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Abstract—The ever-increasing size of datasets in speaker 

recognition systems is the primary reason why challenges 

arise with regard to accuracy and computational complexity. 

Inadequate speaker-specific information on vocal tracts may 

lead to poor modeling and can adversely affect the 

performance under large-scale data conditions. In this work, 

we have developed a speaker recognition system, based on 

the excitation source information by blending pitch and 

pitch strength vectors. We investigate various approaches to 

improve the performance from two directions. First, we 

investigate various dimensionality reduction techniques 

during the feature extraction phase such as Multi-linear 

Principle Component Analysis (MPCA), Principle Factor 

Analysis (PFA), and Maximum Likelihood Factor Analysis 

(MLFA). We have evaluated the performance of different 

large-scale Support Vector Machine (SVM) algorithms as a 

function of training time to attain convergence. 

Combinations of the proposed dimensionality reduction 

methods and SVM algorithms have successfully produced 

an effective recognition system. We have demonstrated the 

performances of our approaches by conducting experiments 

on standard large-scale data bases, and then, compared 

these with the existing state-of-the-art recognition systems. 

The experimental results have shown that these approaches 

significantly improve the performance under large-scale 

data conditions in comparison with the conventional 

procedures. 

 

Index Terms—maximum likelihood factor analysis, large 

scale-SVM, pitched, dimensionality reduction, support 

vector machine 

 

I. INTRODUCTION 

Speaker recognition is the process of authenticating 

persons with the speaker-specific information from 

speech signal. Based on the task objectives, speaker 

recognition is classified into verification and 

identification. Verification deals with the process of 

evaluating the identity claim of a speaker. Whereas in 

identification, a machine determines the identity of a 
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specific person using the existing reference models. 

Speaker recognition modes are further divided into text-

dependent and text-independent systems [1]. A text-

dependent system makes assumptions regarding the 

parameters of speaker’s vocal tract. But, in text-

independent modality, the same text is employed for 

enrolment and verification stages. The present work is 

focused on text-independent speaker recognition.  

Real-Time implementation of speaker recognition 

technology involves multiple application-specific trade-

offs such as cost, performance, robustness, enrolment 

procedures, training time, adaptability, response time, etc. 

[2]. Since the database size for the real-world recognition 

tasks is ever-increasing, large population speaker 

recognition systems pose challenges such as large 

training time, vast memory requirements and poor 

response time [3]. Though accuracy is always the first 

consideration, efficient recognition and adaptability are 

also the significant aspects in many real-world speaker 

recognition systems under large-scale data conditions. 

This motivates us to investigate new methods at various 

stages involved in typical speaker recognition systems.  

Generic speaker recognition process mainly consists of 

two phases: training (also known as enrolment) and 

identification [4]. In the enrolment stage, speaker-specific 

information, from speech signal is extracted in 

chronological mode to develop speaker models. A cluster 

of such models in turn establishes the speaker database 

for the later test phase. During the identification phase, an 

anonymous speaker model is compared with the existing 

database and then the results are expedited. In fact, both 

the phases comprise of feature extraction that transforms 

the raw speech signal into a compact and effective 

representation which is comparatively more stable and 

discriminating than the original signal [5]. A typical 

speaker recognition system consists of the following 

phases: feature extraction, dimensionality reduction and 

classification [3]. In this work, in view of development of 

an effective large-scale recognition system, the state-of-

art methods have been proposed and experimental 

investigations have been conducted for each stage. 
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Speaker characteristics in a speech signal are 

differentiated by the dimensions of vocal tract, vocal 

excitation and learning habits of speakers [6]. 

Physiological structure of the speech production system is 

reflected by vocal tract characteristics and is relatively 

more robust and less prone to mimicry [7]. Therefore, 

recognition systems mostly use vocal tract information 

related features such as Mel Frequency Cepstral 

Coefficients (MFCC), Linear Predictive Cepstral Coding 

(LPCC) and other non-conventional features [8]. These 

methods have utilized the information from linear 

predictive (LP) residual signal. Two approaches known 

as temporal and frequential representations are examined. 

The former consists of an auto-regressive (AR) modeling 

of a signal followed by a cepstral transformation similar 

way to LPC-LPCC transformation [9]. However, under 

noisy environments and large data sets, performance of 

vocal tract information related features degrades severely 

[10]. Hence, it is necessary to derive robust features for 

the speaker recognition task. From the evidences of 

earlier studies [11]-[13], it has been identified that the 

features extracted from the excitation source are less 

prone to environmental noise and need small amount of 

data. Since the characteristics of the excitation source like 

pitch and pitch strength exhibit both the physiological 

and behavioral aspects of the speaker, it is possible to 

achieve good accuracy and lessen computational 

complexity. This work mainly explores feature extraction 

from the excitation source by accumulating speech 

characteristics such as pitch and pitch strength. 

The next stage in feature extraction is dimensionality 
reduction in which a high-dimensional space is 

transformed into a space of fewer dimensions. Dimension 
reduction is employed not only for the benefit of 

computational efficiency, but also to improve the 

accuracy of recognition [14]. In this work, much effort 
has been put to reduce the feature matrix by using 

different dimensionality reduction techniques such as 
Multi-linear Principal Component Analysis (MPCA) [15], 

Principal Factor Analysis (PFA) [16] and Maximum 

Likelihood Factor Analysis (MLFA) [17]. The proposed 
methods are not strictly novel; however, the proposers 

have conducted several investigations and performed the 
comparative analysis by varying the number of users 

from standard databases. Since the methods have been 
successful in large-scale classification, original 

contributions are carried out in this work in the interest of 

large-scale speaker recognition that employs pitch and 
pitch strength as features. 

Finally, in the classification stage, verification is tested 

by Support Vector Machine (SVM) which is a successful 

discriminator and a very effective method in the field of 

speaker recognition [18]. Specifically, SVM is employed 

in the context of statistical learning and thereby attributed 

to minimize the risk function. However, the main 

constraints of the SVMs are its computational complexity 

and relatively poor performance for the large-scale 

classification [19]. In view of this, investigations for 

optimization of large-scale SVM algorithms have been 

carried out in this work. Four large-scale SVM algorithms 

namely, Pegasos [20], BMRM [21], FOLOS [22], and 

CVM [23], have been demonstrated and experiments 

have been conducted with combinations of different 

dimensionality reduction techniques. Though the 

proposed algorithms are not strictly novel, the approaches 

are very efficient for large datasets in classification tasks 

such as pattern and speech recognitions. This work 

demonstrates the original contributions of interest in the 

field of large-scale speaker recognition.  

II. FEATURE EXTRACTION  

Pitch is the quality of subjective sensation where all 

the tones perceived by a listener are assigned to relative 

positions on the musical scale and the frequency of 

vibrations is observed. Though sounds vary in pitch, 

some of the sounds have strong pitch sensation (e.g., 

vowels) whereas some do not (e.g., consonants). 

Accordingly, sounds are classified into pitched and non-

pitched. Pitch information is valuable in speech 

applications such as music transcription, speech coding 

and query by humming [24]. As pitch differentiates the 

user’s speech greatly, pitch and its strength are suggested 

to extract as features for the proposed speaker recognition 

system.  

Let Aij(t); 0≤i≤Nu-1 and 0≤j≤Ns
(i)-1, is the speech signal 

obtained from different users, where Nu is the number of 

users and Ns
(i) is the number of samples taken from the 𝑖𝑡ℎ 

user, provided, Ns
(0)=Ns

(1)=Ns
(2)=…=Ns

Nu-1 . The sample 

speech signals from different users are subjected to 

feature extraction that extracts pitch and its strength as 

the feature for each sample. In the feature extraction stage, 

the continuous speech signals of all users are converted to 

discrete speech signals as Aij(n); n=1,2…Nl. The speech 

samples of every user are processed in sequence for the 

feature matrix representation. The primary speech sample 

of the first user is subjected to the process of extracting 

pitch and pitch strength. The process is initiated by 

selecting windows of signal instants with different sizes. 

Nc classes of windows are generated in which each class 

has its own window size [25]. Afterward, the obtained 

windows of signal sequences are processed by the 

following Hanning window function, 

           𝑊𝑘𝑙(𝑚)  = 0.5 (1 − (𝑐𝑜𝑠 (
2𝜋𝑤𝑘𝑙

|𝑤𝑘|−1
)))                 (1) 

where 0 ≤ m ≤ |wk|-1, 0 ≤ k≤ Nc-1, 0 ≤ l ≤ Nw
(k)-1, Nw is the 

number of windows that belongs to k
th

 class, wkl(m) is the 

m
th

 instant of time in l
th

 window of k
th

 class and the 

parameters Wkl(m) are the Hanning window coefficients 

derived from equation (1). The size of window that 

belongs to each class is calculated as |𝑤𝑘𝑙| = 2𝑘+2.  A 

pitch vector [Pkl], Pkl(m)∈{0,1}  is generated with the 

same size of Wkl(m) in which each element of 

vector  𝑃𝑘𝑙(𝑚)  is arbitrarily generated from {0,1} 

(i.e. Pkl(m)∈{0, 1}. For every window element, centroids 

for pitched and non-pitched classes are determined as, 
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𝐺𝑃𝑘𝑙=

1

∑ 𝑊𝑘𝑙(𝑚)𝑃𝑘𝑙(𝑚)
|𝑊𝑘𝑙|−1

𝑚=0

∑ 𝑎00

|𝑊𝑘𝑙|−1

𝑚=0

𝑊𝑘𝑙(𝑚)𝑃𝑘𝑙(𝑚) 

(2) 

𝐺U𝑃𝑘𝑙=

1

∑ 𝑊𝑘𝑙(𝑚)𝑃𝑘𝑙(𝑚)
|𝑊𝑘𝑙|−1

𝑚=0

∑ 𝑎00

|𝑊𝑘𝑙|−1

𝑚=0

𝑊𝑘𝑙(𝑚)𝑃𝑘𝑙(𝑚) 

(3) 

Using (2) and (3), centroids can be determined for the 

classes pitched and non-pitched respectively based on 

pitch vector, window coefficients [26] and speech signal. 

In (2) and (3), 𝑎00𝑊𝑘𝑙(𝑚)  is the magnitude of speech 

signal at a specific time interval indicated by the window 

element  𝑊𝑘𝑙(𝑚). Once the centroids are calculated, then 

the time instant at which the pitch is present {𝑃𝐼} and the 

strength of pitch {𝑃𝑆} are determined as {𝑃𝐼} = {𝑃𝐼
′} − 𝜑 

and {𝑃𝑆} = {𝑃𝑆
′} − 𝜑 respectively, where, the set {𝑃𝐼

′} and 
{𝑃𝑆

′} are calculated as,  

{𝑃𝐼
′} ≪ {

𝑛; 
2(𝑎00(𝑛)−𝐺𝑈𝑃

𝑚𝑎𝑥)

𝐺𝑃
𝑚𝑎𝑥−𝐺𝑈𝑃

𝑚𝑎𝑥 > 1

𝜑 ;                   otherwise
                    (4) 

{𝑃𝑆
′} ≪ {

𝑎00(𝑛); 𝑖𝑓 𝑛 𝜖 {𝑃𝐼}

𝜑 ;  otherwise
                       (5) 

In (4), pair of centroids (𝐺𝑃
𝑚𝑎𝑥 and 𝐺𝑈𝑃

𝑚𝑎𝑥) exhibits the 

maximum distance among all centroid pairs. The 

centroids 𝐺𝑃
𝑚𝑎𝑥  and 𝐺𝑈𝑃

𝑚𝑎𝑥

 
are determined by firstly 

calculating the distance between each centroid pair as 

𝑑𝑘𝑙 =  𝐺𝑃𝑘𝑙
− 𝐺𝑈𝑃𝑘𝑙

. Then, the parameters 𝐺𝑃𝑘𝑙
 and 𝐺𝑈𝑃𝑘𝑙

 

contribute to the maximum 𝑑𝑘𝑙  and are converted into 

 𝐺𝑃
𝑚𝑎𝑥 and  𝐺𝑈𝑃

𝑚𝑎𝑥 respectively. The obtained feature set of 
{𝑃𝐼} and {𝑃𝑆} is stored as the first sample for the first user. 

The process is repeated for all speech samples of the 

same user and the obtained feature set is stored in feature 

matrix  𝑃𝑎𝑏 . Where 0 ≤ 𝑎 ≤ 𝑃𝑚𝑎𝑥 , 0 ≤ 𝑏 ≤ 𝑁𝑇 − 1, each 

column is composed of elements of feature set from each 

speech sample for a single user [27]. Thus the obtained 

feature matrix is of size 𝑃𝑚𝑎𝑥 ∗  NT , where 𝑃𝑚𝑎𝑥  is the 

feature set for a sample which has maximum elements 

and 𝑁𝑇 =  𝑁𝑢 . 𝑁𝑠. All the remaining feature sets are filled 

up with zeros to attain the size of  𝑃𝑚𝑎𝑥 . Afterword, the 

obtained feature matrix of higher dimension is processed 

for the dimensionality reduction. 

III. DIMENSION REDUCTION 

The dimension of the feature matrix that is obtained 

from the previous section can be further minimized by the 

following Dimensionality Reduction techniques: 

 Multi-Linear Principle Component Analysis 

(MPCA) 

 Principal Factor Analysis (PFA) 

 Maximum Likelihood Factor Analysis (MLFA) 

The theoretical background of each technique is 

described in the following subsections. 

A. Multi-Linear Principle Component Analysis (MPCA) 

The proposed technique is a multilinear algorithm [28], 

which can perform dimensionality reduction for all tensor 

modes by seeking the bases in each mode. More precisely, 

these tensor bases in turn allow the projected tensors to 

capture the variation present in the original tensors. In 

order to perform the dimensionality reduction, a selected 

number of feature values are extracted from the feature 

matrix [15]. This can be accomplished by extracting 𝑁𝑠𝑒𝑙  

elements from every column of the feature matrix, where, 

𝑁𝑠𝑒𝑙  has to be a perfect square integer. Hence, 𝑁𝑇 column 

vectors are obtained of size  𝑁𝑠𝑒𝑙 × 1 each. Every column 

vector is denoted as 𝐶𝑎
(𝑏)

, where 0 ≤ 𝑎 ≤ 𝑁𝑠𝑒𝑙 − 1  and 

the corresponding matrix M is determined as, 

𝑀𝑥𝑦
(𝑏)

= 𝐶𝑧
(𝑏)

; 0 ≤ 𝑥 ≤ √𝑁𝑠𝑒𝑙 − 1, 0 ≤ 𝑦√𝑁𝑠𝑒𝑙 − 1   (6) 

𝑧 = 𝑥√𝑁𝑠𝑒𝑙 + Y                               (7) 

In the above modified matrix, every b
th

 column vector 

is subjected to dimensionality reduction by using MPCA.  

During the process of dimensionality reduction, the 

distance matrix D can be determined for every b
th 

matrix 

as, 

𝐷(𝑏) = 𝑀(𝑏) − 𝜇                               (8) 

where 

𝜇𝑥𝑦 =
1

𝑁𝑇
∑ 𝑀𝑥𝑦

(𝑏)𝑁𝑇−1
𝑏=0                            (9) 

In (8), 𝜇 is the mean matrix, determined for 𝑀(𝑏) and it 

is used for calculating the distance matrix. In order to 

obtain the projection matrix Ψ, representations 𝑇1
(𝑏)

and 

𝑇2
(𝑏)

 (here the mode is 2) are applied to the distance 

matrix 𝐷(𝑏): 

Ψ = ∑ 𝑇(𝑏)𝑁𝑇−1
𝑏=0 (𝑇(𝑏))𝑇                       (10) 

The generalized form (Ψ1 and Ψ2 ) for calculation is 

given in (10), and it is used to determine both the tensor 

representations 𝑇1
(𝑏)

 and 𝑇2
(𝑏)

.  The projection matrix is 

subjected for the generalized eigenvector problems. 

Therefore, the eigenvectors (V1 and V2) and eigenvalues 

(𝜆1 and 𝜆2) are determined for the projection matrices Ψ1 

and Ψ2  respectively. Furthermore, the determined 

eigenvalues are sorted in descending order and the rows 

of the eigenvectors are arranged by using the index of 

sorted eigenvalues. The arranged eigenvector is 

transposed for further representations and then the 

modified eigenvectors  𝑉1
′ and  𝑉2

′ are computed. In order 

to sort eigenvalues, cumulatively distributed eigenvalues 

are generally calculated as, 

𝜆𝑥
′ =

𝜆𝑥
𝑐𝑑𝑓

∑ 𝜆𝑥
𝑠𝑜𝑟𝑡|𝜆|−1

𝑥=0

                          (11) 

where,  

  𝜆𝑥
𝑐𝑑𝑓

= {
𝜆𝑥

𝑠𝑜𝑟𝑡 + 𝜆𝑥−1
𝑐𝑑𝑓

;    𝑖𝑓 𝑥 > 0

𝜆𝑥
𝑠𝑜𝑟𝑡;         otherwise

                 (12) 

In (11) and (12), 𝜆𝑥
𝑐𝑑𝑓

 is the set of cumulatively 

distributed eigenvalues and 𝜆𝑥
𝑠𝑜𝑟𝑡  is the set of sorted 

eigenvalues. From the obtained 𝜆𝑥
′ , the new dimension λT 

is calculated by using a dimensional threshold 𝐷𝑇𝐻. This 

can be accomplished by identifying the indices of all 

eigenvalues that need to satisfy the condition  𝜆𝑥 ≥ 𝐷𝑇𝐻. 

Afterword, the dimensionality reduced eigenvectors  𝑉1
′′ 
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and  𝑉2
′′  are determined from  𝑉1

′  and 𝑉2
′  respectively by 

extracting the first 𝜆𝑇  rows. Furthermore, the reduced 

eigenvectors  𝑉1
′′  and  𝑉2

′′  and the tensor matrices 𝑇1
(𝑏)

 

and 𝑇2
(𝑏)

 are computed again. This process is already 

done for the projection matrices as it is repeated for the 

tensor matrices also. As a result, new vectors 𝜆𝑥1
𝑛𝑒𝑤  and 

𝜆𝑥2
𝑛𝑒𝑤 ,  𝑉1

𝑛𝑒𝑤 and  𝑉2
𝑛𝑒𝑤 are obtained. The weights of these 

tensor eigenvalues are determined as, 

𝑊𝑥 = √𝜆𝑥1
𝑛𝑒𝑤𝜆𝑥2

𝑛𝑒𝑤                            (13) 

Therefore, by using the MPCA projections, the 

dimensionality reduced matrix 𝑀𝑏′
 is obtained, which is 

of size 𝑁𝑟𝑒𝑑 × 𝑁𝑇, where 𝑁𝑟𝑒𝑑   is determined as 𝑁𝑟𝑒𝑑 =
𝜆𝑇1𝜆𝑇2.  

B. Principle Factor Analysis 

Factor analysis (FA) is a linear method which assumes 

that the measured variables depend on some unknown 

and often immeasurable common factors. Variables of 

various test scores for individuals can be taken as factors. 

Where, these test scores are assumed to be related to a 

common intelligence factor [29]. The main aim of the 

factor analysis is to uncover such relations. The q-

dimensional random vector 𝑥𝑞∗1  with the covariance 

matrix Σ satisfies the k-factor model if, 

𝑥 = 𝛬𝑓 + 𝑢                                (14) 

where Λ𝑝∗𝑘 is a matrix of constants and 𝑢𝑞∗1 and 𝑓𝑘∗1 are 

the specific factors and random common factors 

respectively. However, the common factors are 

standardized to have variance of value one and all the 

factors to be uncorrelated as, 

𝐸(𝑓) = 0,      𝑉𝑎𝑟(𝑓) = 𝐼                      (15) 

𝐸(𝑢) = 0,     𝐶𝑜𝑣(𝑢𝑖 , 𝑢𝑗) = 0     𝑓𝑜𝑟 𝑖 ≠ 𝑗          (16) 

𝐶𝑜𝑣(𝑓, 𝑢) = 0                              (17) 

The diagonal covariance matrix u is determined from 

the above assumptions as,  

𝐶𝑜𝑣(𝑢) = 𝜓 =  𝑑𝑖𝑎𝑔(𝜓11, … . . … 𝜓qq)            (18) 

The k-factor model is defined by decomposing the data 

covariance matrix into, 

Σ = ΛΛ𝑇 + 𝜓                              (19) 

Since 

𝑥𝑖 = ∑ 𝜆𝑖𝑗𝑓𝑗 + 𝑢𝑖
𝑘
𝑗=1         𝑖 = 1, … . . , q            (20) 

The variance of xi may be decomposed as, 

𝜎𝑖𝑖 = 𝜆𝑖𝑗
2 + 𝜓𝑖𝑖                               (21) 

where ℎ𝑖
2 = ∑ 𝜆𝑖𝑗

2𝑘
𝑗=1  is called the communality and 

represents the variance of 𝑥𝑖 , which is unique to all 

variables. 𝜓𝑖𝑖  is called the unique variance and it 

contributes to the variability of 𝑥𝑖  due to its specific 𝑢𝑖 

part. The magnitude of the dependence of 𝑥𝑖  on the 

common factor 𝑓𝑗  is measured by the term 𝜆𝑖𝑗
2  for the 

given factor 𝑓𝑗. If several 𝑥𝑖 variables have high loadings 

𝜆𝑖𝑗 , then variables measure the same unobservable 

quantity and hence it is redundant.  

The factor model also holds for orthogonal rotations of 

the factors but does not depend on the scale of the 

variables. By considering an orthogonal matrix G and the 

given model in (14), the new model can be defined as, 

𝑥 = (Λ𝐺)(𝐺𝑇𝑓) + 𝑢                         (22) 

It also holds the new factors 𝐺𝑇𝑓  and the 

corresponding loadings Λ𝐺 . Therefore, to satisfy some 

additional constraints the factors are generally rotated. 

Λ𝑇𝐷−1Λ is diagonal                          (23) 

And   𝐷 = 𝑑𝑖𝑎𝑔(𝜎11, … . , 𝜎𝑞𝑞)                 (24) 

where, the diagonal elements are arranged in decreasing 

order. The varimax method is used to rotate the factors to 

obtain a reduced representation with few significantly 

non-zero loadings (i.e. sparse matrix Λ). In many cases, a 

k-order factor model in (19) provides a better explanation 

for the data instead of the alternative full covariance 

model Var(x) = Σ. Therefore, it is possible to derive the 

parameter estimates 𝜆̂ and  𝜓̂ in such cases. 

Let S, R and 𝑥̅  denote the correlation matrix, 

covariance matrix and sample mean respectively for the 

observed data matrix X. Accordingly the equations are,  

𝜎𝑖𝑖̂ =  𝑠𝑖𝑖     𝑖 = 1, … . , 𝑞                       (25) 

Σ̂ =Λ̅ ⋀𝑇̂ + 𝜓̂                               (26) 

 𝜎𝑖𝑖̂ =  ∑ 𝜆̂𝑖𝑗
2𝑘

𝑗=1  + 𝜓̂𝑖𝑖                         (27) 

When the data [30] is standardized, its covariance 

matrix is equal to the correlation matrix. To obtain the 

estimates  𝛬̂ and 𝜓̂ for the standardized variables, the first 

estimation becomes ℎ̂𝑖
2  for i = 1,….., q. Common 

estimates ℎ̂𝑖
2 include the square of the multiple correlation 

coefficients of the ith variable, and the largest correlation 

coefficient between the i
th 

variable and one of the other 

variables. The reduced correlation matrix is derived from 

R-𝜓̂, where the diagonal elements of 1 in R are replaced 

by the elements. 
Decomposing the reduced correlation matrix in terms 

of the eigenvalues a1…. aq and orthonormal 

eigenvectors (1), …, (q) as, 

𝑅 − 𝜓 ̂ = ∑ 𝑎(𝑖)𝛾(𝑖)𝛾(𝑖)𝑇𝑘
𝑖=1                   (28) 

The above equation estimates the ith column of Λ by 

considering the first k eigen values as positive, 

𝜆(𝑖) =  𝑎(𝑖)
1/2

𝜆(𝑖),   𝑖 = 1, … , 𝑞                    (29) 

Equivalently, 

𝛬 = 𝛤1𝐴1
1/2

                                 (30) 

where,  𝛤1 = ((1), …,  (q)), and A1= diag(a1, ….ak). The 

constraint (24) holds when eigenvectors are orthogonal. 

Finally, the specific variance estimates are updated as, 

𝜓̂𝑖𝑖 = 1- ∑ 𝜆̂𝑖𝑗
2𝑘

𝑗=1        i=1, …q                   (31) 
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The k-factor model is permissible if all the p terms are 

non-negative. 

Generally, the number of factors may be determined by 

taking into account eigenvalues ai from the reduced 

correlation matrix, and choosing ‘g’ as the index with a 

sharp drop in the eigenvalue magnitudes. 

C. Maximum Likelihood Factor Analysis  

If it is assumed that the factors f and u are distributed 

as multivariate normal variables, then the parameters for 

the model can be estimated by maximizing the likelihood 

[17]. The k-factor model describes the data more 

accurately than the unconstrained variance model. The 

log likelihood function can be written as, 

𝑙 = −
1

2
 𝑛 log|2𝜋Σ| −

1

2
 𝑛 𝑡𝑟 Σ−1𝑆              (32) 

The main aim is to maximize it with respect to the 

parameters  and ψ, subject to the constraint on the 

parameter  in the equation (24). 

The covariance matrix under the factor model is 

defined as, 

𝛴 = 𝛬𝛬𝑇                                  (33) 

In order to optimize, the following assumptions are 

noted, 

𝐹(Λ, 𝜓) = 𝐹(Λ, 𝜓, 𝑆) =  𝑡𝑟Σ−1𝑆 − log|Σ−1𝑆| − 𝑞   (34) 

It is a linear function of the log-likelihood l, with a 

maximum in l corresponding to a minimum in F. It is also 

described in terms of the arithmetic mean ‘a’ and the 

geometric mean ‘g’ of the eigenvalues of  Σ−1𝑆 as, 

𝐹 = 𝑞(𝑎 − log 𝑔 − 1)                        (35) 

𝐹(Λ, 𝜓) can be minimized by the following two stages: 

Stage-1: The minimization over Λ for a fixed ψ has an 

analytical solution.  

Stage-2: The minimization over 𝜓  is carried out 

numerically. 

The dimensionality reduced matrices obtained from the 

above reduction techniques are subjected to one of the 

two processes of SVM-based training and recognition. 

IV. SUPPORT VECTOR MACHINES 

Support Vector Machine is a classifier which can 

group the patterns according to the maximum margin 

separation principle [31]. Since the real-world 

classification tasks evaluate computations on large data-

sets, the allocation of main memory becomes infeasible 

even for modern computers [32]. The main constraint of 

SVM comes from its requirement in terms of memory 

and training time. But the previous section describes that 

a large number of high dimensional patterns are needed to 

train SVM. Therefore, approaches for SVM algorithms 

are drawn with the emphasis on linear scaling in memory 

occupation and the training time complexity with the user 

count. 

SVM discriminates the reference models into two 

classes according to the maximum margin separation 

criterion. Regularized Risk Minimization factor estimates 

the hyperplane that describes the boundary for the two 

given classes of patterns [33].  

[1

2𝑤
   𝑚𝑖𝑛 ‖𝑤‖2 +  𝐶. ∑ 𝑙(𝑤, 𝑥𝑖,𝑦𝑖

𝑛
𝑖=1 )]               (36) 

where, d-dimensional training pattern ( 𝑥𝑖 ) denotes 

𝑥𝑖 ∈ ℝ𝑑 with the corresponding label 𝑦𝑖 ∈  {−1, +1}. The 

objective function is denoted by the sum of two terms. 

The first term represents a regularized contribution that 

can be estimated by square rule of hyperplane w. In the 

second term, the empirical risk is evaluated on the 

training dataset and it is estimated by the parameter C. 

The SVM standard loss Hinge function (lL1) evaluates 

the maximum-soft margin as, 

lL1 = 𝑚𝑎𝑥 (0,1 − 𝑦𝑖  𝑤𝑇𝑥𝑖)                     (37) 

From (36) and (37), the primal SVM solver 

conceptualization is, 

𝑤∗ = arg   w
min 1

2
𝑤𝑇𝑤 + 𝐶. ∑ 𝑚𝑎𝑥 (𝑛

𝑖=1 0,1 − 𝑦𝑖  𝑤𝑇𝑥𝑖)  (38) 

where, n denotes the number of patterns. The 

classification score can be evaluated by the set of Support 

Vectors from the separation plane. 

A. Large-Scale SVM Algorithms 

Numerous large-scale algorithms have been proposed 

by the researchers to handle large-scale SVM 

optimization problems. These algorithms mainly focus on 

the complexity involved to speed up the classification 

task for the standard databases. Performance evaluation 

procedures are formulated in terms of memory and 

training time requirements to reach convergence [34]. In 

order to optimize, large-scale SVM algorithms rely on the 

following two approaches. 

1) Dual solvers 

Dual solver optimization methods evaluate many dot-

product implementations from the classical nonlinear 

SVM algorithms. Since the input pitch based feature 

vectors represent pairs, the training trails of SVM grows 

linearly with O(n
2
). The feature component representation 

limits to O(d
2
) and the data set size approximates to 

O(n
2
d

2
) iterations. Complete buffered feature matrix is 

impracticable even for the small feature set because it 

would occupy O(n
4
) memory space. Therefore, the 

application of dual solvers for the speaker recognition is 

inefficient. 

2) Primal solvers 

The Primal solvers estimate the time complexity as 

O(n
4
d) because of efficient evaluation of the loss function 

and its gradient. The following sections describe the four 

primal solvers and provide the steps to derive their 

corresponding solutions. 

Pegosis: It is a SVM optimization algorithm and based 

on gradient descent [35] in the primal form. Since the 

run-time is independent of sample size, the solver varies 

between Stochastic Gradient Descent (SGD) and 

Subgradient Descent [20]. The updated rule for the loss 

function L1 is defined as, 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡[𝑤𝑡 + 𝐶 ∑ ∇𝑤
𝑛
𝑖=1 𝑚𝑎𝑥(0,1 − 𝑦𝑖𝑤𝑇𝑥𝑖) |𝑤𝑡 

(39) 
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where ηt is the learning rate and wt is the normal vector at 

iteration t. 

Since the estimation of learning rate values is critical 

for fast convergence, the subgradient projection on loss 

function L1 can be computed by differentiability as, 

∇𝑤𝑚𝑎𝑥 (0,1 − 𝑦𝑖𝑤𝑇𝑥𝑖) = - 𝑦𝑖   if  𝑦𝑖 𝑤
𝑇𝑥𝑖 ≤ 1 

= 0    otherwise              (40) 

The SGD estimates the gradient evaluation step by 

computing the subgradient of the objective function on a 

set of patterns.  

𝑤𝑡+1 =  𝑤𝑡 − 𝜂𝑡  [𝑤𝑡 + 𝑛𝐶∇𝑤𝑙(𝑤, 𝑥𝑖𝑡
, 𝑦𝑖𝑖

)𝑤𝑡]    (41) 

where, the index it is chosen randomly for all iterations. 

Thus the SVM loss function L1 is computed by 

combining SGD with the projection step for fast 

convergence. At each iteration, a set of training patterns 

At is randomly chosen. Then the subgradient is estimated 

for the objective function as, 

 ∇𝑡=  𝑤𝑡 −  
𝑛𝐶

|𝐴𝑡|
∑ 𝑦𝑖𝑖∣ 𝑥𝑖 ∈ 𝐴𝑡

𝑦𝑖𝑤𝑡 𝑥𝑖 <1

𝑥𝑖                 (42) 

The hyperplane can be updated as, 

𝑤𝑡+1/2=  𝑤𝑡  - 𝜂𝑡∇𝑡                           (43) 

The optimal SVM solution [20] is constrained by 

‖𝑤‖ ≤ √𝑛𝐶. Thus, the solution is estimated into a ball of 

radius √𝑛𝐶 by projecting 𝑤
𝑡+

1

2

 as, 

𝑠𝑡 = min {1,
√𝑛𝐶

‖𝑤𝑡+
1

2
‖

}                          (44) 

𝑤
𝑡+

1

2 

 =  |𝑠𝑡𝑤
𝑡+

1

2

|                             (45) 

For the efficient optimization 𝜀 , the fast-decaying 

learning rate is combined with the current projection step 

and bounded to 𝜊(
1

𝜀
) average number of iterations.  

Bundle methods: Bundle methods optimize the general 

risk minimization and hence BMRM is such a solver [21]. 

Based on the optimization problem, this method 

approximates the convex function by means of a set of 

sub-gradients and minimizes the simpler optimization 

problem. In order to obtain the optimal solution for the 

error, a small and incremental subset of constraints is 

built. The BMRM provides us an easy and extensible 

framework for support vector machines in the risk 

regularization. Specifically, at each iteration, an 

incremental set of approximate solutions {w0, w1, w2, ...} 

is formulated. A set of hyperplanes which are tangent to 

the objective function-are described as, 

𝑓𝑡(𝑤) = 𝑙𝑒𝑚𝑝(𝑤𝑡) + ∇𝑙𝑒𝑚𝑝(𝑤𝑡). (𝑤 − 𝑤𝑡)            (46) 

where, 𝑙𝑒𝑚𝑝 is the empirical loss function and is defined 

as ∑ 𝑙(𝑤, 𝑥𝑖,𝑦𝑖)𝑛
𝑖 . A new point is selected from the 

approximated function at the given iteration as, 

𝑤𝑡+1=
𝑎𝑟𝑔𝑚𝑖𝑛

𝑤
[

1

2
‖𝑤‖2 + 𝐶. 𝑚𝑎𝑥 [

0, 𝑚𝑎𝑥𝑓𝑡
′(𝑤)

𝑡′ ≤ 𝑡 + 1
]]    (47) 

According to [21], it is estimated that the problem is 

similar to the dual quadratic problem. 

 𝑚𝑖𝑛
𝛽

𝐷𝑖(𝛽)  =  
𝐶

2
𝛽𝑇𝐴𝑇A𝛽 − 𝛽𝑇b                  (48) 

Subject to 𝛽 ≥ 0,  𝑒𝑇 𝛽 ≤ 1,  where A is the matrix 
[𝑎1 𝑎2 … … 𝑎𝑖]  of gradients 𝑎𝑡+1 = ∇𝑙𝑒𝑚𝑝(𝑤𝑡)  and 

the vector b is denoted as [𝑏1 𝑏2 … … 𝑏𝑖]
𝑇  of offsets 

𝑏𝑡+1= 𝑙𝑒𝑚𝑝(𝑤𝑡)− 𝑎𝑡+1
𝑇 𝑤𝑡 , and the solution is computed 

as, 

𝑤𝑡+1 =  −𝐶𝐴𝛽                              (49) 

Since the complexity increases with the number of 

iterations, the quadratic problem is not expensive and its 

complexity does not increase with the training set size. 

Folos: An objective function describes and analyzes 

the FOLOS solver in the form 𝑔̂(𝑤) =  ℓ𝑒𝑚𝑝(𝑤) + 𝑟(𝑤), 

where ℓ𝑒𝑚𝑝(𝑤)  is the empirical loss for the convex 

measure and 𝑟(𝑤) is the convex regularization term [22]. 

The solver mainly focuses on the loss-regularization class 

of convex optimization problems. Instead of performing 

projection on subgradients, this algorithm does an 

analytic minimization. Since we require the objective 

function minimization, the parameter 𝑤𝑡  minimizes the 

term ℓ𝑒𝑚𝑝(𝑤)  and hence the FOLOS requires the 

following updates, 

w𝑡+1/2 = w𝑡 − 𝜂𝑡  ∇(𝑠) ℓ𝑒𝑚𝑝 ( w𝓉)                (50) 

w𝓉+1 =
𝑎𝑟𝑔𝑚𝑖𝑛

w
(

1

2
w||w − w

𝓉+
1

2

 ||2 + 𝜂𝓉  +
1

2
 r(w) ) 

(51) 

A weight vector is calculated from the updates 𝑤𝓉+1 

and it is in turn close to the updates 𝑤
𝓉+

1

2

 for the 

minimum value of 𝑟(𝑤). Since it is described such that 

Ο ∈ 𝜕𝑓(𝑤)  ⟺  (∀𝜐)  𝑓 ( 𝜐) ≥  𝑓(𝑤),  𝑤  estimates the 

minimum weight vector for the function ℓ𝑒𝑚𝑝 . The 

property implies the approximation as, 

w𝑡+1 = w𝑡 − 𝜂𝑡∇(𝑠)  ℓ𝑒𝑚𝑝( w𝓉) − 𝜂
𝑡+

1

2

 ∇(𝑠)  r (w𝑡+1)  (52) 

The equation denotes the alternate expression for the 

weight vector  𝑤𝑡+1 . This equation in tern includes the 

subgradient ∇(𝑠)  r(𝑤𝑡+1) which is the gradient of 𝑟(𝑤) at 

weight vector (𝑤𝑡+1). The vector (𝑤𝑡+1) influences the 

update of the gradient anvit is even evaluated in advance. 

If the regularization ℓ1 is chosen to the optimal result, the 

algorithm convergences with O(
1

√𝑡
). The detailed relations 

can be expressed as, 

𝜂𝑡  𝛼 
1

√𝑡
,                                  (53) 

𝑚𝑖𝑛
            𝑡 ∈  {1 … 𝑇}  𝑔̂(𝑤𝑡) -𝑔̂(𝑤∗) = O(GD

log 𝑇

√𝑇
)        (54) 

where, ‖𝑤∗‖<D for the optimal solution. 

The subgradients 𝜕f and 𝜕r can be derived and these 

are bounded to the parameter G. The parameters ℓ𝑒𝑚𝑝 

and r are H-strongly convex for the online case. The 

learning rate 𝜂𝑡  is defined as 𝜂𝑡 =
1

𝑡
 and the target 

function T is computed as,  
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R(T) = Ο (
G2logT

H
)                           (55) 

The FOLOS reaches the convergence in 𝜊̃ (
1

𝐻𝜖
) when 

batch and online generalizations are combined. 

Core vector machine: CVM algorithm allows the 

results to be obtained from the computational geometry. 

Training time is linear with the number of examples in 

this method and it reaches convergence within run time of 

O(𝒹 . (
𝓃

𝜌2 +
1

𝜌4)) for the accuracy ρ. As described in [23], 

an exact solution of the SVM optimization problem is not 

necessary for a good generalization.  

The CVM algorithm aims at connecting SVMs to the 

problems of computational geometry which is known as 

the minimum enclosing ball (MEB). It requires a ball of 

minimum radius to enclose the set of points in the plane. 

The algorithm is expensive in terms of time and space, 

but it is possible to find a solution with respect to linear 

time for the specified points. 

The run time is computed [23] as 𝜊 (
𝒹

𝜌8)  and is 

independent of the number of samples. It is subsequently 

reduced to 𝜊(
𝒹

𝜌4) but not sufficient for the requirement. 

However, in case of strenuous optimization, it is faster 

than that of super linear limitation. For any value of x, the 

kernel is specified as K (𝑥, 𝑥) . The implicit kernel is 

mapped onto a hyperplane from the given examples and 

many real world problems satisfy this mapping. CVM has 

not still achieved zero error results as it is required for the 

Support Vector Machines. 

V. RESULTS AND DISCUSSION 

A. Experimental Setup 

Speaker database: The proposed speaker recognition 

technique is implemented in research tool, MATLAB of 

version 7.10 and its performance is evaluated by using 

the NIST Speaker Recognition Evaluation 2010 (SRE-10) 

database [36]. The database consists of both the training 

and test data which are in turn involved in the recognition 

process. The data-base has been collected from the 

speakers who submitted the results without hearing the 

audios and without knowing the speaker assignments. 

This work employs one of the conditions available in the 

database, namely, the core-core condition in which the 

training and testing speech is collected from a two-

channel telephone conversation with the duration of 

approximately five minutes or a microphone conversation 

with the duration of three to fifteen minutes. However, 

the system is well known in advance of speech data for 

the evaluation. From the evidences, the database can 

provide a maximum of 25000 test segments and up to 

6000 speaker models with a maximum of 750000 trials. 

Feature extraction: For each user, twenty five different 

speech samples have been extracted from the database in 

order to evolve speaker-specific features. Twenty speech 

samples are used for the training process and the 

remaining five samples are used for the testing [37]. The 

speech signals are specifically sampled at 16 KHz and are 

framed as windows of size 25ms. Each frame consists of 

FFT-based 256 dimensional power spectrum vectors in 

order to develop feature vectors. The feature vectors are 

in turn applied to the dimensionality reduction phase in 

order to derive an optimized feature set for the 

classification stage.  

SVM based classification: Classification process 

comprises of both training and testing based on different 

SVM algorithms. Classification task has been carried out 

in this work for the proposed algorithms by conducting 

several experiments on the proposed database. The 

training set consists of approximately 71000 utterances 

from 3150 speakers of about 50 hours continuous speech 

[38]. In the testing process, the test set employed for 

connecting the recognition which comprises of 

approximately 20000 utterances from 500 different 

speakers of 5 hours duration. In general, the number of 

test samples represents just 10% of the whole test set 

samples.  

B. Results 

The experimental setup is employed to analyze the 

performances of the identification systems by evaluating 

the parameters such as accuracy, Detection Cost Function 

defined by NIST for 2010 (DCF10) and Equal Error Rate. 

The preceding section specifically describes the variation 

of accuracy with the sample size at various proposed 

dimensionality reduction techniques and SVM algorithms.  

Accuracy: Accuracy is a crucial performance metric in 

speaker recognition and is evaluated for the proposed 

dimensionality reduction techniques and SVM algorithms 

by varying the sample size. The number of samples is 

varied from 15 to 150 and the performances are compared 

as described in the following figures. The variation of 

accuracy for the MPCA dimensionality reduction 

technique is depicted in Fig. 1. 

 

Figure 1.  Variation of accuracy with training samples for MPCA 

As depicted in Table I, it is evidenced from the 

experimental evaluations that the accuracy has been 

significantly improved for the FOLOS algorithm with the 

increased number of training samples. Since the 

algorithm tries to optimize the original and the objective 

functions simultaneously, the selection of cutting planes 
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possesses a higher chance to contribute the approximate 

objective function. Therefore, the performance of 

Pegasos algorithm is poorer as compared to others 

because the choice of cutting plane allows a higher 

execution time at the cost of the number of iterations to 

reach convergence. 

TABLE I.  RECOGNITION RATE WITH RESPECT TO VARIOUS SVM 

ALGORITHMS FOR THE MPCA DIMENSIONALITY REDUCTION 

TECHNIQUE 

Sample 
size 

Pegasos BMRM CVM FOLOS 

15 70.5 73.2 75.1 77.3 

30 71.3 75.3 76.2 78.2 

45 73.2 76.2 77.3 79.5 

60 74.5 77.4 78.1 80.6 

75 75.3 78.6 79.5 81.3 

90 76.1 80.2 81.5 82.6 

105 78.2 82.5 83.6 84.3 

120 79.9 84.1 85.3 86.2 

135 82.3 85.2 87.3 88.1 

150 83.1 86.3 88.1 89.5 

 

 

Figure 2.  Variation of accuracy with training samples for PFA 

 

Figure 3.  Variation of accuracy with training samples for MLFA 

In Fig. 2, it is evidenced that the accuracy has been 

improved for the FOLOS algorithm because the principle 

factor components are nearer to the hyperplane. 

In Fig. 3, it has been observed that the accuracy is 

comparable to the PFA reduction technique, but it is 

slightly less as compared to PFA and more than that of 

MPCA. Furthermore, the principle factors reduce the 

fluctuations towards the convergence and the MLFA 

dimensionality reduction method reaches the asymptotic 

performance.  

Detection cost function (DCF): The performance of a 

speaker recognition system can be measured by using 

Detection Cost Function (DCF). Based on the 

experimental results that have been conducted for SVM 

algorithms under various Dimensionality Reduction 

techniques, the following section describes the DCF 

parameter metric.  

 

Figure 4.  Variation of DCF10 in training time for MPCA 

In Fig. 4, it has been identified that as the training time 

increases, the performance metric DCF10 substantially 

degrades. Furthermore, the Pegosis algorithm yields 

significantly good results because a reduced number of 

iterations is used to train data for evaluation. Moreover, it 

is observed that the CVM algorithm produces slightly 

differ from the Pegosis at low values, but closely meet at 

high time measures. Since the objective function is 

unstable, the iterations require considerably more time to 

reach convergence. 

 

Figure 5.  Variation of DCF10 with training time for PFA 
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TABLE II.  DETECTION COST FUNCTION WITH RESPECT TO VARIOUS 

SVM ALGORITHMS FOR THE PFA DIMENSIONALITY REDUCTION 

TECHNIQUE. 

Time(s) Pegasos BMRM CVM FOLOS 

0 0.52 0.4 0.42 0.38 

1000 0.48 0.35 0.39 0.35 

2000 0.45 0.275 0.38 0.32 

3000 0.35 0.285 0.36 0.3 

4000 0.3 0.3 0.35 0.275 

5000 0.3 0.32 0.35 0.27 

6000 0.29 0.33 0.35 0.26 

7000 0.29 0.35 0.34 0.26 

8000 0.27 0.35 0.32 0.25 

9000 0.27 0.35 0.3 0.25 

10000 0.25 0.35 0.28 0.23 

 

In Table II, Detection Cost Function with respect to 

various SVM algorithms for the PFA dimensionality 

reduction technique has been summarized. It has been 

noticed that as the training time increases, the bunch size 

of datasets cannot be decomposed because of its faster 

convergence. Therefore, it is evidenced from Fig. 5 that 

the DCF for FOLOS algorithm is considerably small as 

compared to the other algorithms under PFA 

dimensionality reduction technique. 

 

Figure 6.  Variation of DCF10 with training time for MLFA 

TABLE III.  VARIATION OF EER WITH RESPECT TO SVM ALGORITHMS 

AND DIMENSIONALITY REDUCTION TECHNIQUES 

Algorithm 
Equal Error Rate (%) 

MPCA PFA MLFA 

Pegasos 3.15 2.54 2.65 

BMRM 3.10 2.54 2.58 

CVM 2.85 2.32 2.48 

FOLOS 2.80 2.12 2.35 

 

In Fig. 6, it has been observed that the DCF drastically 

reduces with respect to time for all SVM algorithms. In 

order to estimate the FOLOS algorithm at the end of 

iterations, the measured training time is enough to reach 

convergence for the target speaker. 

Equal error rate (EER): The equal error rates for 

various SVM algorithms under different dimensionality 

reduction methods have been summarized in Table III. 

In order to estimate the Equal Error Rates (EER), 

experiments were conducted for the sample size of 150 

per user. From the experimental results, it has been 

identified that the Pegosis algorithm has produced poor 

results because of the imbalance in the classes, whereas 

the FOLOS algorithm takes the advantage of global 

complexity and the choice of reducing cutting planes. 

Furthermore, it has been observed that the combined 

PFA-FOLOS technique outperforms the other 

combinations. Therefore, the experimental setup has 

successfully estimated the EER performance metric for 

the recognition. 

Population vs accuracy: Due to the fact that the 

recognition rate considerably degrades with respect to the 

database size, the performances of the recognition 

systems are severely affected. Compared to the state-of-

the-art systems, the proposed techniques significantly 

enhance the recognition rate under large-scale data 

conditions as depicted in the following figure. 

 

Figure 7.  Variation of accuracy with population size for PFA 

In Fig. 7, it is evident that the recognition accuracy has 

been improved for the FOLOS SVM algorithm with 

respect to population size. Furthermore, the experimental 

results of the parallel implementations of CVM and 

FOLOS have been measured for various characteristics to 

reach convergence. However, it has been noticed that the 

BMRM algorithm exhibits large fluctuations and spends 

more time to train its models. 

VI. CONCLUSION 

An effective speaker recognition system has been 

presented by using various dimensionality reduction 

techniques and SVM algorithms under large-scale data. 

Pitch and its strength have been employed as the feature 

set in the enrolment stage. The PFA dimensionality 

reduction technique has produced reasonably good results 

in order to minimize the dataset. Furthermore, the 

performance of various SVM algorithms has been tested 

under different dimensionality reduction techniques. 

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 5000 10000

D
C

F 
1

0
 

Time(s) 

Pegasos

BMRM

CVM

FOLOS

65

70

75

80

85

90

95

100

25 75 125 175 225 275 325 375 425 475 525

R
e

co
gn

it
io

n
 A

cc
u

ra
cy

%
 

Population size 

Pegasos

BMRM

 CVM

FOLOS

94©2016 Int. J. Sig. Process. Syst.

International Journal of Signal Processing Systems Vol. 4, No. 2, April 2016



 

Compared to the various possible combinations, it can be 

concluded that the PFA with FOLOS SVM algorithm 

gives better performance. The effectiveness of the 

recognition rate makes the proposed techniques a 

promising solution for the speaker recognition under 

large-scale data. 
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