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Abstract—This paper proposes a blind source separation 

method using time-frequency (T-F) decomposition and 

clustering for estimated propagation direction vectors at T-

F slots. The method is applicable to arbitrary array 

configuration in 3-D space and even in the presence of 

spatial aliasing. To solve spatial aliasing problem which 

causes ambiguity of phase, unity norm property of 

propagation direction vector is employed for solving phase 

difference ambiguity. With combining our previous 

direction-of-arrival (DOA) estimation algorithm and 

clustering in terms of spatial information, efficient 

separation procedure is achieved by a binary masking in T-

F domain. Experimental results demonstrate that the 

proposed procedure effectively separate three or four 

speech sources with tetrahedron microphone array with 

wide sensor spacing where spatial aliasing may occur.  

 

Index Terms—microphone array, source separation, time-

frequency masking, DOA estimation, spatial aliasing, kernel 

density estimation 

 

I. INTRODUCTION 

Blind source separation (BSS) technique is to estimate 
individual source signals from their mixtures observed at 
multiple sensors [1], [2]. The BSS technique for speech is 
applied to many fields including hands-free remote 
conference system and robot audition system. 

 Mathematical model of source mixing process is a 
convolution operation between source signals and the 
impulse response from sources to sensors. Frequency 
domain approach transforms such convolution mixture to 
an instantaneous mixture, where short-time Fourier 
transform (STFT) is applied to the sensor observations.  
Independent component analysis (ICA) and the method 
based on the sparseness of source signals are two efficient 
approaches for solving the BSS. The assumption of 
sparseness of source signals implies that at most one 
source makes a major contribution to each time-
frequency component of STFT representation. This 
assumption enables to handle the underdetermined 
problem where the number of sources is larger than that 
of sensors.  

                                                           
Manuscript received August 1, 2014; revised November 24, 2014. 

A practical sparseness-based approach is known as 

time-frequency (T-F) binary mask method, and this paper 

focuses on this method. Basic idea of binary mask 

separation is summarized as follows: If the sparseness 

assumption holds, a histogram of feature vectors, which 

are obtained from sensor observations, would have the 

same number of clusters as source’s number. Since an 

individual cluster in the feature space corresponds to an 

individual source, each source signal can be detected by 

selecting the time-frequency components contained in 

each cluster. In an earlier and well-known DUET 

(Degenerate unmixing estimation technique) approach [3], 

a pair of sensors is used for defining the geometrical 

features such as signal level ratio and phase differences, 

and manual clustering is employed for grouping. Up to 

now DUET has been generalized in terms of clustering 

scheme as well as array configuration.  

With respect to the clustering algorithm some 

automated and simplified clustering approaches have 

been developed such as kernel density estimation [4], 

maximum likelihood gradient method [5], and k-means 

clustering method [6]. On the other hand, array 

configuration of sensors is generalized to array with non-

linear and non-uniform alignment containing more than 

three or four sensors. In general we need more than four 

sensors arranged three-dimensionally for discriminating 

source direction uniquely.  

Previously, the binary mask approach known as 

MENUET (Multiple sENsor dUET) [7] employs k-means 

algorithm for a feature utilizing modified level ratio and 

phase differences between multiple observations at 

arbitrary three-dimensionally aligned sensor array.  

An important issue when treating spatial information 

such as direction of sources as the feature of time-

frequency component is the spatial aliasing problem. As 

we are concerned with the source directions, the sensor 

spacing should be no larger than the half of the minimum 

wavelength of interest in order to hold one-to-one 

correspondence between the direction and phase 

difference. Thus conventional approaches [3]-[7] restrict 

to microphone array with small spatial extent in order to 

avoid spatial aliasing ambiguity.  
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Few time-frequency binary mask approaches have 

been proposed in the presence of spatial aliasing. By 

adopting both ICA and binary masking Sawada et al. [8] 

proposed a grouping procedure based on estimating 

anechoic propagation model parameters i.e., the time 

delays of arrival and attenuation from a source to all 

sensors. Their method solves the problem of spatial 

aliasing and is applicable to arbitrary array with any 

number of sensors. As far as the source direction 

estimation concerned, the other sparseness-based general 

method by Loesch & Yang [9] avoids the spatial 

ambiguity by directly comparing phase differences in 

both observed and model using a distance metric. 

However, their source separation employs a linear blind 

beamformer approach. 

Based on the above review of previous studies this 

paper proposes a clustering method performed in the 3-D 

propagation direction vector, by which both azimuth and 

elevation angles are provided uniquely. Our recent 

contribution [10] proposed a method estimating the 

direction of arrival (DOA) even in the presence of spatial 

aliasing. This idea is extensively adopted to generate 

spatial feature of sources, and the feature is also utilized 

for source separation.  

The remainder of this paper is organized as follows. In 

Section II, our DOA estimation theory in [11] is 

summarized. The proposed separation algorithm is 

proposed in Section III. In Section IV, experiments are 

demonstrated to verify the method. Section V concludes 

this study.  

II. DOA ESTIMATION 

This section provides an overview of DOA estimation 

technique developed in [11]. The method is applicable to 

arbitrary configuration of sensor array even in the 

presence of spatial aliasing. [12] 

A. Deley of Arrival and Phase Difference  

Consider an array with omni-directional M sensors 

whose location in 3-D space are given by 

,[ , ]T

m m m mr x y z  where m=1,…M          (1) 

Here, we assume  without loss of generality, 

and define the matrix R as  

2[ ,... ]T

MR r r                           (2) 

Let also assume a sound source locate at a point whose 

directional unit-length vector, referred to as the 

propagation direction vector, is written by 

( , ) [sin cos ,sin sin ,cos ]Ta             (3) 

where ( )       and (0 )     denote the 

azimuth and elevation angles of the source direction 

respectively. An acoustic source signal with the 

propagation direction vector ( , )a    of (3) causes arrival 

time delay ( , ),( 2,..., )m m M     between the m-th and 

the reference (m=1) sensors which can be represented by 

( , )
( , ) , 2,...,

T

m
m

r a
m M

c

 
                 (4) 

where c is the sound propagating speed. The vector-

matrix formulation of (4) can be represented by 

2

( , )
( , ): [ ( , ),... ( , )]T a

M

R

c

 
               (5) 

Transformation of the sensor signals into the DFT 

domain provides the following relationship between the 

delay of (4) and the phase difference ( , ; )m l    

between the Fourier components of the observed signals.  

( , ; ) ( , ), 2,...m ml l m M          (6) 

where ( , ; )m l    is unwrapped phase difference at l-th 

frequency bin, 2 /sf L    is the angular frequency 

width between adjacent DFT points, and sf  is the 

sampling frequency. The vector form of (6) is represented 

by  

2( , ; ) [ ( , ; ),... ( , ; )]T

Ml l l          

( , )l                                                     (7) 

B. Estimated Phase Difference and Uncertainty  

As in [8] let define ( , )mX k l  as the L-point STFT (Short 

Time Fourier Transform) of ( )mx t  where k is time frame 

index, l is frequency bin index. The phase difference 

inherently has uncertainty by an amount of the integer 

multiplying 2π, the estimate of delay (4) using the 

relationship (6) can be written as follow. 

1

( , )1
( , ) { [ ] 2 ( )}

( , )

m
m m

X k l
k l ARG l

l X k l
 





        (8) 

where ( )mp l  represents an unknown integer depending 

on l, and ARG[Y] means the principal value of complex 

number Y.  

2 3( ): [ ( ), ( ),... ( )]T

Mp l p l p l p l           (9) 

Now, defining a vector with integer elements yields the 

following vector form representation of the estimated 

delays (8) which contains unknown vector ( )p l . 

2 3( )( , ) [ ( , ), ( , ),... ( , )]p ML k l k l k l k l   
   

    (10) 

The issue addressing here is to select one appropriate 

vector ( )l


 at each l and obtain an estimate of 

( ) ( , )La k l



by solving the equation (5). 

C. DOA Estimation in the Spatial Aliasing Case 

As discussed in [11] the finite extent of unknown 

integer ( )mp l , that is ( ) ( )m mp l p l , is determined by the 
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length of the location vector 
mr of (1). The idea of 

selecting an appropriate ( )p l in [11] from possible 

combination of ( )mp l ’s is the fact that any propagating 

vector should have unit norm, namely ( , ) 1a    . 

Assume N sources with different directions and for 

each (k,l)-cell, apply the following steps A~C to obtain an 

estimate propagation vector ( ) ( , )p La k l


. 

Step A: For all elements of ( )p l , compute the estimate  

( ) ( , )p L k l


by using (8) and (10). 

Step B: Solve the equation to obtain ( ) ( , )p la k l


 It is 

noted that under the conditions M ≥ 4 and rankR=3 

Eq.(11) may yield unique solution. The generalized 

inverse of R and the Gram-Schmidt orthogonalization 

[10] are two known methods.  

( )
( )

( , )
( , )

p l
p L

Ra k l
k l

c





              (11) 

Step C: Obtain the following ( )p l


 as the most probable 

unknown integer vector. 

p(l)( )= rgMin( ( , ) -1)p l A a k l


         (12) 

For a set of ( ) ( , )p la k l




 with available (k, l), we may 

have N clusters, and n-th cluster gives a propagation 

direction vector 
na . Several methods for determining 

na  
(n=1~N) have been proposed, such as the histogram peak 

search, centroid search by k-means algorithm, and the 

peak search of kernel density estimation. [3]-[6] 

III. SOURCE SEPARATION
 
VIA T-F

 
MASKING 

The task of separation process based on time-

frequency masking is to determine the most dominant 

source at each time-frequency slot (k, l) in STFT domain. 

As shown in the previous section, estimated propagation 

direction vector ( ) ( , )p la k l




 at each (k, l) is used to attribute 
a spatial feature of T-F slot. In this context with multiple 

source case, the separation process is performed by 

classifying ( ) ( , )p la k l




of all T-F slots (k, l) into N classes. 

After that, the n-th class consists of mixtures of T-F 

component where the n-th source is dominant. As in [8], 

we use the following notation for representing a case that 

an estimated ( ) ( , )p la k l




 belongs to the n-th class. 

C (k, l) = n                           (13)  

The proposed separation process consists of updating 

both
 
( , ) 

 
and n

 
by replacing 

~

( )p l
 
and 

~

n
 
thorough the 

following minimization process.
 

~ ~

( ( ), ( , )p l C k l n  

( ), 1~ ( )

: ( , ) n
p l n N p l

Min a k l a 



            (14) 

The clustering or separation process is given by 
~

( , )k l n . This classification result directly generates a 

T-F mask for separating -th source signal by the 

following masking procedure. 

 
~

1
~ ~

( , ), ( , )

1 0,( , ) ( , ) ( , ):
X k l if C k l n

otherwise
n n

Y k l Y k l X k l


    (15) 

Finally, application of inverse STFT to
~ ( , )
n

Y k l  yields 

time-domain separated signal 
~ ( )
n

Y t  which is an 

approximation of 
~

n -th source signal observed at the 

reference sensor. 

IV. EXPERIMENTS 

DOA estimation and separation experiments using 

tetrahedron microphone array, as shown in Fig. 1, with 

the following condition are conducted. 

A. Experimental Setup 

Sampling frequency:              8000Hz  

Microphone distance:                   8cm  

Window shape:                    Hamming 

Window length:                   512points  

Room (Width, Depth):       (18m, 15m)  

Reverberation Time:              1200ms 

It is noted that this setting of 8-cm spacing for 8kHz 

sampling may cause special aliasing.  

 

Figure 1. Tetrahedron microphone array 

B. DOA Estimation and Clustering 

The azimuth and elevation angles (degree) of four 

sources are given as follows. 

  Source1: 
1 1( , ) (0,90)   ,  

Source2: 
2 2( , ) (0,120)   ), 

  Source3: 
3 3( , ) (30,60)   , 

Source4: 
4 4( , ) (60,90)   ) 
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The results of DOA estimation and clustering by the 

proposed method are shown in Fig. 2. Fig. 2 (a) shows a 

profile of kernel density estimation using ( ) ( , )p la k l




 on 

the ( , )  plane. Four prominent peaks appeared in the 

profile correspond to individual source’s directions. The 

estimated individual DOAs are given as follows.  

11( , ) (0,92) 
 

 , 22( , ) ( 2,199) 
 

   

33( , ) (32,66) 
 

 , 44( , ) (59,90) 
 

  

Fig. 2 (b) shows a distribution of 

estimation ( ) ( , )p la k l




 for all (k, l)-slots. In the figure, 

each different color clustered set (each class has different 

color) corresponds to an individual source. Fig. 2 (c) 

shows the evaluation function J for the same example. J is 

the introduced index defined and utilized for DOA 

estimation in [9]. From the resulted evaluation index it is 

so hard to detect four distinctive peaks at accurate 

positions. 

 

(a) Estimated density result by proposed method
 

Four prominent peaks at accurate positions are appeared
 

 

 

(b) Clustering Result: Four clustering points are shown;

 

Source1: Blue, Source2: Green, Source3: Red, Source4: Black

 

 
(c) Evaluation function J by the method [9]  

Three prominent peaks are appeared at correct positions, but one peak is 

misestimated) 

Figure 2. DOA and clustering results 

C. Separation Performance 

To verify the effectiveness of the proposed clustering, 

we conducted experiments for the following two cases 

and compare it with the results by Loesch & Yang [9]. 

Case 1: Three-sources 

{( )}i  i=1,2,3={(0,90),(120,60),(240,120)} 

Case 2: Four -sources 

{( )}i  i=1,2,3={(0,90),(120,60),(240,120)} 

Here we evaluated the separation performance in terms 

of W-disjoint orthogonality [3]. The index formulation is 

given by,  

2 2

2

( , ) ( , ) ( , ) ( , )
:

( , )

D l

M

D

M k l S k l M k l S k l
WDO

S k l


        (16) 

where ( , )DS k l  and ( , )lS k l  are the STFTs of the original 

and its separated signals respectively and M(k,l) is a 

binary mask. The results of 
MWDO  are shown in Table I. 

TABLE I. 
 

SEPARATION PERFORMANCE WDOM

 

METHOD
 

CASE 1
 

CASE 2
 

Loesch & Yang[8]
 

0.72
 

0.66
 

Proposed
 

0.78
 

0.69
 

The separation performance difference between the 

proposed and that of [9] is small. However, the advantage 

of the proposed method exists in its computational 

efficiency. Average computation times of the proposed 

and the conventional method [9] for separation with 

aliasing condition are 1 and 20 seconds respectively.
 

V.
 

CONCLUSION
 

Source separation based on sparseness of speech 

signals is proposed. The method is applicable to arbitrary 

array configuration for multiple sources and even in 
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spatial aliasing. At first, our recently established DOA 

estimation method is adopted to clustering spatial feature 

vectors. Then the ambiguity of phase is solved by using 

the unit norm property of propagating vector. 

Experimental results proved that the proposed method is 

an effective and fast clustering method for spatial aliasing 

case to source separation. The extension of this approach 

to source tracking method [13], [14] for spatial aliasing 

case will be future issues. 
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