
Introducing Orthus a Dual-Headed

Authentication Protocol

Dean Rogers
Napier University, Edinburgh, UK

Email: dean.rogers.de@ieee.org

Abstract—This document describes a messaging

architecture and internal message components of an

authentication protocol which has been called ‘Orthus’. For

insecure closed LAN networks Kerberos is the most popular

authentication protocol, currently in official release Version

V [1]. Kerberos’ objectives include protecting the privacy of

message transfers necessary to achieve authentication,

together with safe-guards against replay and man-in-the-

middle, MitM, attacks. Orthus is intended to operate

precisely this environment, here however, the

Authentication Server, instead of delivering a ticket to the

Client for use with the Ticket Granting Server, delivers that

ticket directly to the TGS, and the TGS then delivers service

granting tickets directly to the client, offering a simpler

message flow, therefore providing fewer opportunities for

message corruption or interception.

Index Terms—authentication, authorisation, identity

management, kerberos, orthus, single-sign-on

I. INTRODUCTION

The two most common authentication protocols,

Kerberos [2] and Radius [3], are well established; and

between them cover most of the common requirements.

Kerberos provides authentication services over closed

LANs known as realms, involving a complex sequence of

message transfers between all four entities concerned.

Other authentications protocols are encapsulated

within more general networking protocols, such as Point-

to-Point, PPP, which may incorporate Challenge

Handshake Access Protocols, CHAP [4].

As seen from Fig. 1 we see the client A is involved in

message-response pairs exchanged with two entities, the

authentication service, AS, and the Ticket Granting

Service, TGS, collectively known as the KDC (Key

Distribution Center), before being assigned a ticket which

will eventually grant access to the target server service,

SS. The KDC does not negotiate directly with the SS; a

legacy of the Needham-Schroeder protocol [5] upon

which Kerberos is based.

The rational behind Kerberos being named after the

ancient Greek mythological three headed hound is clear

from Fig. 1. Namely, A, negotiates with three entities, or

heads, to achieve authentication in the desired realm and

access to its target service.

Manuscript received July 26, 2014; revised October 23, 2014.

Figure 1. Kerberos message exchange

II. PROBLEM STATEMENT

Originally Kerberos was designed to run over closed

insecure networks for the verification of a users’ ID, and

via inbuilt encryption systems to provide secure

authentication services. Optimisation of the internal

message structures of Kerberos when run on IPSec

secured networks was covered in an earlier paper [6]. The

essential message exchange workflow of Kerberos can

however appear overly complex, involving six

transactions to successfully access the desired Service.

Could simplifying the structure from the clients’

perspective maintain single sign-on, SSO, functionality,

and security?

III. LITERATURE REVIEW: HOW KERBEROS V5

MESSAGE EXCHANGE FUNCTIONS

Preliminary setup: a realm administrator sets a first

time use password for a new User, who changes it via an

integrated password changing protocol which produces a

hash to be stored as a key in the KDC database.

Step one: from Client machine A, a User logs in with

their established Username and password. Client side

software hashes the password, and then sends a message

to the Authentication Server, AS, including the Users ID,

ID of the Ticket Granting Server, TGS, and a request for

a timestamp, Fig. 2, thus protecting the Users password

by not transmitting it. The use of colour coding below

indicates the elements of message exchanges illustrating

their relationship to each other during their passage

through the message interchange process.

International Journal of Signal Processing Systems Vol. 3, No. 2, December 2015

©2015 Engineering and Technology Publishing 153
doi: 10.12720/ijsps.3.2.153-158

mailto:dean.rogers.de@ieee.org

A AS: A+RA+TGS+N1+Tf

here: the ‘+’ sign indicates concatenation

RA this is the Realm of the client

N1 is a nonce

Tf are client options, from (start) till (expiration or

time-to-live) rtime (renew till time request)

By including the ID of TGS the AS recognises that the

client requests authentication (there is only one TGS

within the realm, and the AS would know this.) The

client can determine the ID-TGS by various means

outside this discussion, for example, from DNS

information. A Timestamp establishes that the message is

not a replay of an earlier one. Note that at this stage the

SS-ID has not been indicated.

Figure 2. Client with authentication service

Step two: AS reply: after seeking the User ID in its

database, it checks that the password hash stored matches

that received. The user has authenticated to this stage of

the procedure upon success; however, use of network

resources is not yet permitted. To enable this, the AS

returns to the client a message for further processing.

This message contains two sets of encrypted data; a ticket

for presentation to the TGS (Including additional flags

not relevant here: and omitted for simplicity), the other is

session information validating communication between

the client and TGS.

AS A: A+RA+KTGS(KATGS+RA+A+IPA+Tf)+

KA(KATGS+RTGS+TGS+N1+Tf)

here: KTGS is the encryption key of TGS

RTGS is the realm of TGS

KATGS is a session key for A and TGS use

IPA is the IP address of A in any format consistent

with the realm

KA is the clients’ encryption key as previously

discussed

The TGT is a remit from the AS authorising the TGS

to issue a ticket to A granting access to SS’s. It includes

duration stipulation, IP address, realm identifier, ID of

client, along with a unique session key specific to A and

TGS communications; all encrypted with the TGS key (in

practice a hash of a value provided by the realm

administrator). Facilitating SSO, the TGT is reusable by

specifying different SS-IDs. Session information includes

the session key (large random number generated by the

relevant host), duration stipulation, realm and ID of the

TGS (A’s matching realm), and a nonce (if repeated in a

later ticket it would be discarded); all encrypted with the

hash of the clients password.

Step three: Using its own key the client can decrypt

and retrieve the contents of the session information, and

the data for connecting to the TGS. The TGT itself is

stored for forwarding, Fig. 3.

Figure 3. Client with ticket granting service

ATGS: SS+Tf+N2+KTGS(KATGS+RA+A+IPA+Tf)+

KATGS(A+RA+TS1)

here: N2 is a second nonce in the protocol exchange

TS1 is a timestamp

The client is requests access of the TGS to an SS. It is

of no concern at this point how A, in extensive networks,

determines the ID of the desired SS from possibly

hundreds; selected from a list, pre-configured in a profile,

or via DNS. It sends a message consisting of the session

duration, SS-ID, a new nonce, the ticket granting ticket

previously saved, and an ‘authenticator,’ certifying the

clients identity (effectively this means the client is

certifying its own ID, but only they could). The

authenticator consists of client-ID, and clients’ realm,

together with a time-stamp; all encrypted with the client-

TGS session key recovered from the session information

that the AS had encrypted with the clients key, retrieved

from its DB.

Step four: (TGS reply) the TGS issues a ticket, for the

client to present to the SS verifying to the SS’s

satisfaction that the client has been authenticated at realm

level, Fig. 4.

TGSA: A+RA+KSS(KASS+RA+A+IPA+Tf)+

KATGS(KASS+Tf+N2+RSS+SS)

here: KSS is the SS secret key

KASS is the session key generated by the TGS for

the sole use of A and SS

The pink block represents the Service Granting Ticket

SGT

The message returned by the TGS to A is similar in

structure to that returned earlier by the AS, it consists of

International Journal of Signal Processing Systems Vol. 3, No. 2, December 2015

©2015 Engineering and Technology Publishing 154

ID and realm of the client, along with a re-usable ticket

SGT facilitating SSO procedures to verify authentication

of the client, encrypted with the SS secret key which the

TGS holds; along with an encryption of the session

information relevant to the client and SS communication

using the client-TGS session key previously issued by the

AS. This session information includes a client-SS session

key, KASS, the realm, ID, and IP address of the client, and

duration stipulations.

Step five: A stores the authentication ticket for

presentation to the SS, and creates a new authenticator

which it encrypts with the client-SS session key

previously retrieved. It contains the clients’ realm and ID,

a new time-stamp, an optional Sequence Number SN to

detect replays; and an optional session sub-key for the

subsequent client SS communications.

Figure 4. Client with server service

ASS:

KSS(KASS+RA+A+IPA+Tf)+KATGS(A+RA+TS1)+O

here: O refers to optional fields that A can request

An optional field indicates that the client can request

that the SS verify its identity, proving that it really is the

SS the client intended to communicate with, thus

insisting on mutual authentication.

Note that although A presents an authenticated SGT to

the SS in question, the TGS does not perform a match of

IDA to IDSS. Meaning that the SS can later return a

message to A indicating that despite authentication, A is

not authorised to use that SS. The usual means of

achieving this is by means of Access Control Lists, which

does not concern us here [7].

Step six: the final authentication message returned by

the SS to the client is of the form,

SS A: KASS(TS2+SK+SQN0)

here: TS2 is a new timestamp

SQNO is a sequence number

SK is a flag requesting a new sub-key

The SS decrypts the SGT using its key, then maps the

ID and IP of the User’s workstation and the ID of the SS.

Confirmation of SS ID constitutes, where applicable, the

sub-key (if SK is absent KASS, the previous client SS

session key is used) and sequence numbers, a new

timestamp TS2 (an attacker cannot re-construct this

massage without prior knowledge of the session key KASS,

and so TS2 can safely be returned without modification),

all encrypted with client-SS session key. The inclusion of

successively incremented sequence numbers, upon

iteration of message exchanges, prevents replay attacks

within the session. Only A and the correct SS have the

session key, in this way, the SS has authenticated itself to

the client.

A one time use only nonce is generated. For security

reasons, to prevent guessing its value, it should be created

by a random number generator. Further, an SQn is

incremented upon each iteration; the original could be a

random number.

It may be noted that LDAP has been misconceived in

some quarters as an authentication protocol [8], however

the background integral ‘Bind’ operation is usually reliant

on Kerberos (or some other service), and so cannot in

itself be considered a full authentication protocol. Further,

the message transfers involve TLS encryption services to

protect them.

Kerberos is undergoing further development as new

applications are sought to fulfill the rising needs of new

technological innovation [9].

IV. KERBEROS OVERVIEW

To recap, assessing how the message interchanges

relate, taking Diagram 1 above,

1. The first message, simply requests realm

authentication.

2. The message returned from the AS is a permit to

apply to the TGS for a ticket to access Services. This

facilitates single-sign-on, as it is reusable.

3. Message three, to the TGS, specifies the ID of the

SS which the client wishes to access.

4. The fourth message returns a ticket to A which,

when presented to the SS in question will be accepted

allowing access: note the encryption with the SS secret

key, which the TGS holds.

5. The fifth message is the one that is finally sent to the

SS requesting access.

6. A sixth and last message confirms to the client that

they are conversing with the correct SS.

It follows from the above,

a. The client is effectively accepted into the realm

upon transmission of message 2.

b. The SS required by A is first mentioned in message

3.

c. A database look-up of the SS ID is performed by the

TGS before message 4 in order to retrieve its secret key

before return to the client.

d. The SS accepts the SGT presented, allowing access.

The TGS function is merely to retrieve the SS key – its

database contains no indication whether the relevant SS

will accept the Client. This is achieved by a process of

‘Authorisation,’ which the SS maintains. Simply, this

could be on a scale of 0 to 9, with zero indicating no

authorisation and so no access despite realm

authentication.

e. If A requires access to another service, SS2, steps 3

to 6 above are repeated for each service.

International Journal of Signal Processing Systems Vol. 3, No. 2, December 2015

©2015 Engineering and Technology Publishing 155

V. ORTHUS

The Orthus authentication protocol involves similar

concepts and terminology to those depicting Kerberos

and for brevity a repetition will be omitted here.

Where the AS could return a reusable ticket to A in a

universally applicable form, a UT, which additionally, for

the purpose of gaining access to other SS’s, facilitates

SSO. What functionality may have been lost? Formerly

the TGS had the role of recovering the specific SS secret

key and providing it to the client, otherwise information

relating to the existence of SS simply passed through it in

encrypted form. We have now lost the ability to encrypt

the SGT with this exact SS-key. Here, session

information contained in message 4 is eliminated. For a

well setup realm, evaluation indicates little disruption to

functionality, assuming that the SS is preconfigured with

the Realm Authority, and that the RSS is redundant.

In a scenario whereby A transmits an initial request for

ream Authentication to the AS, and subsequently the AS

passes a ‘success’ Ticket directly to the TGS, informing it

of the Clients ID. The TGS can now send a UT to A,

enabling realm access, and A can then determine which

SS it wishes to access. A retains the UT while sending a

copy; together with the name of the SS it wishes to access,

back to the TGS. The TGS returns a Ticket to A for

access to a specific SS. Should A later wish to access

another SS, it sends the same UT back to the TGS, but

with the name of the new SS.

The benefit here was that Client A still exchanges a

total of six messages before gaining access to SS1.

Furthermore, under the Kerberos scheme, when

calculated to include access to a second SS2, the total is

ten messages, which is also so under this scheme. Thus,

the only gain was a simplified UT compared to the

previous, and a head reduction to two.

A radical solution may be obtained when the UT

returned from the TGS contains sufficient information to

use for approaching various SS’s without the need to

further retrieve appropriate SS keys from the TGS. Such

a scheme, see Fig. 5, would reduce the number of

transactions needed to access a given SS to four, and for a

further SS2 to six. Consider, Kerberos would require six

and ten respectively (when accessing several SS’s

Kerberos starts to appear more like a Hydra protocol).

Figure 5. Orthus message exchange flow

As indicated in note e. above, the TGS holds no

information as to the acceptability of the relevant client

by its desired SS (just the SS key, ensuring that it only

receives communication from authenticated clients) – can

security be maintained in this scenario?

Here, client A needs to request the desired SS key, in

what is now message 4, because the TGS cannot simply

provide in bulk the keys of all SS’s in its realm. Here, the

client requests the SS Key directly from the SS itself,

which is returned encrypted in message 5; which is now

processed by the SS for mutual authentication and session

key. The alternative of A knowing in advance the ID of

which SS he needs at the time of login is not practical.

The Orthus protocol message structures are:

1. A AS: A+RA+TGS+N1+Tf

The initial challenge ‘here I am, and I’d like to join’

generated by the client remains unchanged.

2. AS TGS: A+RA+KTGS(KA+RA+A+IPA+Tf)+

KA(RTGS+TGS+N1+Tf) [KTGS pre-shared]

The response in this case, however, is not back to the

client. The AS notifies the TGS directly of a successful

realm authentication request by the client, by sending a

Ticket Granting Permit and client session information.

Thus negating the need to transmit a client-TGS session-

key across the network, albeit protected by A’s

encryption key. A reduction in the number messages

transmitted should also enhance security.

3. TGSA:

A+RA+KA(KASS+RA+A+IPA+RTGS+TGS+N1+Tf+KSSU)

The TGS notifies the client of successful realm

authentication, and includes within the session info

returned to the client the Kssu Universal SS key, all

encrypted with the clients key. Possession of the Kssu

key is now critical. Although potentially this seems to

allow access to many SS’s in the same realm its security

is assured by encryption with KA. Albeit placing

increased reliance on the encryption algorithms

protecting it, and the enforcement of strong password

complexity polices.

As indicated above increased reliance on each SS’s

internal authorisation systems is now paramount, least a

rogue client gain access to e.g. a database system where

they have no business. This is not so different from the

situation in Kerberos where the TGS has no prior

knowledge whether the relevant SS will authorise the

client once they have gained access to it. With Orthus this

effect is multiplied, but the principle remains the same.

4. ASS: KSSU(KASS+RA+A+IPA+Tf1)+O

The client can now approach the SS, by using the Kssu,

in a way that the SS understands as confirmation of the

clients’ realm membership, and indicates a session key

for mutual exclusive use Kass. To prevent replay attacks

based on this message it includes a new Tf1 specification,

which is now protected within the encrypted portion.
Note that the Kssu is never stored on the client side

and as such presents no greater security risk than similar

International Journal of Signal Processing Systems Vol. 3, No. 2, December 2015

©2015 Engineering and Technology Publishing 156

situations within the Kerberos environment, for example

Kerberos message 2 from above. In fact in Kerberos the

KATGS is retained in temporary memory for re-use in

massage 4.

5. SS A: KASS(TS2+SK+SQN0)

Already possessing the Kssu, the SS can decrypt the
message and indicate acceptance of the request by using

the suggested session key to encrypt security data in a

message returned to the client. TS2 derives from Tf1 for

replay protection.

As with Kerberos timestamps and nonces are used

where appropriate throughout the protocol to circumvent

MitM and replay attacks.

The defining feature of Orthus is that the client

negotiates only once with the KDC before obtaining

access to its target SS. As with Kerberos, Orthus provides

no indication as to how the client obtains SS-ID

information, except that this is only possible by post-

authentication mechanisms.

VI. IMPLEMENTATION

Orthus specifies an alternative and coincidentally

incompatible infrastructure when compared with

Kerberos. Therefore, a complete rollout of all Orthus

components as indicated would be necessary to achieve a

functioning system. Indeed, Orthus is intended to be

instigated the same environments where Kerberos would

usually operate. However, in situations where Kerberos

compatibility is not a requirement a complete installation

could be effective immediately, such as with embedded

card-pass systems.

As with Kerberos it is assumed that initial

authentication material are transmitted to the client via

out of band means.

A possible implementation scenario would be in

networks consisting of a single service where concerns

regarding the universal nature of the service granting

ticket are mute.

VII. CONCLUSIONS

A party wishing to access network services needs to

authenticate itself to the authoritative body responsible

for the realm in which those services reside. Further, this

needs to be as seamless as possible for the client in

question, and secure for both parties. Each message

exchange increases the potential for error and interception.

Orthus reduces the number of entities with which the

client needs to negotiate, and thus the total number of

exchanges required to access the desired service, while

maintaining security. Thus it appears to solve to the

problem stated earlier.

Indeed, a side-effect of Orthus is that transmitting

messages between the AS and TGS services may in one

respect improve security, where they reside on the same

server by reducing network transmissions.

It can be observed in note c from section III, which the

TGS performs no validity check before retrieving the SS

key from its database and issuing to the client in question.

Thus a client could serially obtain the keys of all SS’s in

the realm simply upon repeated request. In effect this

constitutes little higher security than the Universal ticket

employed in Orthus.

With Orthus, security depends on whether it is possible

to determine the SS verification information encrypted by

the KSSU from the two messages where it is used. In

message 3 above, as long as KA remains secure it cannot

be determined, and in message 4 the author is unaware of

any successful method to reduce a strong encryption key

from the encrypted message. However it is recommended

that provision is made for the necessity of upgrading the

relevant algorithm by implementing the code modular in

modular form.

As mentioned in Orthus message exchange 3 above,

the security of the realm services relies more heavily than

it does under Kerberos on the individual authorisation

mechanism present on each Server Service.
In anticipation of ‘authentication as a service,’ it could

be that more elegant solutions exist.

APPENDIX A RELATED RESEARCH

Various alternative authentication protocols exist, and

are in continual development. One such is known as

Central Authentication Service [10], CAS, and was

developed at Yale University by Shawn Bayern in 2004,

the specification being published in 2005. This, however,

is browser based and relies on use of the https protocol to

secure message transfers. Another is RADIUS, which is

undergoing continual development by an IETF (Internet

engineering Task Force) working group [11].

APPENDIX B SUGGESTIONS FOR FURTHER RESEARCH

Firstly, time and resources permitting a practical

implementation such as laboratory test environments in

order to monitor and assess performance, resilience, and

reliability of the Orthus system proposed here is needed.

Secondly, as proposed Orthus requires not only client

processing power, but also temporary storage capability

for store-and-forward functionality. Where authentication

can be dynamically embedded in a Token, a User could

commence using a computer by simply waving a Token

past a sensor we would achieve truly user-friendly

authentication. Such a system might be acceptable in

lower ‘physical security’ environments, or as part of a

layered Identity Management [12] scheme may enhance

security by embedding complex passwords, the end-user

would no longer need to memorise, especially in

environments with multiple passwords.

Thirdly, as noted under the Conclusion Section Orthus

provides authentication at the realm level, while

subjugating meaningful access to services to relevant

authorisation services. Benefits may be obtained from the

development of more tightly integrated realm wide

authorisation and authentication systems further

enhancing Orthus security.
Finally, because the AS/TGS combination effectively

forms a boundary, this suggests further applications of the

Orthus protocol, and may lead to adaptations for uses

other than as indicated above. With the increased usage

International Journal of Signal Processing Systems Vol. 3, No. 2, December 2015

©2015 Engineering and Technology Publishing 157

International Journal of Signal Processing Systems Vol. 3, No. 2, December 2015

©2015 Engineering and Technology Publishing 158

of cloud computing and the virtualisation technologies,

new Authentication models should be investigated to

meet the coming challenges.

ACKNOWLEDGMENT

The inspiration for this concept arose from course-

work set during the MSc in computing at the Liverpool

John Moores University, UK. The author wishes to thank

the staff of the Computing Department for their patience

and guidance during his attendance.

REFERENCES

[1] B. C. Neuman, T. Yu, S. Hartman, and K. Raeburn. (Jul. 2005).

The kerberos network authentication service (V5). [Online].
Available: http://tools.ietf.org/html/rfc4120

[2] J. Steiner, C. Neuman, and J. Schiller, “Kerberos: An

authentication service for open network systems,” in Proc. Usenix
Conference, Dallas, Texas, Feb. 1988, pp. 191-202.

[3] C. Rigney, A. Rubens, W. Simpson, and S. Willens, RFC 2058 -
Remote Authentication Dial in User Service (RADIUS), The

Internet Society, 2000.

[4] G. Zorn. (Jan. 2000). Microsoft PPP V2. [Online]. Available:
http://tools.ietf.org/html/rfc2759

[5] R. M. Needham and M. D. Schroeder, “Authentication in large
networks of computers,” ACM, vol. 21 no 12, Dec. 1978.

[6] D. Rogers, “Proposals for a revision of kerberos when run in
conjunction with the IPSec protocol suite,” International Journal

of Electrical Energy, vol. 1, no. 4, pp. 228-233, Dec. 2013.

[7] R. S. Sandhu and P. Samarati, “Access control: Principles and
practice,” IEEE Communication Magazine, vol. 32, no. 9, pp. 40-

48, Sep. 1994.
[8] J. Garman, Kerberos: The Definitive Guide, O’Reilly Media, 2003.

[9] S. Hartman, K. Raeburn, and L. Zhu, RFC 6806 - Kerberos

Principal Name Canonicalization and Cross-Realm Referrals,
Encryption for RADIUS, Internet Engineering Task Force (IETF),

Nov. 2012.
[10] D. Mazurek, et al. (May 2005). CAS protocol. [Online]. Available:

http://www.jasig.org/cas/protocol

[11] S. Winter, M. McCauley, S. Venaas, and K. Wierenga, Transport
Layer Transport Layer Security (TLS) Encryption for RADIUS,

Internet Engineering Task Force (IETF), May 2012.
[12] I. M. Milenkovic, O. Latinovic, and D. Simic, “Using kerberos

protocol for single sign-on in identity management systems,”

Journal of Information Technology and Applications, vol. 3, no. 1,
pp. 27-33, Jun. 2013.

Dean Rogers MSc, was educated at Porth
Grammar Technical School, South Wales,

Kellogg College Oxford, and in 2013 attained

an MSc in Computing from Liverpool John
Moores University, UK.

He has worked as a DBA and as a network
administrator for some household names, and

is currently employed with IT consultancy

firm CGI.

http://tools.ietf.org/html/rfc2759
http://www.jasig.org/cas/protocol

