𝑥 − 𝑥𝑘)                (5) 
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𝐺(𝑥, 𝑥𝑘) = exp(−𝑑𝑖𝑠𝑡(𝑥, 𝑥𝑘) )               (6) 

This function is substituted into (4) which is then 

normalized in order for the 𝐷𝑗(𝑥) to take values in the 

interval [0, 1]. This resulted in the following formula: 

𝐷𝑗(𝑥) =
∑ 𝐷𝑗𝑥𝑘∈𝑉𝐾(𝑥): 𝑗𝑘=𝑗 (𝑥𝑘) exp(−𝑑𝑖𝑠𝑡(𝑥,𝑥𝑘) )

∑ 𝐷𝑗(𝑥)𝑗∈ℳ
       (7) 

Hence we get the decision profile of x as a greatest 

value of class-dependent decision profile, namely:  

𝑑𝑣𝑖(𝑥) = 𝐷𝑖(𝑥), where 𝐷𝑖(𝑥) = max𝑗∈ℳ 𝐷𝑗 (𝑥)    (8) 

Finally, normalized competence 𝑐(𝜓𝑙 , 𝑥)  ∈ [0,1] of 

base classifier  𝜓𝑙  at a point x is defined as follows: 

𝑐(𝜓𝑙 , 𝑥) = 1 − |𝑑𝑣𝑖(𝑥) − 𝑑𝑙𝑖(𝑥)|               (9) 

C. Example 

Consider a classification problem with two classes 

(M=2). Fig. 1 presents the 5-neighborhood of an object x 

in the two-dimensional feature space. Additional unit grid 

will help to determine distances between objects.  

Suppose that classifier 𝜓  produced supports 𝑑1(𝑥) =
0.4 and 𝑑2(𝑥) = 0.6 at a point 𝑥.  

Our purpose is to determine the competence 𝑐(𝜓, 𝑥) of 

the classifier 𝜓 for an object x.  

Validation objects
 from the 1st class

Validation objects
 from the 2nd class

Classified object

x1

x2

x3 x4

x5x

 

Figure 1.  Illustration of example: The 5-neighborhood of an object x. 

From Fig. 1 we simply get Euclidean distances 

between x and validation objects: 

𝑑𝑖𝑠𝑡(𝑥, 𝑥1) = 2.24,          𝑑𝑖𝑠𝑡(𝑥, 𝑥2) = 5.00,  

𝑑𝑖𝑠𝑡(𝑥, 𝑥3) = 2.83,          𝑑𝑖𝑠𝑡(𝑥, 𝑥4) = 2.24, 

𝑑𝑖𝑠𝑡(𝑥, 𝑥5) = 3.00. 

Now, from (6) we can calculate the class-dependent 

decision values of x: 

𝐷1(𝑥) = exp(−5)+exp(−2.83)+exp (−3)

𝐷1(𝑥)+𝐷2(𝑥)
= 0.1156

0.3285
= 0.3519, 

𝐷2(𝑥) =
exp(−2.24)+exp(−2.24)

𝐷1(𝑥)+𝐷2(𝑥)
=

0.2129

0.3285
= 0.6481 

 

𝑑𝑣2(𝑥) = 𝐷2(𝑥) = 0.6481 

Finally, from (8) we get competence of 𝜓 for an object 

x: 

𝑐(𝜓, 𝑥) = 1 − |𝑑𝑣2(𝑥) − 𝑑2(𝑥)| = 0.9519 

D. Multiclassifier Systems 

The proposed measure of competence can be 

incorporated in virtually any multiclassifier system in 

selection/fusion algorithm provided that feature space X 

is a metric space.  

In this subsection we describe two multiclassifier 

systems based on proposed measure of competence 

employing both DCS and DES strategies.  

1) DCS-Most competent system (DCS-MC) 

In this system, first the competence 𝑐(𝜓𝑙 , 𝑥)  is 

calculated for each base classifier (l=1,2,…,L). Then the 

DCS-MC system 𝜓𝑀𝐶  selects the most competent 

classifier from the ensemble and uses it for the 

classification of x: 

𝜓𝑀𝐶(𝑥, Ψ, 𝑉) = 𝑖  ⟺   𝑑𝑘𝑖(𝑥) = max𝑗∈ℳ 𝑑𝑘𝑗(𝑥)  (10) 

And:  

𝑐(𝜓𝑘 , 𝑥) =  max𝑙=1,2,…,𝐿 𝑐(𝜓𝑙 , 𝑥)               (11) 

The DCS-MC system uses a selection strategy, i.e. for 

each object described by a feature vector x it selects a 

single classifier to be used for classification. 

2) DES-Competence based system (DES-CS) 

This system is based on continuous-values outputs and 

weighted majority voting procedure. First, a subset 

Ψ𝑥
∗(∝) of base classifiers with the competences greater 

than the adopted threshold value α is selected for a given 

x: 

Ψ𝑥
∗(∝) = {𝜓𝑙1 , 𝜓𝑙2 , … , 𝜓𝑙𝑇}, where 𝑐(𝜓𝑙𝑡 , 𝑥) > 𝛼  (12) 

This step eliminates inaccurate classifiers and keeps 

the ensemble relatively diverse. The selected classifiers 

are combined using the weighted majority voting rule 

where the weights are equal to the competences. This 

results in the following vector of class supports: 

𝑑𝑗
𝐶𝑆(𝑥) = ∑ 𝑐(𝜓𝑙𝑡 , 𝑥) 𝑑𝑙𝑡,𝑗(𝑥)𝑇

𝑡=1               (13) 

The DES-CS system 𝜓𝐶𝑆  classifies x using the 

maximum rule: 

𝜓𝐶𝑆(𝑥, Ψ, 𝑉) = 𝑖  ⟺   𝑑𝑖
𝐶𝑆(𝑥) = max𝑗∈ℳ 𝑑𝑗

𝐶𝑆 (𝑥)  (14) 

The DES-CS system represents a fusion approach 

where the final classification is based on responses given 

by all competent base classifiers.  

Algorithms of DCS-MC and DES-CS systems are 

presented in Table I and Table II in details. 

TABLE I.  PSEUDOCODE OF THE DCS-MC SYSTEM 

Input data: 

𝛹 – the pool of trained base classifiers 

𝑉 – validation set 
x – testing object 

K – the size of neighborhood 

Output: 

𝜓𝑀𝐶(𝑥, Ψ, 𝑉) = 𝑖  - classification result 

1. Find 𝑉𝐾(𝑥) – the set of K nearest objects from  
   V to x 

2. For each class number j ∈ ℳ do  

      𝐷𝑗(𝑥) = 0 

      For each validation point 𝑥𝑘 ∈ 𝑉𝐾(𝑥) do 

         If 𝑗𝑘 = 𝑗 do 

            𝐷𝑗(𝑥) = 𝐷𝑗(𝑥) +  exp(−𝑑𝑖𝑠𝑡(𝑥, 𝑥𝑘) 

         End if 
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And a Gaussian potential function: 

And decision profile of x as the greatest class-

dependent decision value:



      End for 

   End for 

3. For each class number j ∈ ℳ do 

        𝐷𝑗(𝑥) = 𝐷𝑗(𝑥) Σ 𝐷𝑗(𝑥)⁄  

   End for 

4. Calculate 𝑑𝑣𝑖(𝑥) = 𝐷𝑖(𝑥) =  max𝑗∈ℳ 𝐷𝑗 (𝑥) 

5. For each base classifier   𝜓𝑙 ∈ 𝛹 do 

      𝑐(𝜓𝑙 , 𝑥) = 1 − |𝑑𝑣𝑖(𝑥) −  𝑑𝑙𝑖(𝑥)| 
   End for 

6. Find classifier 𝜓𝑘 for which  

   𝑐(𝜓𝑘 , 𝑥) =  max𝑙=1,2,…,𝐿 𝑐(𝜓𝑙 , 𝑥). 
7. Determine decision 𝜓𝑀𝐶(𝑥, Ψ, 𝑉) = 𝑖 for which  

   𝑑𝑘𝑖(𝑥) = max𝑗∈ℳ 𝑑𝑘𝑗(𝑥) 

TABLE II.  PSEUDOCODE OF THE DES-CS SYSTEM 

Input data: 

𝛹 – the pool of trained base classifiers 

𝑉 – validation set 
x – testing object 

K – the size of neighborhood 

α – competence threshold 

Output: 

𝜓𝐶𝑆(𝑥, Ψ, 𝑉) = 𝑖  - classification result 
Steps 1 - 4 as in the previous algorithm 

5. Ψ𝑥
∗(∝) =  ∅,   𝑑𝑗

𝐶𝑆(𝑥) = 0 

6. For each class number j ∈ ℳ do 

        𝑑𝑗
𝐶𝑆(𝑥) = 0 

   End for 

7. For each base classifier   𝜓𝑙 ∈ 𝛹 do 

      𝑐(𝜓𝑙 , 𝑥) = 1 − |𝑑𝑣𝑖(𝑥) −  𝑑𝑙𝑖(𝑥)| 
      For each class number j ∈ ℳ do 

         If 𝑐(𝜓𝑙 , 𝑥) >  𝛼  then do 

            𝑑𝑗
𝐶𝑆(𝑥) = 𝑑𝑗

𝐶𝑆(𝑥) +  𝑑𝑙𝑗(𝑥) 

         End if 

      End for 

   End for 

8. Determine decision 𝜓𝐶𝑆(𝑥, Ψ, 𝑉) = 𝑖 for which 

   𝑑𝑖
𝐶𝑆(𝑥) = max𝑗∈ℳ 𝑑𝑗

𝐶𝑆(𝑥) 

III. EXPERIMENTS 

A. Experimental Setup 

The benchmark databases used in the experiments 

were obtained from the UCI Machine Learning 

Repository [11] (Breast, Cancer Wisconsin, Glass, Image 

Segmentation, Vowel) and Ludmila Kuncheva Collection 

[12] (Laryngeal3, Thyroid). Selected databases represent 

classification problems with object described by 

continuous feature vector. For each database, feature 

vectors were normalized for zero mean and unit standard 

deviation. The training and testing datasets were 

extracted from each database using two-fold cross-

validation. A half of objects from the training dataset 

formed the validation dataset V and the other half of 

objects formed the actual training dataset. A brief 

description of each database is given in Table III. The 

experiments were conducted using MATLAB with 

PRTools package [13].  

TABLE III.  A BRIEF DESCRIPTION OF THE DATABASES USED 

Database Source #Objects #Features #Classes 

Breast C.W. UCI 699 9 2 

Glass UCI 214 9 6 

Laryngeal3 LKC 353 16 3 

Segmentation UCI 2310 19 7 

Thyroid LKC 215 5 3 

Vowel UCI 990 10 11 

The DCS-MC and DES-CS systems were compared 

against seven muticlassifier systems: 

1) SB system [1]: This system selects the single best 

classifier in the ensemble. 

2) MV system [1]: This system is based on majority 

voting of all classifiers in the ensemble. 

3) DCS-LA system [6]: In this system competence at a 

testing point x is calculated as the percentage of the 

correct recognition of the k-nearest validation samples of 

x. k = 10 was chosen since for this value the DCS-LA 

system had the best overall performance in previous 

studies.  

4) DCS-MLA system [10]: This system is similar to the 

DCS-LA system, except the local classification accuracy 

is estimated using weighted k nearest neighbours of the 

test object x that are taken from V. 

5) DES-KE system [5]: This system dynamically 

selects a subset of classifiers with the perfect 

classification accuracy of k nearest neighbours of the test 

object x. The k nearest neighbours are taken from the 

validation dataset V. If there is no classifier with the 

perfect classification accuracy of all k nearest neighbours, 

the value of k is decreased until at least one such 

classifier is found. k = 8 was chosen since for this value 

the DES-KE system had the best performance. 

6) DCS-RRC system [8], [14]: In this system first the 

competence of base classifiers is calculated using the 

concept of randomized reference classifier (RRC), and 

next the most competent classifier is selected for the 

classification of x.  

RRC is a classifier whose class supports are realization 

of the random variables with beta probability 

distributions. The parameters of the distributions are 

chosen in such a way that, for each feature vector in a 

validation set, the expected values of the class supports 

produced by the RRC and the class supports produced by 

a modeled classifier are equal. This allows for using the 

probability of correct classification of the RRC as the 

competence of the modeled classifier. The competences 

calculated for a validation set are then generalized to an 

entire feature space by constructing a competence 

measure based on a potential function model. 

7) DES-RRC system [8], [15]: This system is the same 

as the DCS-RRC except that the set of classifiers with the 

competence greater than the probability of random 

classification is selected for an object x. Decision is made 

using weighted majority voting rule.  

The experiments were conducted using two ensemble 

types: homogeneous and heterogeneous. The homo-

geneous ensemble consisted of 50 feed-forward 

backpropagation neural network classifiers with one 

hidden layers and the maximum number of learning 

epochs set to 80. Each neural network classifier was 

trained using randomly selected 70% of objects from the 

training dataset.  

The heterogeneous consisted of the following 11 

classifiers [16]: 

 (1) Linear classifier based on normal distribution 

with the same covariance matrix for each class;  
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 (2) Quadratic classifier based on normal 

distribution with different covariance matrix for 

each class; 

 (3) Nearest mean classifier;  

 (4-6) k-Nearest neighbors classifiers with k=1, 5, 

10:  

 (7, 8) Parzen density based classifier with the 

Gaussian kernel and the optimal smoothing 

parameter hopt (and the smoothing parameter 

hopt/2);  

 (9) Pruned decision tree classifier with Gini 

splitting criterion;  

 (10) Feed-Forward backpropagation neural 

network classifier containing two hidden layers 

with 5 neurons each and the maximum number of 

learning epochs set to 80; 

 (11) Feed-Forward backpropagation neural 

network classifier containing one hidden layer 

with 10 neurons and the maximum number of 

learning epochs set to 80 

Performance of the systems constructed was evaluated 

in two experiments. In the first experiment, DCS-MC and 

DES-CS systems were evaluated using different values of 

parameter K defining the K-neighborhood concept and for 

DES-CS system different threshold values α in (12). 

Experiments were conducted for K=3M, 5M, 10M (M is 

the number of classes) and for α=0.95, 0.9, 0.8, 0.7.  

In the second experiment, the systems that showed the 

best performance were compared against other MCS’s. 

B. Results and Discussion 

The average ranks of DCS-MC and DES-CS systems 

for different values of K and α and a critical rank 

difference calculated using a Bonferroni-Dunn test [17] 

are visualized in Fig. 2. The DCS-MC system achieved 

the best results for K=5M (homogeneous ensemble) and 

for K=3M (heterogeneous ensemble). The DES-CS 

system achieved the best results for K=5M and α=0.8 

(homogeneous ensemble) and for K=5M and α=0.8 

(heterogeneous ensemble). 
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Figure 2.  Average ranks of the systems constructed for different values 
of K and α: A) the homogeneous ensemble, B) the heterogeneous 

ensemble (DCS-MC for K=3M (1), 5M (2) 10M (3), DES-CS for K=3M 

and α=0.95 (4), 3M, 0.9 (5), 3M, 0.8 (6), 3M, 0.7 (7), 5M, 0.95 (8), 5M, 
0.9 (9), 5M, 0.8 (10), 5M, 0.7 (11), 10M, 0.95 (12), 10M, 0.9 (13), 10M, 

0.8 (14), 10M, 0.7 (15)). 

TABLE IV.  CLASSIFICATION ACCURACIES OF THE MCSS USING HOMOGENEOUS ENSEMBLES. THE BEST RESULT FOR EACH DATASET IS BOLDED. 

Database SB 
(1) 

MV 
(2) 

DCS-LA 
(3) 

DCS-MLA 
(4) 

DES-KE 
(5) 

DCS-RRC 
(6) 

DES-RRC 
(7) 

DCS-MC 
(8) 

DES-CS 
(9) 

Breast C.W. 95.01 96.30 95.01 95.07 95.85 94.39 95.88 94.15 94.88 

Glass 51.70 *# 55.94 *# 58.68 *# 59.34 *# 61.89 # 65.23 67.22 61.35 63.17 

Laryngeal3 67.40 *# 70.11 69.15 # 67.51 *# 68.02 *# 70.89 72.69 69.55 70.05 

Segmentation 84.24 *# 94.51 94.39 94.60 95.57 94.13 95.72 94.42 94.47 

Thyroid 90.56 *# 91.68 *# 92.99 92.99 94.21 92.51 93.21 92.81 93.15 

Vowel 48.91 *# 55.26 *# 65.12 *# 75.51 *# 78.46 78.15 79.45 77.52 78.35 

Average rank 8.25 5.33 6.16 5.25 3.17 5.33 1.33 6.00 4.00 

Average 72.97 77.30 79.22 80.84 82.33 82.55 84.03 81.63 82.34 

TABLE V.  CLASSIFICATION ACCURACIES OF THE MCSS USING HETEROGENEOUS ENSEMBLES. THE BEST RESULT FOR EACH DATASET IS BOLDED.  

Database SB 

(1) 

MV 

(2) 

DCS-LA 

(3) 

DCS-MLA 

(4) 

DES-KE 

(5) 

DCS-RRC 

(6) 

DES-RRC 

(7) 

DCS-MC 

(8) 

DES-CS 

(9) 

Breast C.W. 96.31 96.29 96.14 96.14 95.25 # 95.93 96.28 96.11 96.21 

Glass 66.39 64.96 64.03 *# 62.72 *# 64.20 *# 64.40 # 
67.35 65.41 65.83 

Laryngeal3 71.96 73.92 67.95 *# 68.81 *# 70.12 # 70.27 # 73.90 71.22 71.49 

Segmentation 93.66 # 94.78 94.09 94.28 94.47 94.51 95.32 94.63 95.01 

Thyroid 93.95 92.11 92.86 93.18 93.32 92.81 93.62 92.75 93.09 

Vowel 86.99 *# 87.14 *# 84.03 *# 82.84 *# 84.55 *# 86.38 *# 
90.18 88.73 89.54 

Average rank 3.50 4.00 7.42 7.08 6.50 6.50 1.66 5.00 3.33 

Average 84.87 84.86 83.18 82.99 83.65 84.05 86.11 84.81 85.19 

 

The results obtained in the second experiments for 

homogeneous and heterogeneous ensembles are shown in 

Table IV and Table V, respectively. These results are the 

classification accuracies (i.e. the percentage of correctly 

classified objects) averaged over 10 runs (5 replications 

of 2-fold cross validation).  

Statistical differences between the performances of the 

DCS-MC and DES-CS systems and the seven MCS’s 

were evaluated using Dietterich’s 5x2cv test [18]. The 

level of p < 0.05 was considered statistically significant. 

In Tables, statistically significant differences are marked 

by asterisks and hash signs with respect to the DCS-MC 

and DES-CS methods, respectively.  

The DES systems achieved better average ranks than 

DCS systems, regardless of the competence method and 

the ensemble type used. This indicated that DES is 
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superior to DCS and that neither of the competence 

methods used affects relative ranks of the systems 

constructed. This could be attributed to the fact that the 

former uses the supports of classifiers ensemble, while 

the latter uses supports of a single classifier. 

For all MCS’s classification accuracies for 

heterogeneous ensemble are better than for homogeneous 

ensemble. One possible reason for this is that learning 

procedure of multilayer perceptrons was restricted to the 

80 epochs.  

The DCS-MC (DES-CS) systems for homogeneous 

ensemble outperformed the SB, MV, DCS-LA and DCS-

MLA systems by 28.61% (29.44%), 22.26% (23.09%), 

12.4% (13.23%) and 2.01% (2.84%) on average, 

respectively.  

The DCS-MC system for heterogeneous ensemble 

outperformed the DCS-LA, DCS-MLA, DES-KE and 

DCS-RRC systems by 1.63%, 1.82%, 1.16% and 0.76% 

on average, respectively.  

The DES-CS system for heterogeneous ensemble that 

was the second-best scoring system outperformed the SB, 

MV, DCS-LA, DCS-MLA, DES-KE and DCS-RRC 

systems by 0.32%, 0.33%, 2.01%, 2.2%, 1.54 and 1.14% 

on average, respectively.  

The systems developed produced statistically 

significant higher accuracies than the other MCS’s in 57 

out of 168 cases (6 datasets×7 MCS’s×2 systems 

developed×2 ensemble types).  

IV. CONCLUSIONS 

Nowadays, many researchers have been focused on 

Multiclassifier Systems and consequently, many new 

solutions have been dedicated to each of the two main 

approaches: classifiers fusion and classifiers selection. In 

the proposed solutions the fundamental role plays the 

assessment of competence of base classifiers which is 

crucial in the dynamic ensemble selection scheme and in 

the weighted mechanism of combining classifiers.  

In this study a new method for calculating the 

competence of a classifier in the feature space was 

presented. In the proposed method, first the K-

neighborhood is used to determine the so-called decision 

profile of a test object. The decision profile determines 

the class number with the greatest chance of being true 

class together with the normalized value of this chance. 

Next, the decision profile is compared with the support 

produced by the classifier at a test point for the same 

class. Finally, we calculate the measure of competence 

which rates the classifier with respect to the similarity of 

its response to the decision profile of a test object in a 

continuous manner. 

Two multiclassifier systems based on DCS and DES 

schemes using in the selection process proposed 

competence measure were developed and experimentally 

evaluated using 6 benchmark datasets.  

Experimental results showed that the idea of 

calculating the competence of a classifier by relating its 

response to the decision profile of a testing object is 

correct and leads to the accurate and efficient 

multiclassifier systems.  
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