
 

 

A Novel Approach for Improving Performance of 

LMS Beamformer 
 

P. R. Mini  
Department of Electronics and Communication Engineering, Federal Institute of Science and Technology, Kerala, India 

Email: mini@fisat.ac.in 
 

S. Mridula and Binu Paul 
Division of Electronics Engineering, School of Engineering, Cochin University of Science and Technology, Kerala, 

India  

Email: {mridula, binupaul}@ cusat.ac.in 
 

P. Mohanan 
Department of Electronics, Cochin University of Science and Technology, Kerala, India  

Email: drmohan@cusat.ac.in 
 
 

 

Abstract—In this paper a novel approach derived from the 

Mapped Real Transform (MRT) is proposed for improving 

the convergence rate and reducing the computational 

complexity of the Least Mean Square (LMS) Beamformer. 

In contrast to the conventional LMS beamformer which 

applies the LMS algorithm directly on the data received 

from the sensors, the proposed method utilizes a 

transformed version of the received data for the LMS 

adaptation. This transformed version is obtained by 

applying a One Dimensional Reduced Mapped Real 

Transform algorithm to the received data. Simulations show 

that the computational complexity is reduced and the 

convergence rate is improved when compared with the 

conventional LMS beamformers. The One Dimensional 

Reduced Mapped Real Transform based LMS algorithm 

can be used in radar, seismology, sonar, biomedical 

applications etc. As a future scope the One Dimensional 

Reduced Mapped Real Transform can be applied to other 

adaptive beamformers like Normalized Least Mean Square 

beamformer and Recursive Least Square beamformer. 
 

Index Terms—LMS beamformer, mapped real 

transform, one dimensional reduced mapped real 

transform, convergence rate, computational 

complexity 
 

I. INTRODUCTION 

Beamforming is the process of combining the signals 

from an array of sensors in such a way that there is 

constructive interference in the direction of the desired 

user and destructive interference in the direction of 

undesired users [1]. Beamforming finds applications in 

Radar, Sonar, Cellular Communication etc. Beamformers 

can be classified as non-adaptive and adaptive 

beamformers. In non-adaptive or conventional 

beamformers the weights are chosen independent of any 

data received by the array. The weights steer the array 
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response in a specified direction but interference rejection 

capability is poor [2]. 

In adaptive beamformers, the spatial signal processing 

is performed adaptively. The weights are chosen based on 

the statistics of the received data, to direct the main beam 

towards the desired user and place nulls in the path of 

interfering signals[3]. Adaptive beamformers have more 

degrees of freedom since they have the ability to adapt in 

real time to the signal environment. The calculation of 

weights is done adaptively using algorithms. The Least 

Mean Square (LMS) algorithm is one of the most popular 

algorithms for adaptive beamforming. 

The LMS algorithm offers the advantages of simplicity 

and robustness but suffers from the disadvantage of slow 

convergence [4]. This paper presents an approach to 

achieve faster convergence and reduce computation time 

by applying the One Dimensional Reduced Mapped Real 

Transform (1D-R-MRT) algorithm to the LMS algorithm. 

The paper is organized as follows: The signal model 

for adaptive beamforming is described in Section 2. 

Conventional LMS algorithm is introduced in Section 3. 

1D-R-MRT is presented in Section 4. 1D-R-MRT based 

LMS beamformer is described in Section 5. Simulation 

results are presented in Section 6. Conclusions are 

presented in Section 7. 

 
Figure 1.  Uniform linear array with signal impinging from direction θ. 
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II. SIGNAL MODEL  

Assume that K narrowband sources are present in the 

far field of the array represented as {sk(t), k=1, 2 ...K}. 

Out of these K sources let one source represent the 

desired signal while the rest denote undesired interferers. 

The K sources have directions of arrival (DOA) given by 

{θk, k=1, 2 ....K} [5]. Consider that the signal from these 

sources is received by a uniform linear array of Ns 

omnidirectional antennas with a spacing d between 

individual elements (Fig. 1). 

The signal from a source sk arriving from a direction θk 

will be received by each array element at different time 

instants. The resulting phase difference in the received 

signal between the successive elements of the array is 

given by 

2 sin k
k

d 



                           (1) 

where, d is the inter element spacing and λ is the 

wavelength of the signal. The array steering vector for a 

signal arriving from a direction θk is given by 

2 ( 1)
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ka e e e
   

                       (2) 

The array elements are assumed to be corrupted by 

Additive White Gaussian Noise represented as {nj(t), j=1, 

2.....Ns}. The signal received by the array can be 

represented as [6]. 
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The vector representation of the received signals is  

  ( ) ( )X n As n N n                            (4) 

where X(n)=[X1(n) X2(n) ......XNs(n)]
T
 is the column 

vector of data received by the array, A=[a(θ1) a(θ2).... 

a(θK)] represents the steering matrix, s(n)=[s1(n) 

s2(n) ......sK(n)]
T
 is the signal column vector generated by 

the sources, N(n)=[n1(n) n2(n) ......nNs(n)]
T
 is the zero 

mean spatially uncorrelated Additive Gaussian Noises 

and (.)
T
 represents transpose. The sum of the weighted 

inputs of array elements gives the beamformer output [7] 

as illustrated in Fig. 2. 

( ) ( )HY n nW X                                (5) 

where W is the weight vector. 

 

Figure 2.  LMS beamformer. 

1 2[ ]NsW W WW                          (6) 

and W
H
 is the Hermitian of the weight vector. The 

weights are adjusted adaptively using the LMS algorithm. 

III. LEAST MEAN SQUARE ALGORITHM  

The LMS algorithm is an important stochastic gradient 

algorithm. A significant feature of LMS algorithm is its 

simplicity. It does not require measurements of 

correlation functions and matrix inversions. These factors 

have made this algorithm very popular.  

The LMS algorithm for beamforming consists of two 

basic processes: 1) an estimation process in which the 

beamformer output Y(n) is compared with a desired 

response d(n) and an estimation error e(n) is generated. 2) 

an adaptation process which automatically adjusts the 

weights of the beamformer in accordance with the 

estimation error. 

The LMS algorithm changes the weight vector W 

along the direction of the estimated gradient based on the 

steepest descent method. The weight vector update for 

LMS algorithm is given by [8]. 

*( 1) ( ) ( ) ( )W n W n X n e n                      (7) 

where µ is the step size, e(n) is the error vector given by 

( ) ( ) ( )e n Y n d n                             (8) 

e*(n) is the conjugate of the error vector. 

The step size (adaptation constant) µ is a positive real 

valued constant which determines the convergence rate 

and performance of the algorithm. The upper bound on µ 

[9] is given by 

max

2
0 


                                  (9) 

where λmax is largest Eigen value of the autocorrelation 

matrix R=E{X(n)X(n)}. The size of the incremental 

correction applied to the weight vector between 

successive iterations is controlled by µ. The LMS 

algorithm also requires knowledge of the transmitted 

signal. For this purpose, known pilot sequences are 

transmitted periodically to the receiver. 

IV. ONE DIMENSIONAL MAPPED REAL TRANSFORM 

The Mapped Real Transform (MRT), formerly called 

M dimensional Real Transform, performs the frequency 

domain analysis of one and two dimensional signals in 

terms of additions only [10]. The periodicity and 

symmetry of exponential terms in the Discrete Fourier 

Transform relation is exploited and related data is 

grouped. The MRT for one dimensional signal is utilized 

in this paper. 

The One Dimensional Mapped Real Transform (1D-

MRT) as explained by Meenakshi, Roy and 

Gopikakumari [11] is as follows 

Let xn, 0≤n≤N-1 be a 1-D sequence of size [1xN] and 

let Yk, 0≤k≤N-1 of size [1xN] be its DFT. The DFT is 

given by  
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and k is the frequency index . 

Using the periodicity of the twiddle factor WN, (10) 

can be expressed as  
1
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N

N
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                           (12) 

The exponent ((nk))N can have a value p, where p is 

the phase index with 0 ≤ p ≤ N-1. For a given value of k, 

by grouping the data that share the same value p for the 

exponent ((nk))N, and also using the relation 

,)2/( p

N

Np
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where 
)( p

kY  is the 1D–MRT of xn, 0≤n≤N-1, defined as  

( )
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p
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where M=N/2.The size of Yk will be [MxN ]. 

The computation of the DFT coefficients requires the 

use of complex multiplications. Compared to DFT, the 

MN coefficients of MRT are computed in terms of 

additions only. The 1-D MRT maps an array of size (1xN) 

into a matrix of size (M x N). As the 1D_MRT exploits 

the relation p

N

Np

N WW  )2/(  it is valid for all even values 

of N.  

V. ONE DIMENSIONAL REDUCED MAPPED REAL 

TRANSFORM 

The [M x N] elements of 1D-MRT are represented as 
)( p

kY  where 0≤k≤N-1 and 0≤p≤M-1. Different operations 

can be performed by selecting only a few elements out of 

MN elements in the 1D-MRT matrix. Elements of 1D-

MRT matrix used for processing are selected according to 

the application. Exhaustive simulation studies conducted 

to see if beamforming can be performed using only a few 

selected elements of 1D-MRT matrix, have shown 

promising results when one column of 1D-MRT matrix is 

used. In the proposed One Dimensional Reduced Mapped 

Real Transform (1D-R-MRT) algorithm for beamforming, 

only the elements of second column of the [MxN] 1D-

MRT matrix, i.e., elements corresponding to k=1, are 

chosen for processing. The size of data vector from each 

sensor used for beamforming after this transformation 

will be reduced from a (1xN) vector to a vector of size 

(1xN/2). Suitability of the second column (corresponding 

to k=1) for beamforming is confirmed after exhaustive 

trials. Coefficients corresponding to frequency index k=1 

are obtained by  

YR-MRT[1xN/2] = xn[1x(1:N/2)] –xn[1x(N/2 +1:N)]   (14) 

where YR-MRT is the 1D-R-MRT output vector and xn is 

input vector of size (1xN). The data size for processing is 

reduced by half and the coefficients are obtained without 

involving any complex multiplication. Since at each 

sensor, the data to be processed is reduced to half its 

original size, there is a significant reduction in the size of 

the data required to be processed by the beamformer. 

 

 

Figure 3.  1D-R-MRT LMS beamformer. 

The data received at each sensor is first processed by 

the 1D-R-MRT algorithm block. After the data is mapped 

to 1D-R-MRT form, the LMS algorithm is applied as 

illustrated in Fig. 3.  

VI. SIMULATION RESULTS 

For the proposed study, an array of eight sensors with a 

desired source at 50 degrees and two interferers at 0 

degree and -30 degree is considered. The input signal 

frequency is 1 MHz and is corrupted by Additive White 

Gaussian Noise. The one dimensional data vector size is 

[1x256] and SNR is 30dB. After computing the 1D-R-

MRT, the size of the vector used for beamforming will be 

reduced to [1x128]. It is indicated by exhaustive 

simulation studies that faithful reproduction of the input 

signal is obtained only if sampling frequencies is 4.655 

times the input signal frequency for vector size of 

[1x256].  

The optimum sampling frequency for different 

sampling sizes are given in Table I. 

TABLE I.  OPTIMUM SAMPLING FREQUENCY FOR VARIOUS SAMPLING 

SIZES. 

One Dimensional sample vector size Sampling frequency 

256 4.655 f 

512 4.096 f 

1024 4.0475 f 

2048 4.521 f 

4096 4.1f 

8192 4.2249f 

 

The normalized beam patterns for the conventional 

LMS beamformer and the 1D-R-MRT LMS beamformer 

are compared in Fig. 4.  

It is observed from Fig. 4 that the normalized beam 

pattern of the 1D-R-MRT LMS beamformer is 

comparable to that of the conventional LMS beamformer. 
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Also in comparison with the conventional LMS 

beamformer, the 1D-R-MRT LMS beamformer exhibits 

deeper nulls in direction of interfering signals i.e, at the 

interfering DOA of 0 degree and -30 degree, showing that 

the interference rejection capability of the 1D-R-MRT 

LMS beamformer is better than that of the conventional 

LMS beamformer. 
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Figure 4.  Comparison of normalized beam patterns. [No. of sensors = 8, 
DOA of desired signal = 50degrees, DOA of Interference1 = 0degree, 
DOA of Interference2 = -30degrees, SNR=30dB, No. of samples=256, 

µ = 0.01] 
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Figure 5.  Comparison of mean square error. [No. of sensors = 8, DOA 

of desired signal =50degrees, DOA of Interference1 = 0degree, DOA of 
Interference2 = -30degrees, SNR=30dB, No. of samples = 256, µ = 

0.01]. 

Next the performance of the conventional LMS 

beamformer and the 1D-R-MRT LMS beamformer on the 

basis of mean square error is compared as indicated in 

Fig. 5. It can be observed from Fig. 5 that the mean 

square error is initially large in the case of 1D-R-MRT 

LMS beamformer compared to conventional LMS 

beamformer. But the mean square error converges faster 

for the 1D-R-MRT LMS beamformer.  

The convergence of the weights of the conventional 

LMS beamformer and the 1D-R-MRT LMS beamformer 

are compared in Fig. 6. It is observed from Fig. 6 that the 

weights of 1D-R-MRT LMS beamformer converge much 

faster than the weights of conventional LMS algorithm. 

The 1D-R-MRT LMS beamformer thus has faster 

adaptation to the input data compared to the conventional 

LMS beamformer.  
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Figure 6.  Comparison of convergence of weights. [No. of sensors = 8, 
DOA of desired signal =50degrees, DOA of Interference1 = 0degree, 

DOA of Interference2 = -30degrees, SNR=30dB, No. of samples = 256, 

µ = 0.01]. 
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Figure 7.  Comparison of 1D-R-MRT LMS beamformer output with the 
desired signal. [No. of sensors = 8, DOA of desired signal =50 degrees, 

DOA of Interference1 = 0 degree, DOA of Interference2 = -30 degrees, 
SNR=30dB, No. of samples =256, µ = 0.01]. 

The beamformer output of the 1D-R-MRT LMS 

beamformer closely follows the desired signal after the 

weight stabilizes as can be seen from Fig. 7. 

TABLE II.  COMPARISON OF COMPUTATION TIMES. 

No: of samples Computation time in seconds 

Conventional 

LMS beamformer 

1D-R-MRT LMS 

beamformer 

256 0.0066 0.0046 

512 0.0113 0.0067 

1024 0.0239 0.0110 

2048 0.0713 0.0291 

4096 0.2102 0.0713 

8192 0.9251 0.1997 

[No. of sensors = 8, DOA of desired signal =50degrees, DOA of 

Interference1 = 0degree, DOA of Interference2 = -30degrees, 
SNR=30dB, µ = 0.01]. 
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The 1D-R-MRT beamformer requires lesser 

computation time compared to conventional LMS 

beamformer. The computation times required by the 

conventional LMS and 1D-R-MRT LMS beamformers 

are compared in Table II. 

It can be observed from Table II that the 1D-R-MRT 

LMS beamformer exhibits a considerable reduction in 

computation time. 

The simulations were performed using MATLAB 8.1 

on Intel Core I3 CPU processor. 

VII. CONCLUSION 

In this paper, a novel method for improving the 

performance of the conventional LMS beamformer is 

proposed. In the proposed 1D-R-MRT LMS beamformer, 

the coefficients of the MRT matrix have been analysed 

and a few coefficients suitable for beamforming have 

been identified. The optimum sampling frequencies, 

required for faithfully reproducing the original signal, 

corresponding to various sample sizes have also been 

studied. The 1D-R-MRT processing does not involve any 

complex multiplications and at the same time reduces the 

data size for beamforming. The simulation results show 

that the performance of the 1D-R-MRT LMS beamformer 

is improved compared to the conventional LMS 

algorithm. The beampatterns of the 1D-R-MRT LMS 

beamformer and conventional LMS algorithm are 

comparable. 

The interference rejection capability of the 1D-R-MRT 

LMS beamformer is higher than the conventional LMS 

beamformer as it exhibits deeper nulls in the direction of 

interfering signals. The computation time and complexity 

of the 1D-R-MRT LMS beamformer is lesser than that of 

the conventional LMS beamformer as the data output 

from 1D-R-MRT block is half the size of the input signal. 

The weights and mean square error of the 1D-R-MRT 

LMS beamformer converges faster than the conventional 

LMS beamformer. Thus the proposed 1D-R-MRT LMS 

beamformer exhibits improved performance compared to 

the conventional LMS beamformer as it provides faster 

convergence, better interference rejection and lower 

computation time. 
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