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Abstract—People with transradial hand amputations can 

have control capabilities of prosthetic hands via surface 

electromyography (sEMG) but the control systems are 

limited and usually not natural. In the scientific literature, 

the application of pattern recognition techniques to classify 

hand movements in sEMG led to remarkable results but the 

evaluations are usually far from real life applications with 

all uncertainties and noise. Therefore, there is a need to 

improve the movement classification accuracy in real 

settings. Smoothing the signal with a low pass filter is a 

common pre-processing procedure to remove high-

frequency noise. However, the filtering frequency modifies 

the signal strongly and can therefore affect the classification 

results. In this paper we analyze the dependence of the 

classification accuracy on the pre-processing low-pass 

filtering frequency in 3 hand amputated subjects 

performing 50 different movements. The results highlight 

two main interesting aspects. First, the filtering frequency 

strongly affects the classification accuracy, and choosing the 

right frequency between 1Hz-5Hz can improve the accuracy 

up to 5%. Second, different subjects obtain the best 

classification performance at different frequencies. 

Theoretically these facts could affect all the similar 

classification procedures reducing the classification 

uncertainity. Therefore, they contribute to set the field 

closer to real life applications, which could deeply change 

the life of hand amputated subjects. 

 

Index Terms—surface electromyography, signal filtering, 

machine learning, rehabilitation engineering 

 

I.   INTRODUCTION 

Hand prostheses controlled by surface 

electromyography (sEMG) have been used since the late 

1960s [1]. However, they still have several important 

limits. First, usually they offer only 2 or 3 degrees of 

freedom and the number of movements that the subjects 

can perform is therefore limited (usually opening and 

closing of the prosthesis). The number of movements can 

be increased using specific control sequences but in these 

cases the movements are far from being natural and easy 

to be reproduced. Second, the control systems are not 

“natural”, which means that the movement that the 
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amputee is doing with the intact hand is different from 

the movement performed by the prosthesis. Third, the 

prostheses require long and complicated training 

procedures. These facts contribute to the limited use of 

sEMG prostheses [2]. 

In the scientific literature, several control schemes 

based on classifiers have been proposed to solve these 

control problems [3]-[6]. However, these results are still 

far from the possibility of being applied in practice as 

any misclassification can have a negative effect. 

Therefore, there is a clear need to improve the movement 

classification accuracy. 

Smoothing the rectified signal with a low pass filter is 

a common pre-processing procedure to remove high- 

frequency noise components [7]. However, the filtering 

frequency strongly modifies the signal and can affect the 

classification results. 

In this paper we analyze the dependence of the 

classification accuracy on the pre-processing low–pass 

filtering frequency in 3 hand amputated subjects 

performing 50 different movements. Also, for each 

subject and for each frequency we find a selection of up 

to 15 independent movements that can be perfectly 

discriminated. The datasets come from the NinaPro 

(Non–Invasive Adaptive Hand Prosthetics) project [8], 

which has the aim to help the scientific progress in the 

field of sEMG movement recognition with a benchmark 

database to develop, test and compare machine learning 

algorithms. Currently, two databases with 27 and 40 

intact subjects using different electrodes and with slightly 

over 50 movements can be downloaded from the project 

website (http://ninaweb.hevs.ch/). The used sEMG setup 

is standard and the classification procedure is fast. The 

results highlight that choosing the right filtering 

frequency can improve the accuracy and that different 

subjects obtain the best classification performance at 

different frequencies. These facts should affect all similar 

classification procedures, reducing the classification 

uncertainity. Therefore they contribute to set the field 

closer to real life applications, which could deeply 

change the life of hand amputated subjects. 

II.   METHODS 
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A. Data Acquisition 

The datasets used in this paper were acquired from 

three subjects with a transradial amputation of the right 

forearm. The amputations are transradial medium and 

long below the elbow, with a remaining percentage of the 

forearm between 70% and 90%. The subjects are male, 

right handed and their clinical characteristics are 

described in Table I. 

TABLE I. CLINICAL DATA OF HAND AMPUTATED SUBJECTS 

Subject Age 
Missing 

Hand 

Years from 

Amputation 

Remaining 
Forearm 

Percentage 

Number 

Movements 

1 35 Left 6 70 50 

2 44 Right 14 90 50 

3 55 Right 5 90 50 

 
Figure 1. The 50 movements acquired within the NinaPro acquisition protocol. 

The sEMG data were acquired according to the final 

version of the NinaPro acquisition protocol [8]-[10]. The 

protocol includes 6 repetitions of 50 movements (Fig. 1), 

selected from the hand taxonomy and robotics literature, 

(e.g., [11]-[14]). During the acquisition, the amputated 

subjects were asked to think to repeat the movements 

shown on the screen of a laptop according to a bilateral 

imitation procedure [3]. Each movement repetition lasted 

5 seconds and was followed by 3 seconds of rest. 

The muscular activity was recorded at 2kHz using 12 

active double-differential wireless electrodes from a 

DelsysTrigno Wireless EMG system. The electrodes 

were positioned as shown in Fig. 2: eight electrodes were 

equally spaced around the forearm in correspondence to 

the radio humeral joint; two electrodes were placed on 

the main activity spots of the flexor digitorum and of the 

extensor digitorum as described in [8]; two electrodes 

were placed on the main activity spots of the biceps and 

of the triceps. The described locations have been chosen 

in order to combine a dense sampling approach [15]-[17] 

with a precise anatomical positioning strategy [18], [19]. 

Moreover, such a setup permits the use of spatial 

registration algorithms [20] to improve the classification 

results. The electrodes were fixed on the forearm using 

their standard adhesive bands. A hypoallergenic elastic 

latex–free band was placed around the electrodes to keep 

them fixed during the acquisition. 

 
Figure 2. Forearm of the transradial amputated subjects: (a) subject 1; 

(b) subject 2; (c) subject 3. 

B. Data Analysis 

1) Preprocessing: First, all the data were synchronized 

by linearly interpolating them to the highest recording 

frequency (i.e., 2kHz). Second, the sEMG was low-pass 

filtered using a zero-phase second order Butterworth 

filter at different frequencies in order to remove high–

frequency noise components and to analyze the effect of 

each frequency on the movement classification. The used 

frequencies are the following: 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 

4, 5, 10, 15, 25, 50, 100, 200Hz. The second order 

Butterworth filter was used in accordance to common 

preprocessing in hand movements sEMG literature [3], 

[8]. Then, the signal from each repetition of each 

movement was segmented with a Generalized Likelihood 
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Ratio approach [21], which realigns the movement labels 

to time windows that contain increased sEMG activity. 

Finally, the data of all the movement repetitions were 

normalized to the same time length and the signal was 

normalized to its maximum and divided by the standard 

deviation. 

2) Classification: The classification procedure is 

balanced and it is an evolution of the one described in 

[22]. For each filtering frequency, a Distance-based 

Decision Classifier (DDC) [23] based on the normalized 

Euclidean distance was applied to each repetition of all 

the movements with a leave one out approach (i.e. one 

sample for testing, five samples for training). The DDC 

was chosen because it is very fast (the classification of 

each movement repetition requires approximately 60ms 

using Matlab with a non optimized procedure on a 

2.7GHz Macbook pro) and it gives good results in this 

kind of tasks (it outperforms k-NN algorithms in most 

experiments and the results are usually comparable to or 

better than SVMs [23]). Finally, for each filtering 

frequency, the same classification procedure was applied 

recursively to subsets of movements in order to find for 

each subject a subset of independent movements that 

does not present any misclassification. In this way the 

complexity of the task is reduced but it is possible to 

show that for fewer movements a very high classification 

accuracy is possible without training the subject. 

 

Figure 3. Filtering frequency effect on the classification accuracy. 

 

Figure 4. Filtering frequency effect on the number of independent 

movements. 

III.   RESULTS 

The classification accuracy and the number of 

independent movements identified for the three 

amputated subjects for each considered frequency are 

shown respectively in Fig. 3 and in Fig. 4. It can be 

noticed how in all three subjects the classification 

accuracy increases up to its maximum between 0 and 

3Hz, and then it starts to slowly decrease. We obtained a 

similar (but less evident) result also for the set of 

independent movements. 

The best classification results for the subjects are 

summarized in Table II and in Fig. 5. The results were 

obtained with a 3Hz filtering frequency on subject 1, and 

with a 1Hz filtering frequency on subjects 2 and 3. Two 

subjects obtained the highest classification accuracy, 

61.78%. The Gaussian fit of the movements’ maximal 

classification results leads to a mean of 51.62%, which is 

more than 25 times the chance level for 50 movements 

(2%), and is well fitted by a Gaussian distribution(p<0.05) 

Fig. 5. The average number of independent movements is 

9.33, with a maximum of 12 movements for subject 1. 

Different subsets of movements could also be selected on 

the basis of other parameters, such as the functional 

usefulness of the movements. 

In order to get a deeper perspective of the independent 

movement selection, in Fig. 6 we present a statistical 

evaluation of the identified independent movements in 

the three subjects. It can be noticed that only 5 

movements are repeated in more than two different 

subjects, which means that the movements are usually 

different in different subjects. 

TABLE II. CLASSIFICATION RESULTS FOR HAND AMPUTATED 

SUBJECTS 

Subject 
Frequency 

(Hz) 
Classification 

Accuracy 
Independent 
Movements 

1 3 61.78% 12 

2 1 61.78% 10 

3 1 46.74% 6 

 

 

Figure 5. Distribution and Gaussian fit of all the movement 
classification results in hand amputated subjects. 
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Figure 6. Generalization of independent movements. 

IV.   CONCLUSION 

Currently, myoelectric prostheses permit hand 

amputated subjects to perform few simple movements.  

However, the control possibilities are still limited and 

not natural. In the scientific literature, the application of 

pattern recognition techniques to classify hand 

movements in sEMG led to remarkable results. However, 

the results are still not accurate enough to permit real life 

applications as small mistakes can have important 

consequences. Therefore, there is a need to improve the 

movement classification accuracy. Smoothing the signal 

with a low pass filter is a common pre-processing 

procedure in sEMG to remove high-frequency noise 

components. However, the filtering frequency modifies 

the signal strongly and can therefore affect the 

classification results. 

In this paper we analyze the dependence of the 

classification accuracy on the pre-processing low-pass 

filtering frequency in 3 hand amputated subjects 

performing 50 movements. The subjects have 

respectively 70%, 90% and 90% of the forearm 

remaining. The datasets are from the NinaPro database, 

which was developed in order to overcome the limits of 

dexterous prosthetics through the evaluation of machine 

learning algorithms from the worldwide scientific 

community on a common database. 

The results highlight four main interesting aspects. 

First, the filtering frequency strongly affects the 

classification accuracy (Fig. 3). In all subjects the 

classification accuracy increases up to its maximum 

between 0 and 3Hz, and then it starts to slowly decrease. 

Choosing the right frequency between 1Hz-5Hz can 

improve the accuracy by up to 5%. A similar (but less 

evident) result was obtained also for the set of 

independent movements. Second, although the trends of 

the classification performance are similar in all the 

subjects, different subjects obtain the best classification 

performances at different frequencies. The described 

results could theoretically affect most of the sEMG 

classification procedures that use low–pass filtering 

before classification. Therefore, the optimization for each 

subject of the pre-processing filtering frequency could 

lead to an overall improvement of the sEMG movement 

classification performance. Third, the ratio between the 

accuracy and the chance level (more than 25 times) is 

very high in comparison to other results described in the 

literature for similar tasks, e.g. 5.7 [3] (6 movements, 

accuracy 95%), 8.5 [24] (10 movements, accuracy 

84.4%), 10.56 [16] (12 movements, accuracy 87.8%). 

Fourth, the results on the selection of in- dependent 

movements for the transradial amputated subjects (Table 

II, Fig. 6) highlights the possibility for the amputated 

subjects to control a robotic prosthetic hand with up to 12 

different movements with 60ms of computational 

response time (i.e., in a time that would be realistic for 

use in everyday life). It has to be noticed that different 

subsets of movements could also be selected on the basis 

of other parameters, such as the functional usefulness of 

the movements. In conclusion, the results are an 

important step towards the natural control of dexterous 

prosthetic hands and they contribute to set the field closer 

to real life applications, which could deeply change the 

life of hand amputated subjects. 
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