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Abstract—Heart rate variability (HRV) analysis is fast 

emerging as a noninvasive research and clinical tool for 

assessing cardiac and autonomic nervous system function. 

The variations in the heart rate are the consequences of 

multiple and complex mechanisms, making the heart rate 

dynamics nonlinear in nature. So, nonlinear analysis of 

HRV provides more appropriate information for 

understanding and interpretation of the physiological 

problems associated with cardiovascular system. In this 

paper, multifractal detrended fluctuation analysis of HRV 

signals pertaining to pre-meditation and during meditation 

conditions is worked out. We observed a right shift in the 

peaks of multifractal spectra for the subjects during 

meditation, which represents an increase in multifractal 

nature of HRV. This result clearly shows that there will be 

an improvement of health in the cardiovascular system 

functioning during meditation. 

 

Index Terms—heart rate variability, multifractal detrended 

fluctuation, meditation, nonlinear analysis, multifractal 

spectra   

 

I. INTRODUCTION 

Biological signals are both nonlinear and non-

stationary, i.e., their statistical character changes slowly 

or intermittently as a result of variations in background 

influences [1]. Furthermore, very often there exist smaller 

amplitude fluctuations at shorter time scales. The idea of 

having hidden information in physiological time series 

created a growing interest in applying the concepts and 

techniques from statistical physics, for a wide range of 

biomedical problems [2], [3]. 

Heart rate variability (HRV) analysis is fast emerging 

as a noninvasive research and clinical tool for assessing 

cardiac and autonomic nervous system function, and it 

refers to the beat-to-beat alterations in the heart rate. 

Various investigations confirmed that long-term heart 

rate variability (HRV) fluctuations are not random, but 

exhibit long-term correlations that do not exhibit any 

characteristic scale, but are rather “scale invariant”. Scale 

invariance of a time series means that there is no specific 

scale of time can be identified in the data. This type of 
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scale invariant variability is also known as fractal and the 

methodology employed to evaluate it is often called 

fractal analysis. In geometrical terms a fractal object is a 

self-similar structure, which means that looking closely at 

smaller regions reveals a scaled version of the whole 

object. The word ‘fractal’ was first used by Mandelbrot 

[4]. In case of a time series, the similarity is not structural 

but statistical. The fractal time series look same when 

viewed in different time scales (scale invariant). 

Analysis of fractal scaling exponents by detrended 

fluctuation analysis (DFA) is one such method which 

describes the fractal correlation properties of biological 

time series. Breakdown of short-term fractal organization 

in human Heart rate (HR) dynamics, has been observed in 

various disease states, such as in heart failure [5], [6] and 

during atrial fibrillation [7]. Fractal analysis methods 

differ from the traditional measures of HRV because they 

measure the qualitative characteristics and correlation 

features of HR behavior instead of the magnitude of 

variability. Briefly, a scaling exponent obtained by the 

DFA method quantifies the relations of HR fluctuation at 

different scales. Low-exponent values correspond to 

dynamics where the magnitude of beat-to-beat HR 

variability is close to the magnitude of long-term 

variability. Conversely, high-exponent values correspond 

to dynamics where the magnitude of long-term variability 

is substantially higher than the beat-to-beat variability [8]. 

Fractals can be classified into two categories: 

monofractals and multifractals. Monofractals are those, 

whose scaling properties are the same in different regions 

of the systems and multifractals are complicated self-

similar objects consisting of differently weighted fractals 

with different non-integer dimensions. As a result, 

multifractal system is a generalization of a fractal system 

in which a single scaling exponent is not enough to 

describe its dynamics; instead a continuous spectrum of 

exponents (the so called singularity spectrum) is needed 

[2], [9], [10]. 
The width and shape of the multifractal spectrum can 

also differentiate between the heart rate variability from 

patients with heart diseases like ventricular tachycardia, 

ventricular fibrillation and congestive heart failure [11], 

[12]. The multifractality has also been reported in heart 
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rate fluctuations of healthy individuals [13]. The 

multifractal analysis has become a useful tool to detect 

long-range correlation in heartbeat fluctuations for the 

diagnosis of heart failure [14]. The multifractal structure 

of heart rate variability is therefore suggested to reflect 

important properties of the autonomic regulation of the 

heart rate. 

II. METHODOLOGY AND DATA 

A. Multifractal Detrended Fluctuation Analysis  

The simplest type of multifractal analysis is based 

upon the standard partition function multifractal 

formalism, which has been developed for the multifractal 

characterization of normalized, stationary measures [15]–

[17]. Unfortunately, this standard formalism does not 

give correct results for nonstationary time series that are 

affected by trends or that cannot be normalized. Thus, in 

the early 1990s an improved multifractal formalism has 

been developed, the wavelet transform modulus maxima 

(WTMM) method [18], which is based on wavelet 

analysis and involves tracing the maxima lines in the 

continuous wavelet transform over all scales. An 

alternative approach based on a generalization of the 

DFA method is proposed by Kantelhardt et al [19]. This 

multifractal DFA does not require the modulus maxima 

procedure, and hence does not involve more effort in 

programming than the conventional DFA. 

The generalized multifractal DFA (MFDFA) procedure 

consists of five steps. The first three steps are essentially 

identical to the conventional DFA procedure [20], [21]. 

The procedure of MFDFA as described by Kanthelhardt, 

et al. [19] is as follows. 

Let us suppose that x(i) is a non-stationary time series 

of length N. The mean of the series x(i) is given by 

〈𝑥〉 =  
1

𝑁
∑ 𝑥(𝑖)

𝑁

𝑖=1

                                 (1) 

Step 1: Compute the integrated time series (profile) 

𝑌(𝑖) = ∑[𝑥(𝑘) − 〈𝑥〉]          𝑖 = 1, … , 𝑁.             (2)

𝑖

𝑘=1

 

Subtraction of the mean 〈𝑥〉 is not compulsory, since it 

would be eliminated by the later detrending in the third 

step 

Step 2: The profile Y(i) is divided  into Ns = int(N/s) 

non-overlapping segments of equal length s. 

Since the length N of the series is often not a multiple 

of the considered time scale s, a short part at the end of 

the profile may remain. In order not to disregard this part 

of the series, the same procedure is repeated starting from 

the opposite end. Thereby, 2Ns segments are obtained 

altogether. 

Step 3: The local trend for each of the 2Ns segments is 

calculated by a least –square fit of the series. Then 

determine the variance 

𝐹2(𝑣, 𝑠) =
1

𝑠
∑{𝑌[(𝑣 − 1)𝑠 + 𝑖] − 𝑦𝑣(𝑖)}2

𝑠

𝑖=1

        (3) 

for each segment v,  v = 1, …, Ns and  

𝐹2(𝑣, 𝑠) =
1

𝑠
∑{𝑌[(𝑁 − (𝑣 − 𝑁𝑠)𝑠 + 𝑖] − 𝑦𝑣(𝑖)}2

𝑠

𝑖=1

       (4) 

for v = Ns + 1, …, 2Ns.  

where yv(i) is the least square fitted polynomial in 

segment v.  

𝑦𝑣(𝑖) =  ∑ 𝐶(𝑘)𝑖𝑚−𝑘

𝑚

𝑘=0

                          (5) 

Here C(k) are the set of coefficients. Linear, quadratic, 

cubic, or higher order polynomials can be used in the 

fitting procedure (conventionally called DFA1, DFA2, 

DFA3, …).  

Step 4: Averaging all the segments to obtain the qth 

order fluctuation function 

𝐹𝑞(𝑠) = {
1

2𝑁𝑠

∑[𝐹2(𝑣, 𝑠)]𝑞/2

2𝑁𝑠

𝑣=1

}

1/𝑞

                  (6) 

where, the index variable q can take any real value except 

zero (for q = 0, see step 5). For q = 2, the standard DFA 

procedure is retrieved. As we are interested in how Fq(s) 

(generalized q dependent fluctuation functions) depend 

on the time scale s for different values of q. Hence, we 

must repeat steps 2 to 4 for several time scales s. It is 

apparent that Fq(s) will increase with increasing s. Of 

course, Fq(s) depends on the DFA order m. By 

construction, Fq(s) is only defined for s ≥ m + 2. 

Step 5: The scaling behavior of the fluctuation 

functions by analyzing log–log plots Fq(s) versus s for 

each value of q is determined as shown in Figure 1. If the 

series x(i) are long-range power-law correlated, Fq(s) 

increases, for large values of s, as a power-law, 

                            𝐹𝑞(𝑠) =  𝑠ℎ(𝑞)                                 (7) 

If such a scaling exists ln Fq(s) will depend linearly on 

ln s, with h(q) as the slope. For very large scales, 

𝑠 > 𝑁/4, Fq(s) becomes statistically unreliable because 

the number of segments Ns for the averaging procedure in 

step 4 becomes very small. Thus, scales 𝑠 > 𝑁/4  are 

excluded from the fitting procedure to determine h(q), 

usually. In general, the exponent h(q) in Eq. (7) depends 

on q. For stationary time series, h(2) is identical to the 

well-known Hurst exponent H [15]. Thus, the function 

h(q) can be called as generalized Hurst exponent. The 

plot of q versus h(q) is shown in Fig. 1(D). 

The value of h(0), which corresponds to the limit h(q) 

for q→0, cannot be determined directly using the 

averaging procedure in Eq. (6) because of the diverging 

exponent. Instead, a logarithmic averaging procedure has 

to be employed, 

𝐹0(𝑠) = exp {
1

4𝑁𝑠

∑ ln [𝐹2(𝑣, 𝑠)]

2𝑁𝑠

𝑣=1

}  ~ 𝑠ℎ(0)        (8) 

Note that h(0) cannot be defined for time series with 

fractal support, where h(q) diverges for q→0. 

For monofractal time series with compact support, h(q) 

is independent of q, since the scaling behavior of the 

129©2016 Int. J. Sig. Process. Syst.

International Journal of Signal Processing Systems Vol. 4, No. 2, April 2016



variances F
2
(v, s) is identical for all segments v, and the 

averaging procedure in Eq. (4) will give just this identical 

scaling behavior for all values of q. If we consider 

positive values of q, the segments v with large variance 

F
2
(v, s) (i.e., large deviations from the corresponding fit) 

will dominate the average Fq(s). Thus, for positive values 

of q, h(q) describes the scaling behavior of the segments 

with large fluctuations. On the contrary, for negative 

values of q, the segments v with small variance F
2
(v, s) 

will dominate the average Fq(s). Hence, for negative 

values of q, h(q) describes the scaling behavior of the 

segments with small fluctuations. Usually the large 

fluctuations are characterized by a smaller scaling 

exponent h(q) for multifractal series than the small 

fluctuations.  

 

Figure 1.  The MFDFA fluctuation functions Fq(s) are shown versus the scale s in log-log plot for A) multifractal time series, B) monofractal time 

series and C) white noise. Part (D) shows the q dependence of the scaling exponent h(q) for multifractal, monofractal time series and white noise. 

 

Figure 2.  An example of singularity spectrum 

The generalized Hurst exponent h(q) of MFDFA is 

related to the classical scaling exponent τ(q) by the 

relation 

                          τ(q)=qh(q)−1                          (9) 

A monofractal series with long range correlation is 

characterized by linearly dependent q order exponent τ(q) 

with a single Hurst exponent H. Multifractal signal have 

multiple Hurst exponents and τ(q) depends non-linearly 

on q . 

The singularity spectrum f (α) is related to h(q) by  

α = h(q) + qh(q)    (10) 

f (α) = q[α − h(q)] +1                        (11) 

where α is the singularity strength or Holder exponent 

and f (α) specifies the dimension of subset series that is 

characterized by α.  The singularity spectra for an 

example multifractal, monofractal time series and white 

noise is shown in Fig. 2.  

B. Data 

In this paper, Multifractal spectrum (f(α)) is computed 

on the HRV signals acquired during meditation.  Instead 

of taking the RR intervals directly for the analysis, the 

first order difference of RR intervals is used in the study, 

so as to make the time series look more like noise. The 

noise like series can be converted into random walk type 

series using step 1 in the MFDFA procedure. It is 

customary to convert the time series to a random walk 

like time series before employing DFA [3]. The plots of 

RR interval and RR interval differences is shown in Fig. 

3.  
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Figure 3.  RR intervals (upper) and corresponding RR interval 
differences (lower). 

The data analyzed in this paper is a widely used RR 

inter-beat interval database for research studies 

(www.physionet.org) consisting of data before and during 

meditation, collected from eight healthy Qigong 

meditation (Chi meditation) subjects (aged 29-35) (more 

information on the dataset and the meditation method are 

described in [22]). The length of the time series varied 

between 50 and 80 minutes.  

 

Figure 4.  Multifractal spectra of HRV signals taken before and during 
meditation 

III. RESULTS AND CONCLUSION 

It can be seen from the Fig. 4 that the peaks of 

Multifractal spectra are shifted towards the right during 

meditation. The peaks of pre-meditation data are centered 

at α = 0.3 and during meditation at α = 0.6. Meyer M. et 

al discriminated heart failure patients from healthy based 

on the parameter α mode and found that the shape of the 

singularity spectrum different for pathological conditions 

(cardiac transplantation vs. ventricular tachycardia) [23]. 

Magrans, et al. [24] applied this method to study HRV 

before, during, and after ischemia generated by the 

percutaneous transluminal coronary angioplasty 

procedure. The results in this study, clearly shows the 

shifting of the Multifractal spectrum towards right side 

from pre-meditation to during meditation. The width of 

the Multifractal spectra increase from white noise to 

monofractal to multifractal time series and the peak of the 

spectrum also shifts from white noise to multifractal time 

series as shown in Fig. 2. Healthy heart rate regulation is 

a complex process and generates a multifractal signal. It 

is already proved that complexity of HRV decreases with 

disease [25]. That means there is a loss of multifractality 

from healthy condition to disease condition. The results 

of this study reveal that there is an increase of 

multifractality from pre-meditation to during meditation. 

This proves that meditation improves health condition of 

a person. 
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