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Abstract—In this work, an attempt has been made to 

analyze surface electromyography (sEMG) signals in 

dynamic contraction using multifractal detrending moving 

average algorithm (MFDMA). The signals are recorded 

from biceps brachii muscles of twenty two healthy 

participants using a standard experimental protocol. The 

recorded sEMG signals are pre-processed and normalized 

by dividing the time axis into six equal segments. The first 

segment and sixth segment are considered as nonfatigue and 

fatigue conditions for analysis. The signals are subjected to 

MFDMA and verified to test multifractal properties of 

biceps brachii muscles using scaling exponent, generalized 

Hurst exponent and multifractal spectrum in both 

nonfatigue and fatigue conditions. Each multifractal 

spectrum is characterized by calculating three features 

namely peak exponent (PEV), degree of multifractality 

(DOM) and mean multifractal spectral exponent (MSE). 

The variation of multifractal spectral features in fatigue 

conditions are analyzed using ANOVA and Tukey test. The 

results of scaling exponent function and generalized Hurst 

exponent function indicated multifractal characteristics for 

sEMG signals in dynamic contractions. DOM increased 

from 0.56 to 0.96 and MSE increased from 0.54 to 0.75 in 

nonfatigue and fatigue conditions respectively. It appears 

that this method is useful in analyzing fatigue and 

nonfatigue conditions associated with muscle mechanics 

using non-invasive sEMG recordings. This study can be 

useful in field of clinical studies, rehabilitation, prosthetics 

control and sports medicine. 

 

Index Terms—surface EMG, biceps brachii, multifractal, 

detrending moving average algorithm, muscle fatigue, 

dynamic contractions 

 

I. INTRODUCTION 

Biceps brachii muscles are commonly known as biceps 

and located in the upper arm of human body. The biceps 

run along the anterior side of humerus bone from the 

shoulder joint to elbow joint. This muscle is normally a 

two headed muscle and has a spindle shape. The two 

heads of the biceps muscle vary in length and help in 

various functioning of upper limbs. The biceps muscles 

are responsible for supination of proximal radius (forearm 

action for using key), flexion of humerus joint (dumbbell 
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curl exercise) and stabilizing the shoulder joint movement. 

The muscles in human body are composed of muscle 

fibers that are innervated by alpha motor neuron. The 

alpha motor neuron together with muscle fibers is known 

as motor unit. Muscle tissue is broadly grouped into 

slow-twitch and fast-twitch muscle fibers. The slow-

twitch fibers have higher endurance, higher resistance to 

fatigue and lower ability to generate rapid force. The fast-

twitch fibers have lower endurance, lower resistance to 

fatigue but higher ability to generate rapid force. The 

biceps muscle has about 46% of slow-twitch fibers and 

54% of fast-twitch fibers [1]. In the case of heavy intense 

repetitive action such as dumbbell curl exercise, muscle 

fibers are involved in contraction process for sustaining 

force generation. Prolonged repetitive action can lead to 

muscle fatigue [2]. Surface electromyography (sEMG) is 

a non-invasive method of recording electrical activity of 

muscles [3]. The intense variation of sEMG signals 

during dynamic contraction increases the complexity of 

signal analysis due to varying recruitment levels of slow-

twitch and fast-twitch muscle fibers, nonlinear motor unit 

recruitment and synchronization of motor units [4]. The 

sEMG signals are analyzed using time [5], frequency [6], 

[7] and time-frequency domain techniques [8]. The 

statistical property of signals are assumed to be constant 

in traditional methods and muscular system is considered 

to be linear [9], [10]. In time and frequency domain 

analysis, the physiological signals are also considered 

linear. The time-frequency domain techniques address the 

nonstationary aspect of the signal but still considers the 

system to be linear [10]. The characteristics of nonlinear 

systems can be estimated better with measures such as 

entropies, correlation and fractal dimension [11].  

The fractal system is represented by a scale invariant 

non integer parameter known as fractal dimension [12]. 

There is a growing acceptance of physiological signals, 

generated by complex self-similar system, may have 

fractal structure [13], [14]. A fractal refers to a signal that 

can be split into parts that is a reduced-copy of whole 

[15]. There are two types of fractal behavior in most of 

time series, namely monofractal and multifractal. 

Monofractals are homogenous and characterized by 

single scaling property for the entire signal. Multifractal 

signals are characterized by numerous scaling properties 
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for the entire signal. Multifractal signals are intrinsically 

more complex and inhomogeneous as compared to 

monofractal signals [15].  

The detrended fluctuation analysis (DFA) was 

proposed for analyzing DNA sequences that was suitable 

for monofractal scaling properties [16]. Based on a 

generalization of DFA, the multifractal detrended 

fluctuation analysis (MFDFA) is introduced for the 

multifractal characterization of non-stationary time series 

[15]. Multifractal analysis using moving average was first 

proposed to estimate Hurst exponent of self-affinity 

signals [17]. The detrending moving average (DMA) 

method was later developed considering second order 

difference between original signal and moving average 

function [18]. The DMA method was extended to 

multifractal detrending moving average (MFDMA) to 

analyze multifractal time series and surfaces [19]. Muscle 

fatigue analysis in isometric contraction was reported for 

biceps brachii muscle using fractal analysis, and it was 

found that fractal area increased during fatigue condition 

[20]. The detrended fluctuation analysis method was 

proposed for tracking muscle fatigue using Hurst 

exponent over time [21]. The analysis of sEMG signal for 

muscle fatigue is not analyzed using MFDMA in 

available literature for biceps brachii muscle. 

The aim of the present study was to analyze dynamic 

sEMG signals in nonfatigue and fatigue conditions. 

sEMG signals are recorded from biceps brachii muscles 

while performing standard experimental protocol and 

subjected to nonlinear analysis using multifractal 

detrending moving average techniques. Two standard 

features were extracted from multifractal spectrum. A 

new feature is proposed in this study and compared with 

standard features. These three features are further 

analyzed in nonfatigue and fatigue condition for 

understanding the sEMG signal characteristics. 

II. METHODOLOGY 

A. Subjects 

Gender=18 Males and 2 Females} without any history of 

neuromuscular skeleton disorder participated in this study. 

The subjects were asked to take complete rest for at least 

12 hours before the experiment. A written consent form 

approved by the institute review board is taken from each 

participant before the start of exercise. The participants 

were given training without load before conducting the 

experiment. Each participant is requested to perform full 

dumbbell curl exercise in upright position with forearm in 

supine position and using their dominant hand with 6 

kilograms dumbbell. The participants are asked to 

maintain speed of curl at their comfortable pace. Signals 

are acquired for the entire course of exercise till 

exhaustion. No encouragement was provided during the 

exercise to avoid any potential confounding effect on 

exercise performance. The experiment was stopped when 

the participant was unable to lift the dumbbell and 

exhausted. 

B. Skin Preparation and Instrumentation 

Ag-AgCl disc-type disposable surface electrodes, 1 cm 

diameter, were placed on the belly region of triceps 

brachii muscle. The skin was cleaned with alcohol and 

cotton prior to the experiment. A differential electrode 

configuration is used, with an inter-electrode distance of 

3cm [5]. The reference electrode is placed at the proximal 

end of the elbow. The subjects stood on a wooden 

platform to electrically isolate them from ground. The 

electrodes were placed on the belly region of triceps 

brachii as per SENIAM standards in bipolar configuration. 

The reference electrode was placed on elbow region. The 

sampling frequency was set as 10KHz and sampled using 

Biopac MP36 system (Gain 1000; 24 bit ADC; CMRR 

110db). The signals are filtered using band-pass filter (10 

Hz to 400Hz) after removing 50Hz power signal noise. 

To ease the computation, the signals are down sampled 

offline at 1000 samples per second for further analysis. 

C. Multifractal Detrending Moving Average Algorithm 

Multifractal detrending moving average is designed for 

analyzing multifractal time series [19]. 

Step 1: Let the sEMG time series be represented as 

)(tx , where t = 1, 2, 3,…., N. Then the cumulative sums 

for the sequence is represented as 
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Step 2: Next, the moving average function is computed 

in a moving window, and represented as 
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where n  is window size, [ )1)(1( n ] is largest integer 

not greater than x , and [ )1( n ] is smallest integer not 

smaller than x , and   is position parameter with value 

varying in between 0 and 1. If   = 0, 0.5 and 1 then it 

corresponds to backward moving average (BMA), 

centered moving average (CMA) and forward moving 

average (FMA) respectively. The moving average 

function is calculated over past values of 1n  in the case 

of BMA, and future values of 1n  in the case of FMA. 

Step 3: Detrend the signal series by removing )(~ iy  

from )(iy  to get residual sequence )(i  using the below 

equation 

)(i = )(~ iy - )(iy       (3) 

where  )1()1(  nNinn  

Step 4: The residual series is divided into M  disjoint 

segments with same size n where 1
n

N
M . Each 

segment can be represented as v  such that 

)()( iltv    for ni  1  and nvl )1(  . The root-

mean square function )(nFv  with segment of size n can 

be calculated as 
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Step 5: The q th order overall fluctuation function is 

determined as follows 

qM

v

q
vq nF

M
nF

1

1

)(
1

)(








 


      (5) 

For q  is a real value and not equal to zero. When q = 0, 

then the fluctuation function is given according to 

L’Hospital rule. 

Step 6: The power-law function can be determined by 

varying the segment size n for fluctuation function as 
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The multifractal scaling exponent is given as 

Dqqhq  )()(           (7) 

where D is the fractal dimension of geometric support of 

multifractal measure [15]. The singularity strength 

function and multifractal spectrum are obtained using 

Legendre transform [22], and represented as 
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D. Data Analysis and Flow Chart 

The three features are measure from the multifractal 

spectrum.  

 Peak Exponent (PEV) is the value of exponent 

when spectrum is at peak or PEV =   when 

1)( qf  

 Degree of multifractality (DOM) is the distance 

between maximum exponent and minimum 

exponent in multifractal spectrum, DOM = max -

min
   

 A new feature, mean multifractal spectral 

exponent, is computed from the multifractal 

spectrum based on power spectral analysis feature, 

mean power frequency. This feature uses both 

singularity function and exponent, and represented 

as weighted average  

MSE = 




)(

)().(

qf

qqf 
 

E. Statistical Analysis 

The experimental analysis of four multifractal features 

are expressed as mean (standard deviation), and 

compared using one-way analysis of variance (ANOVA) 

and Tukey’s post hoc test for nonfatigue and fatigue 

conditions. All analyses were carried out using OriginPro 

8.5 software package. The differences were considered 

significant at p<0.05 and highly significant at p<0.005. 

III. RESULTS AND DISCUSSION 

A. Surface Electromyography Signals 

The representative sEMG signals recorded from biceps 

brachii muscles during dynamic contractions for three 

different participants are shown in Fig. 1. There is a 

steady burst of sEMG signals with increase and decrease 

of strength. These burst represents the flexion and 

extension of each curl. The number of curls, duration of 

curl and speed of curl action varied across the participants. 

The amplitude of sEMG signals ranged from ±1.5 volts in 

Subject A to ±5 volts in Subject B and C. This variation 

is based on individual’s performance, anthropometry data 

and muscle characteristics. The sEMG signals are 

recorded until task to failure. The task to failure in this 

dynamic contraction protocol varied from 19 seconds to 

93 seconds.  

 

Figure 1.  sEMG signals of biceps brachii muscle from three subjects 
(A, B and C) 

 

Figure 2.  sEMG signal of subject B divided into six equal segments 
with zone 1 and zone 6 
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B. Non-Fatigue and Fatigue Conditions of sEMG 

The task to failure in this study had a wide spread from 

a low of 19.3 seconds to high of 93.8 seconds. The task to 

failure is the instance where the subject is unable to 

perform the experiment and stops the curl exercise. This 

is due to onset of fatigue and the muscles in the region of 

upper arm are unable to continue generation of forces. In 

order to analyze the fatigue condition in a varied task to 

failure set of data, the sEMG signals are divided into 

different segments of equal length. The study in earlier 

work was done with three segments [23] and six equal 

segments [24]. Increasing the number of segments can 

help in quantifying the sEMG characteristics in spatial 

domain but it also increases the computational 

complexity. Hence, in this study, the sEMG signal was 

divided into six equal segments (Zone 1 to Zone 6). This 

is represented in Fig. 2 for subject B. The first segment 

(Zone1) is taken as nonfatigue condition and sixth 

segment (Zone 6) is taken as fatigue condition. The 

nonfatigue and fatigue signals for subject B is shown in 

Fig. 2. The signals in fatigue condition are clearly 

showing increased amplitude, but the pattern varied for 

different subjects. It is also observed that there is also a 

reduction in number of curls during fatigue zone, in some 

cases, due to inability of the muscles to sustain force. The 

segmented zones varied from 3.2 seconds to 15.64 

seconds. The nonfatigue and fatigue segments are 

subjected to multifractal detrending moving average 

algorithm for further analysis. 

 

Figure 3.  Scaling exponent function variations for nonfatigue and 
fatigue conditions of sEMG signal in Fig. 2 

C. Multifractal Analysis 

The scaling exponent τ (q) for sEMG signals during 

dynamic contraction for nonfatigue and fatigue 

conditions are represented in Fig. 3. In both the cases, the 

scaling exponent function is appearing to be nonlinearly 

varying for negative and positive values of order of 

fluctuation (q). The linear variation of scaling exponent is 

an indication of mono fractal nature of time series. Based 

on this nonlinear variation of scaling exponent for both 

nonfatigue and fatigue series, the sEMG signal may be 

considered having multifractal behavior. For nonfatigue 

conditions, the scaling exponent ranges from -8 to 1, as 

compared to -13 to -2 for fatigue conditions. The larger 

variation in scaling exponent range of nonfatigue may be 

due larger components of higher amplitude and increase 

in lower frequency components due to motor unit action 

potential synchronization. This may result in increase of 

higher amplitude fluctuations and lower amplitude 

fluctuations during fatigue conditions. The negative order 

of fluctuations is found to have distinctly different values 

(-13 and -8) for fatigue and nonfatigue condition. This 

may be due to increase of smaller amplitude fluctuations 

in synchronization during fatigue than in nonfatigue 

condition. This may contribute in shifting the scaling 

exponent function to higher negative values during 

negative order of fluctuations in fatigue conditions. 

 

Figure 4.  Generalized hurst exponent for nonfatigue and fatigue 
conditions of sEMG signal in Fig. 2 

 

Figure 5.  Multifractal spectrum with features in nonfatigue and fatigue 
conditions of sEMG signal in Fig. 2 

The generalized Hurst exponent was estimated for both 

nonfatigue and fatigue signals, and plotted for different 

order of fluctuations. The generalized Hurst exponent 

variations with q is represented in Fig. 4 for the 

representative sEMG signal in Fig. 2, for both nonfatigue 

(thick line) and fatigue condition (dashed line). In the 

case of nonfatigue signal, the Hurst exponent varied from 

0.75 to 0.2, and in the case of fatigue signal, the Hurst 
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exponent varied from 1.2 to 0.3. It is observed from Fig. 

4 that the variation of fatigue signal is more prominent 

than nonfatigue signal. This may be due to increase in 

different type of fluctuations, comprising of high 

amplitude and low amplitude in fatigue condition. The 

behavior of high amplitude fluctuations may be different 

from low amplitude fluctuations, and thus this is reflected 

as a variation of generalized Hurst exponent in Fig. 4. 

The positive order (q>0) is representation of high 

amplitude fluctuations and negative order (q<0) is 

representation of low amplitude fluctuations. It is also 

reported than mono fractal time series has a constant 

Hurst exponent [15]. If the sEMG signal has uniform 

behavior for various amplitude fluctuations then Hurst 

exponent would be a nearly constant value for different 

order of fluctuations. Thus, it may be inferred that sEMG 

signals are having multifractal characteristics using 

generalized Hurst exponent analysis, in both nonfatigue 

and fatigue condition. The degree of multifractal nature is 

higher in fatigue condition as compared to nonfatigue 

condition. 

The multifractal spectrum is computed for nonfatigue 

and fatigue conditions. This is represented in Fig. 5. The 

fatigue signal has a broad concentration (α=0.2 to α=1.3) 

and nonfatigue signal has a relatively narrow 

concentration (α=0.1 to α=0.8). The changes in the 

spectrum may be due to presence of different levels of 

scale invariance. The peak exponent for nonfatigue 

segment (PEVNonfatigue) and fatigue segment (PEVFatigue) 

for the representative signal is found to be 0.43 and 0.63 

respectively. The left and right extremes of the spectrum 

represent rare exponent and smooth exponent values of 

time series. The rare exponent is an indication for 

positive order of fluctuation (q→∞) and smooth exponent 

is an indication for negative order of fluctuation (q→-∞). 

In this study, the order of fluctuation is analyzed for q 

ranging from -10 to 10. The degree of multifractality is 

also represented in Fig. 5 for both nonfatigue 

(DOMNonfatigue) and fatigue segments (DOMFatigue). The 

DOM value is found to be 0.7 and 1.1 for nonfatigue and 

fatigue segment. The reduction in DOM for nonfatigue is 

due to closer range concentration of spectrum as shown in 

Fig. 5. The narrow concentration of spectrum is an 

indication of lower scale invariance and broader 

concentration is an indication of greater scale invariance. 

The changes to scale invariance are based on presence of 

high amplitude and low amplitude fluctuations in the time 

series. In fatigue condition, it is reported that there may 

be a reduction in conduction velocity and synchronization 

of motor unit action potentials [25]. This may result in an 

increase of higher and lower amplitude fluctuation signals. 

This can be correlated to the reduction of mean frequency 

and median frequency in sustained fatigue condition as 

reported in previous work [2], [26].  

The new feature mean multifractal spectral exponent 

(MSE) is computed for nonfatigue and fatigue. This 

feature is derived from power spectral analysis feature 

mean power frequency. This feature uses the weighted 

average of spectrum at various values of exponent and 

provides a weighted average. The MSENonfatigue is found 

to be lower than MSEFatigue as in the case of peak 

exponent. The variation of MSE is found to higher than 

PEV feature in this study. The MSE and PEV for sEMG 

signal in fatigue and nonfatigue conditions are 

represented in Fig. 5.  

 

Figure 6.  Box plot of DOMNonfatigue and DOMFatigue 

 

Figure 7.  Box plot of MSENonfatigue and MSEFatigue 

The mean and standard deviation for three features, 

PEV, DOM and MSE is given in Table I for nonfatigue 

and fatigue condition. The results of ANOVA and Tukey 

test are shown in Table II and Table III respectively. The 

DOM feature is found to be statistically highly significant 

(3.77E-8) and MSE is statistically significant (0.008) in 

this study. However, the PEV feature was not found to be 

significant for biceps brachii muscle in nonfatigue and 

fatigue conditions. The box plot is represented for DOM 

and MSE in Fig. 6 and Fig. 7 respectively. 

TABLE I.  MULTIFRACTAL SPECTRAL FEATURES MEAN, STANDARD 

DEVIATION AND MEAN ERROR IN NONFATIGUE AND FATIGUE 

 
Features 

Non-Fatigue Fatigue 

Mean (Std 
Deviation) 

SE of 
Mean 

Mean (Std 
Deviation) 

SE of Mean 

PEV 0.384 (±0.11) 0.024 0.408 (±0.14) 0.031 

DOM 0.526 (±0.21) 0.044 0.961 (±0.22) 0.047 

MSE 0.544 (±0.18) 0.039 0.749 (±0.29) 0.062 
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TABLE II.  ANOVA ANALYSIS OF MULTIFRACTAL SPECTRAL 

FEATURES 

Features Mean Square F Value Prob > F 

Peak Exponent  

(PEV) 
0.0063 0.367 0.548 

Degree of Multifractality# 

 (DOM) 
2.083 45.029 3.77E-8 

Mean Multifractal Spectral 

Exponent* (MSE) 
0.046 7.598 0.008 

*Statistically significant; # statistically highly significant 

TABLE III.  MULTIFRACTAL SPECTRAL FEATURES COMPARISON USING 

TUKEY’S PROCEDURE IN NONFATIGUE AND FATIGUE 

Features 
Diff 

between 

Mean 

Standard 
error of 

Mean 

Prob Sig 

Peak Exponent  

(PEV) 
0.024 0.039 0.547 0 

Degree of 

Multifractality 

 (DOM) 

0.435 0.065 5.297E-8 1 

Mean Multifractal 

Spectral Exponent 

(MSE) 

0.204 0.074 0.0086 1 

Sig equals 1 indicates that mean difference is significant  
Sig equals 0 indicates that mean difference is not significant  

IV. CONCLUSION 

Surface EMG signals are complex nonlinear signal and 

their complexity increasing during intense dynamic 

contractions. The biceps brachii muscles play role of 

agonist and antagonist during flexion-extension action 

respectively. The sustained force generation in this action 

is followed by muscle fatigue and leading to task-to-

failure. The dynamics of bicep brachii muscle vary during 

curl exercise and thereby resulting in nonlinear variations 

in sEMG signals. In this study, sEMG signals are 

recorded from biceps brachii muscle with 22 participants. 

The signals are pre-processed and segmented into six 

equal zones. The first segment and last segment are 

considered as nonfatigue and fatigue condition. The 

multifractal detrending moving average algorithm is 

applied for these two segments to derive scaling exponent 

function, generalized Hurst exponent and multifractal 

spectrum. Two standard features, peak exponent and 

degree of multifractality are computed for nonfatigue and 

fatigue condition. A new feature, mean multifractal 

spectral exponent is introduced and compared with peak 

exponent. In certain cases, the spectral component is 

shifted toward right due to dominance of larger 

fluctuations. However the peak is towards the middle of 

spectrum. In these cases, the new feature MSE appears to 

provide distinct values between nonfatigue and fatigue 

conditions. The results of scaling exponent and 

generalized Hurst exponent confirmed the multifractal 

nature of sEMG in both nonfatigue and fatigue condition. 

The ANOVA results of multifractal spectral features are 

found to be statistically significant in fatigue condition 

(Degree of multifractality p=5.297E-8; Mean multifractal 

spectral exponent p=0.0086). 

The results using multifractal analysis with MFDMA 

technique on sEMG signals provide a method to study the 

underlying muscular system dynamics in nonfatigue and 

fatigue condition. The biceps brachii muscles exhibit 

nonlinear interactions in dynamic contraction. The sEMG 

signal is found to be characterized by a range of fractal 

exponent with varying scales in nonfatigue and fatigue 

condition. The scaling exponent function and generalized 

Hurst exponent function indicate the influence of higher 

amplitude and lower amplitude fluctuation during fatigue 

condition. This method of multifractal detrending moving 

average method may be a good tool to assess sEMG 

signals during dynamic contractions due to its ability to 

discriminate between nonfatigue and fatigue conditions. 

sEMG signals exhibit complex dynamics and therefore 

multifractal detrending moving average spectrum analysis 

may prove to yield useful insights into the varying 

dynamics. 
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