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Abstract—This paper investigates the effects of standard 

speech compression techniques on the accuracy of automatic 

emotion recognition. Effects of Adaptive Multi-Rates 

(AMR), Adaptive Multi-Rate Wideband (AMR-WB) and 

Extended Adaptive Multi-Rate Wideband (AMR-WB+) 

speech codecs were compared against emotion recognition 

from uncompressed speech. The recognition methods 

included techniques based on three different types of 

acoustic speech parameters: Teage Energy Operator 

features (TEO), Mel Frequency Cepstral Coefficients 

(MFCCs), and Glottal Time and Frequency domain features 

(GP-T&GP-F). The results showed that in general, all three 

speech compression techniques resulted in the reduction of 

emotion recognition accuracy. However, the amount of 

degradation varied across compression methods and types 

of acoustic features. It was observed that the accuracy of 

emotion recognition using the AMR-WB technique was 

higher than the accuracy of the AMR-WB+ and the AMR 

codecs. Further, the TEO-PWP features showed much more 

robust performance under different compression rates than 

the MFCC, GP-T and GP-F features. 

 

speech classification 

 

I. INTRODUCTION 

The automatic recognition of emotions in speech has 

many applications in various human-machine 

communication systems, speaker recognition and 

verification, biometric security purposes, as well as 

medical and physiological services. However, the 

majority of emotion recognition studies have focused on 

uncompressed speech. Speech compression techniques 

used in communication systems have been shown to have 

a significant effect on acoustic speech characteristics [1], 

[2], as well as the accuracy of automatic speech and 

speaker recognition [3], [4]. However, the effects of 

speech compression on automatic emotion recognition 

rates have not yet been addressed. 

Speech compression introduces many industrial 

advantages for telecommunications and speech 

technology, which support and serve speech recognition 

for human-to-machine communication. Such advantages 

include the reduction in delay for data transmission using 

telephony, the reduction in the memory size needed to 

save speech recordings and the memory of mobile phones. 
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Thus, due to the ubiquity of speech compression applied 

to modern communications, there is a need to develop 

robust speech classification techniques that perform well 

not only in ideal uncompressed speech conditions but 

also when using various types of speech codecs.  

Some of the possible factors associated with speech 

compression that could affect the automatic emotion 

recognition include spectral modifications to speech 

signal introduced during the coding and decoding 

procedures. Another important factor is the limited 

bandwidth that is used by some coding techniques. These 

factors can alter dramatically the acoustic speech 

characteristics and impact directly on the accuracy of 

emotion recognition in speech. In [4], the Code-Excited 

Linear Prediction (CELP) and Linear Prediction (LP) 

based GSM speech codecs have been shown to have a 

negative effect on the estimation of the fundamental 

frequency (F0). It was observed that the speech 

compression algorithm led to an increase of the F0 value 

by up to 30Hz making it closer to the F0 extracted from a 

landline uncompressed speech [5]. Furthermore, the F1 

formants of vowels extracted form compressed speech 

were higher than F1 formants extracted from 

uncompressed speech [1]. In particular, [2] showed that 

F0 and formant frequencies (F1-F3) decreased 

significantly when estimated from speech compressed 

using the GSM Adaptive Multi Rate (AMR) speech 

codec. Interestingly, not all acoustic speech features 

perform worse with compressed speech. For example, the 

speech recognition accuracy has been shown to be 

improved when using speech features such as the Mel 

Frequency Cepstral Coefficients (MFCC) estimated from 

speech compressed by the GSM speech codec in 

comparison with the uncompressed speech [3], [6]. 

However, some of the limitations of these studies were 

the use of only the narrowband GSM AMR speech 

codecs (300-4300Hz), and a focus on only the classical 

speech features in the analysis of effects of speech 

compression. Despite the recent interest in automatic 

emotion recognition research, there are no comprehensive 

studies investigating the effect of speech compression on 

the affective characteristics of speech.  

This study aims to address this gap and investigate 

how the standard speech compression techniques impact 

the accuracy of automatic emotion recognition. The 

current study extends the previous investigations into the 

effects of coding methods based not only on the narrow 

band AMR but also on the wideband AMR-WB and 
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extended wideband AMR-WB+ speech codecs. The 

effects of these codecs are analyzed using a range of 

different features, recently reported to provide high 

performance in speech emotion recognition [7], [8]. 

These features include the Teager Energy Operator 

parameters (TEO-PWP), the Mel Frequency Cepstral 

Coefficients (MFCC), the glottal time parameters (GP-T) 

and the glottal frequency parameters (GP-F).  

II. METHOD 

A. Speech Database  

The emotion recognition experiments were conducted 

on the Berlin Emotional Speech (BES) database 

described in [9]. The database contains speech samples 

representing 7 categorical emotions (anger, happiness, 

sadness, fear, disgust, boredom and neutral speech) 

spoken by 10 professional actors (5 female and 5 male) 

fluent in German. Each speaker simulated all 7 emotions 

while pronouncing 10 different utterances 5 short (2-4 

seconds) and 5 long (5-9 seconds)), with linguistically 

neutral contents. The sampling frequency of the speech 

samples was 8kHz. Table I provides the numbers of 

available speech samples for different emotions.  

TABLE I.  DESCRIPTION OF THE SPEECH DATA  

 Ang Bor Disg Fear Hap Neu Sad 

Male 60 34 8 26 21 38 17 

Female 67 45 30 29 37 40 36 

B. Experimental Framework  

The speech samples representing either compressed or 

uncompressed speech were normalized into the range ±1. 

After removal of noise, and voiced/silence detection, the 

voiced speech frames were concatenated and used in the 

two-stage processing illustrated in Fig. 1. In the first stage 

(modelling), characteristic features representing known 

emotions were used to train the emotional class models. 

In the second stage (classification), characteristic features 

from speech samples of unknown classes were compared 

with the models to determine the closest matching 

emotional class. 

 

Figure 1.  Block diagram of the experimental framework.  

For both compressed and uncompressed speech and for 

each feature/classifier combination, the training and 

classification process was run 15 times, each time with 

different training and testing sets selected using a 

stratified training and testing data selection procedure 

[10]. For each run, 80% percent of data was used in the 

training process and 20% used in the testing. The 

classification results were assessed using the Average 

Percentage of Identification Accuracy (APIA) given in (1) 

[10]:  

𝐴𝑃𝐼𝐴 =
1

𝑁𝑟

𝑁𝐶

𝑁𝑇
100%                           (1) 

where 𝑁𝐶  is the number of test inputs correctly identified, 

𝑁𝑇  is the total number of test inputs, and 𝑁𝑟  is the 

number of repeated tests. The emotion recognition was 

tested for each gender separately and Table II shows the 

compression bit rates tested in the experiments. Note that 

the compression rates in Table II corresponding to R1-R8 

differ between the different types of codecs. This needs to 

be taken into account when evaluating the experimental 

results described in Section III. 

TABLE II.  BIT-RATES USED IN THE EXPERIMENTS FOR DIFFERENT 

SPEECH COMPRESSION SYSTEMS 

Codec 

Bit Rates (kbit/second) 

R1 R2 R3 R4 R5 R6 R7 R8 

AMR 4.75 5.15 5.9 6.7 7.4 7.95 10.2 12.2 

AMR-WB 6.6 8.85 12.65 14.25 15.85 18.25 19.85 23.85 

AMR-WB+ 10.4 12 13.6 15.2 16.2 19.2 20.8 24 

C. Speech Compression Methods 

Adaptive multi rate (AMR) narrowband speech codec 

[11], [12]: AMR is based on Algebraic Code Excited 

Linear Prediction (ACELP), and has 8 narrow band 

modes (ranging from 300 to 3400KHz). Each of the 8 

codec modes applies different bit-rates: (AMR475) 4.75, 

(AMR515) 5.15, (AMR59) 5.9, (AMR67) 6.7, (AMR74) 

7.4, (AMR795) 7.95, (AMR102) 10.2 and (AMR122) 

12.2kbit/s. The speech is coded frame-by-frame with a 

frame size of 20ms (160 speech samples at 8kHz 

sampling rate). For each speech frame, the speech signal 

is analyzed using Linear Prediction (LP) of order 10 to 

calculate the LP coefficients, the adaptive codebook and 

the fixed codebook parameters and the gains. Each frame 

is divided into sub-frames and the mode switches 

between subsequent sub-frames. The resulting multi-

mode (multi bit rate) coding has been efficiently applied 

in many mobile applications and wireless networks.  

Adaptive multi rate wideband (AMR-WB) codec [13]: 

AMR-WB is an extension of AMR, with the wideband 

range of (50-7KHz) and sampling frequency of 16 kHz, 

operating at nine bit rates: 6.60, 8.85, 12.65, 14.25, 15.85, 

18.25, 19.85, 23.05 or 23.85kbit/s. Like AMR, AMR-WB 

is based on the ACELP coding technique. However, 

AMR-WB uses a 16th order LP short-term prediction 

filter and for each frame, the LP parameters, adaptive and 

fixed codebooks and the gain are calculated. These 

parameters are encoded and transmitted as the speech 

frame divides into sub-frames. The adaptive and fixed 

codebook parameters are transmitted for every sub-frame. 

Adaptive multi rate wideband extension (AMR-WB+) 

codec [14]: The AMR-WB+ extends the AMR-WB 

method by adding transform coded excitation (TCX), 

bandwidth extension and stereo. While AMR and AMR-

WB are optimized for speech compression, AMR-WB+ is 

designed to work with both speech and audio signals. The 

AMR-WB+ audio codec processes input frames of length 

2048 samples at internal sampling frequencies ranging 

from 12800Hz to 38400Hz. There are two basic sets of 

Uncompressed 
Speech

Compressed 
Speech

Feature
Extraction

Classification

Modelling
Class

Models

Classification 
Result
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rates: one for mono and one for stereo recordings. The 

basic mono rates are: AMR-WB+ 208 bit/frame 

(10.4Kbit/s), AMR-WB+ 240 bit/frame (12.0kbitit/s), 

AMR-WB+ 272 bit/frame (13.6kbitit/s), AMR-WB+ 304 

bit/frame (15.2kbitit/s), AMR-WB+ 336 bit/frame 

(16.8kbit/s), AMR-WB+ 384 bit/frame (19.2kbit/s), 

AMR-WB+ 416 bit/frame (20.8kbit/s) and AMR-WB+ 

480 bit/frame (24kbit/s). The current study applied only 

the mono rates due to the nature of the Berlin Emotional 

Speech database containing only mono recordings [9] 

D. Speech Features  

The acoustic speech parameters were calculated on a 

frame-by-frame basis with a frame length of 256 samples 

and 50% overlap between frames. The following 

paragraphs explain the feature extraction techniques 

applied to both compressed and uncompressed speech. 

Mel frequency cepstral coefficients (MFCCs): The Mel 

Frequency Cepstral Coefficients (MFCCs) are some of 

the most frequently used features shown to provide good 

performance in speaker recognition and emotion 

classification in speech [15]-[17]. For each frame, the 

Fourier transform and the energy spectrum were 

estimated and mapped onto the mel-frequency scale. The 

Discrete Cosine Transform (DCT) of the mel log energies 

were estimated and the first 12 DCT coefficients 

provided the MFCC values used in the modelling and 

classification process.  

Teager energy operator features (TEO-PWP): Features 

derived from the Teager Energy Operator (TEO) [18] 

have been previously applied in emotion [7], stress [19], 

[20] and depression [21]-[24] classification systems. The 

process of calculating the TEO parameters followed the 

frame-based method introduced in [25], which calculates 

the area under the TEO autocorrelation envelope within 

17 frequency bands. The frequency bands were obtained 

through the Perceptual Wavelet Packet (PWP) analysis as 

close estimates of the critical bands characterising the 

human auditory system [26]. For each frame of length 

256 samples, values of the TEO instantaneous energy of a 

given signal x[n] were calculated using (2) proposed by 

Kaiser [27]. 

Ψ(𝑥[𝑛]) = 𝑥2[𝑛] − 𝑥[𝑛 + 1]𝑥[𝑛 − 1]     (2) 

The instantaneous energy was then used to evaluate the 

TEO autocorrelation function values using (3) [20]. 

𝑅Ψ(𝑥)[𝑘] =
1

2𝑀+1
∑ Ψ(𝑥[𝑛])Ψ(𝑥[𝑛 + 𝑘])𝑀
𝑛=−𝑀        (3) 

where M is the number of samples in the given frame. 

After smoothing with cubic splines, the area under the 

autocorrelation contour was calculated for each frame 

within each of the 17 frequency bands.  

Glottal time and frequency domain features (GP-

T&GP-F): Glottal features have been shown to provide 

efficient classification of emotion [7] and depression 

[22]-[24] in speech. An Iterative Adaptive Inverse 

Filtering algorithm (IAIF) based on the discrete all-pole 

modeling (DAP) was used to generate the glottal wave, 

and the glottal parameters were calculated using 

procedures included in the TTK Aparat Toolbox [28]. 

The glottal time domain features (GP-T) were represented 

by 9 different parameters describing amplitudes, timing 

and duration of the opening and closing phases of the 

vocal folds. The glottal frequency domain features (GP-F) 

included 3 different parameters calculated from the 

spectrum of the glottal wave. These parameters described 

the differences between amplitudes of the first and 

second harmonic components of the glottal wave, the 

ratio of the sum of amplitudes of the higher harmonics to 

the amplitude of the first harmonic, and the spectral 

decay of the glottal waveform. 

E. Modelling and Classification Methods  

The modelling and classification tasks were achieved 

using the Gaussian Mixture Model (GMM) algorithm, 

which has been effectively used in speech modeling in 

various speech recognition tasks [29]-[32], [9], [33]. A 

GMM of order M models the probability density function 

of data as a weighted sum (or mixture) of M different 

Gaussian densities. Each Gaussian density has its own 

weight, mean and covariance. The expectation 

maximization (EM) algorithm was applied to estimate the 

optimal values of these parameters. The Gaussian mixture 

modeling (or training) stage was integrated with the 

Bayesian classification decision procedure which 

determined the most probable classes for given query 

samples. A 3rd order Gaussian mixture model combined 

with the EM algorithm and the Bayesian classifier from 

the HTK toolbox were implemented to test the automatic 

classification of 7 different emotional categories using 

compressed and uncompressed speech and different types 

of feature parameters. 

III. RESULTS AND DISCUSSION  

The following sections show how the three different 

speech compression techniques (AMR, AMR-WB and 

AMR-WB+) affect the average multi-class emotion 

recognition accuracy performed when using three 

different types of features (MFCC, TEO-PWP and GP-

T&GP-F). The results are presented in Fig. 2-Fig. 7 

separately for male and female speakers.  

A. Classification Outcomes for Uncompressed Speech 

The emotion classification task aiming to distinguish 

simultaneously between 7 different emotional classes 

represented a significant challenge. The aim was to 

achieve results that do not fall below the pure guess level 

which in this case was about 15%. The classification 

results for the uncompressed speech (Fig. 2-Fig. 7) 

showed that there were generally no significant 

differences between genders in emotion classification 

based on the non-glottal parameters and the glottal time 

domain parameters. The MFCC parameters lead to 

around 73% (Fig. 2 and Fig. 5), the TEO-PWP - 78% 

(Fig. 3 and Fig. 6) and the GP-T - 55% (Fig. 4 and Fig. 7) 

of the classification accuracy. Although, the TEO-PWP 

provided the best performance, there was also a good 

performance given by the MFCCs. The glottal frequency 

domain parameters GP-F outperformed the GP-T in both 

genders (Fig. 4 and Fig. 7). The GP-F features were 
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significantly more effective with male voices than with 

female voices. In particular the GP-F led to 75% accuracy 

for male voices (Fig. 4) and only 59% accuracy for 

female voices (Fig. 7). These results were consistent with 

previously reported emotion recognition outcomes based 

on the uncompressed speech [7], [34], [17], [35]. 

 

Figure 2.  Average accuracy of multi-class emotion recognition for 
male speakers using MFCC features; Un denotes uncompressed speech 

and R1-R8 are compression rates in an increasing order. 

 

Figure 3.  Average accuracy of multi-class emotion recognition for 
male speakers using TEO-PWP features; Un denotes uncompressed 

speech and R1-R8 are compression rates in an increasing order. 

 

Figure 4.  Average accuracy of multi-class emotion recognition for 
male speakers using GP-T&GP-F features; Un denotes uncompressed 

speech and R1-R8 are compression rates in an increasing order. 

 

Figure 5.  Average accuracy of multi-class emotion recognition for 
female speakers using MFCC features; Un denotes uncompressed 

speech and R1-R8 are compression rates in an increasing order. 

 

Figure 6.  Average accuracy of multi-class emotion recognition for 

female speakers using TEO-PWP features; Un denotes uncompressed 
speech and R1-R8 are compression rates in an increasing order. 

 

Figure 7.  Average accuracy of multi-class emotion recognition for 
female speakers using GP-T&GP-F features; Un denotes uncompressed 

speech and R1-R8 are compression rates in an increasing order. 

B. Effect of the Narrow Band AMR Compression on 

Emotion Classification  

For the MFCCs, the AMR compression led to low 

classification accuracy 40%-51% (depending on the 

compression rate) compared to uncompressed speech. 
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There was a very clear decrease of the classification 

accuracy from 50% to 40% with the bit rates decreasing 

from R8 (12.2kbit/s) to R1 (4.75kbit/s). An outstanding 

51% accuracy was observed for R5 (7.4kbit/s) in the case 

of male speech (see Fig. 2). Generally, there were no 

significant differences in these trends across genders.  

For the TEO-PWP features, the classification accuracy 

dropped down to about 50% compared to the 

uncompressed speech (Fig. 3 and Fig. 6); however, the 

classification accuracy was almost the same (flat) for all 

bit rates from R8-R1. Like for AMR, an outstanding 57% 

accuracy was observed for R5 (7.4kbits/s) in the case of 

male speech (see Fig. 3). No other significant differences 

between genders were observed. 

For the glottal features (GP-T&GP-F) in Fig. 4 and Fig. 

7, the frequency parameters GP-F clearly outperformed 

the time domain parameters GP-T in both genders and the 

male voice classification achieved highest results than the 

female voice classification. Interestingly, the lowest bit 

rate R1 (4.75kbit/s) led to the highest performance (51% 

GP-T, 60% GP-F for males and 45% GP-T, 52% GP-F 

for females) for compressed speech. An increase of the 

bit rate from R2-R8 showed lower but almost flat 

performance compare to R1. These trends were similar 

for both genders. For all three types of features, the AMR 

codec provided higher accuracy of emotion recognition 

for male than for female voices. 

C. Effect of Wideband AMR-WB Compression on 

Emotion Classification  

In the case of the MFCC features, AMR-WB 

compression led to a low classification accuracy of about 

60% compared to the uncompressed speech, and 

remained at this accuracy level for all bit rates decreasing 

from R8 (12.2kbit/s) to R1 (4.75kbit/s). There were no 

significant differences in these trends across genders.  

For the TEO-PWP features, the classification accuracy 

was slightly increased for the lowest bit rate R1 (6.6kbit/s) 

to about 79% compared to the uncompressed speech (Fig. 

3 and Fig. 6). An increase in the bit rate from R2 

(8.85bit/s) to R8 (23.85bit/s) showed a clearly decreasing 

slope of the classification accuracy from about 74% (for 

R2) to 67% (for R8). There were no significant 

differences in these trends across genders. 

The TEO-PWP results appear to contradict the 

informal belief that the lower are the compressed speech 

bit rates, the higher is the speech degradation and hence 

lower accuracy of emotion recognition. However, it is 

important to remember that the speech coding techniques 

used in this study were optimized for maximum speech 

intelligibility rather than for preserving the emotional 

contents. Moreover, previous studies of depression and 

emotion classification based on uncompressed speech 

indicated that the performance of the TEO features is 

highly dependent on the signal bandwidth [36], [23] and 

that the optimal feature selection, which is effectively a 

speech compression process, can lead to a significant 

improvement in emotion classification results [37]-[39]. 

A similar improvement over the uncompressed speech 

was also reported in [3], [6], where the speech 

recognition accuracy was improved when using the 

MFCC coefficients estimated from speech compressed by 

the GSM codec. The current results show that, the 

combination of the wide band condition associated with 

the AMR-WB 6.6 kbit/s compression and the TEO-PWP 

features is likely to provide an optimal configuration for 

highly accurate emotion recognition in speech.  

The glottal features (GP-T&GP-F) in Fig. 4 and Fig. 7, 
showed a different performance for male and female 

speakers. For the male speaker, the time parameters GP-T 
slightly outperformed the frequency parameters (GP-F) 

with a consistent performance across all rates R1-R8 

leading to 55% accuracy for the GP-T and 52% for the 
GP-F. In contrast, for the female speaker, the frequency 

parameters GP-F outperformed the time parameters (GP-
T) with again almost flat performance across all rates R1-

R8 leading to 40% accuracy for the GP-T and 48% for 

the GP-F. 

D. Effect of Extended Wide Band AMR-WB+ 

Compression on Emotion Classification  

For the MFCC parameters, The AMR-WB+ codec 

showed performance trends similar to the AMR-WB (Fig. 

2 and Fig. 5). In all cases, the classification accuracy was 

slightly higher than for the AMR but lower than for the 

AMR-WB.  

For the TEO-PWP and the AMR-WB+ in mono mode, 

the performance was slightly higher but in all trends 

similar to the AMR (Fig. 3 and Fig. 6), with classification 

accuracy slightly increasing with the increasing bit rate 

from R1 (10.4 bit/s) to R8 (24 bit/s). 

The glottal features derived from the AMR-WB+ 

compression for both GP-T and GP-F exhibited very 

similar performance with almost flat accuracy(about 45% 

on average) across all rates R1-R8 (Fig. 4 and Fig. 7). 

There were no significant differences between genders. 

IV. CONCLUSION  

The current study investigated the effect of speech 
compression on the automatic simultaneous recognition 

of 7 types of emotional speech samples obtained from the 
Berlin Emotional Speech database. The experiments 

included three different types of standard speech 

compression techniques (AMR, AMR-WB and AMR-
WB+) and three types of acoustic speech parameters 

(MFCC, TEO-PWP and GP-T&GP-F). The modelling 
and classification of emotional speech was achieved 

using the GMM algorithm.  
It is intuitively predictable that lower bit rates imply 

higher distortion to the speech signal and as such are 

expected to remove some information about speech 
emotions and lead to lower accuracy of automatic 

emotion recognition. In contrast, codecs with higher bit 
rates introduce less distortion and therefore could be 

expected to provide higher accuracy of automatic 

emotion recognition.  
The experimental results presented in this paper 

confirmed this general expectation, showing that speech 

compression based on standard codecs degrades the 

automatic emotion recognition outcomes. However, the 

amount of this degradation was not always increasing 

with the decreasing bit rates.  
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In particular, it was shown that the combination of the 

wide band AMR-WB 6.6kbit/s compression and the 

TEO-PWP features provide an optimal configuration for 

high accuracy multiclass emotion recognition in speech 

and led to results that were higher than for the 

uncompressed speech. 

The dependency patterns between the bit rates and the 

emotion classification accuracy varied significantly 

across different genders, coding techniques and types of 

acoustic speech parameters used to distinguish between 

different emotions. Generally, the classification results 

for all codecs, features and across all bit rates did not fall 

below 40%, which was significantly higher than the 

guessing threshold of 15% for the simultaneous 

recognition of 7 classes of emotional speech. 

One of the reasons for the observed degradation of 

emotional contents in compressed speech could be the 

fact that, the current speech compression methods are 

optimized for maximum speech intelligibility. Therefore, 

no objectives are used to ensure that the paralinguistic 

(emotional) contents are preserved and fully conveyed to 

the listeners. Future studies improving this aspect of 

speech coding standards are needed.  
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