
Availability Enhancement Model for Virtual

Machines over Hypervisor Attacks

A. Ravishankar
Juniper Networks, India Pvt. Ltd.

Email: arthir@juniper.net

C. Subramaniam
Department of Computer Science, SRM University, Chennai, India

Email: Chandrasekaran.s@ktr.srmuniv.ac.in

Abstract—The objective of the research work is to propose

an enhanced availability model for the virtual machines

over hypervisor attacks. In recent years, virtualization has

turned out to be a most promising area in the field of

Information Technology. However, there is always security

threats existing in all domains and virtualization is not new

to it. Among the various components that lie in virtual

environment, hypervisors have always been an ideal target

for attack as they provide a single entry point into the

virtual environment. Designing a model that could stand

these security threats has always been a challenge. The

proposed work focuses on the architecture of the virtual

environment, the limitations of the various physical

resources to be virtualized and addresses various security

related issues. It analyses various attack vectors in a

quantitative manner individually and integrates all the

recovery actions to enhance the overall availability of the

virtual machines.

Index Terms—hypervisor, hypervisor attack, security,

virtual machines, virtualization

I. INTRODUCTION

With the massive growth in the field of Information

Technology, virtualization is playing a major role in the

development of new IT infrastructures. Virtualization

enables multiple logical abstractions using a single

physical hardware running a hypervisor which supports

multiple host and guest operating systems [1]. By

allowing multiple virtual networks to cohabit on a shared

physical substrate virtualization provides flexibility,

promotes diversity, and promises increased

manageability in the Internet [2]. Virtualization has

gained lot of popularity in recent decades and has

successfully powered the cloud. It consists of number of

virtual machines (VMs) which is a self-contained

operating environment—software that works with, but is

independent of, a host operating system. In other words,

it's a platform-independent software implementation of a

CPU that runs compiled code. Intel’s “Vanderpool” chip-

level virtualization technology was one of the first of

these innovations. AMD’s “Pacifica” extension provides

Manuscript received July 7, 2014; revised September 15, 2014.

additional virtualization support. These virtual machines

are hosted over a crucial component called the hypervisor

that acts as heart of the entire virtual environment.

Unfortunately, like any other software or hardware entity,

these hypervisors are also prone to security attacks. Any

form of security breach ideally shaken all the hosted

virtual machines. Each and every interaction between the

virtual machine and the hypervisor has become a

potential attack vector. Compromised hypervisors not

only enable illegitimate access to information but also

provide impressive computing power [3]. By altering the

metadata it is possible to tie up resources on other

hypervisors, force the migration of virtual machines, and

confuse load balancing processes in the system manager.

NIST’s National Vulnerability Database [4] showcases

the difficulty of shipping a bug free hypervisor. These

software vulnerabilities are easily exploited by attackers

thereby breaching confidentiality, availability and

integrity of other virtual machine’s code [5]. Various

techniques are proposed in order to mitigate the security

threats that are lying in the hypervisors such as enabling

direct access to hardware from VM level, new processor

architecture, etc. however, these solutions suffer from

few drawbacks as they have either changed the control

flow process in such a way that the current cloud

environment doesn’t support them or provide additional

performance overhead. In addition to this, some of the

new architectures proposed insist on additional software

code that increases the attack surfaces. The proposed

model mitigates these shortcomings and provides a

comprehensive solution to enhance the availability of

virtual entities during hypervisor attacks.

The remaining sections are organized as follows.

Section II explores the possibilities of a hypervisor

attacks and vulnerabilities at the execution or exploitation

mode in a virtual environment. Section III introduces a

mathematical approach to the enhanced availability

model of the hypervisor in the case of such attacks with

suitable modular components the hypervisor site. Section

IV discusses about the communicating processes that

cover the health status of the hypervisor with its normal

states and discloses the formal representation of the

secured hypervisor. Section V brings out the possible

International Journal of Signal Processing Systems Vol. 3, No. 1, June 2015

©2015 Engineering and Technology Publishing 88
doi: 10.12720/ijsps.3.1.88-93

mailto:arthiravi96@gmail.com

simulations through CPN Tool and Section VI concludes

the work with specifications about the future work.

II. HYPERVISOR ATTACK

Hypervisor is a software or firmware that creates and

manages multiple virtual machines. It decouples the

operating system and applications from their physical

resources. A type 1 hypervisor has its own kernel and it

is installed directly on the hardware, or “bare metal”. It

hosts a software component called a Virtual Machine

Monitor (VMM) that is responsible for allocation of

system’s processes and other resources such as memory,

etc. for the guest operating systems. Realizing this

functionality requires frequent interactions between the

hypervisor and the virtual machines. An ideal hypervisor

attack usually happens during such interactions,

exploiting the bugs present in the hypervisor. A

malicious request tries to gain kernel level access in the

hypervisor during such interactions and comfortably

manages to attack other VMs that are hosted over the

same hypervisor. Thus, a compromised hypervisor not

only cause harm to a single VM but brings down the

entire virtual environment. In recent times variety of

attacks is encountered and according to recent statistics,

more than one-fourth of security threats that lie in virtual

environment are cornered towards the hypervisor. There

is wide range of hypervisor attacks registered starting

from “escape-to-hypervisor” attack to “hyperjacking”.

Security attacks such as “hyperjacking” has adverse

effect as it crafts a thin hypervisor which takes complete

control over the virtual and physical entities. In addition

to these, numerous Trojan programs are designed which

are capable of running without any sign of its very

existence in the existing system. Further, the hypervisor

weakness or vulnerability gets multiplied wherever more

number of access, delete or inject operations are

performed with a threat of marrying malicious metadata

into the maiden hypervisor.

Creating a virtual machine has become as simple as

copying a file and pasting it in a different location. Such

type of endless scaling also creates significant security

issues as they increase the number of interactions

between virtual machines and the hypervisor. Users

frequently use several or even dozens of special purpose

VMs for testing, demonstration e.g., “sandbox” VMs to

try out new applications, or for particular applications

which are not provided by their regular OS (e.g. a

Windows VM running Microsoft Office). Thus, the total

number of VMs in an organization grows at an explosive

rate, proportional to available storage [6]. This

exponential increase in the number of VMs creates room

for dormant VMs that are highly inactive. Many a times,

these dormant VMs are left out while implementing

security procedures such as updating access policies

thereby providing room for unchecked “back doors” in

the VMs [7]. These “back doors” are best exploited by

the attackers as they act as an ideal entry point into the

secure virtual environment.

Technically, a security attack can be described as an

event which is mostly uncertain, i.e. the time of attack

and the impact of attack are highly unpredictable. It is a

deducible deviation from the Control Flow Process (CFP)

to be executed by the hypervisor for all sorts of input,

states and transitions. Let attack Ai, shown in equation (1),

be an event which is parameterized by the factors as time

of attack ta, duration of attack da and impact of attack ia

Ai = <ta, da, ia> (1)

An attack Ai, ideally exploits the various vulnerabilities

that are present inside the hypervisor. The vulnerability

of a hypervisor can be described as a state of security

flaw whose probability of existence depend upon the

design of the hypervisor hd, interaction between VMs

residing on different/same hypervisors VMi and the code

visibility Cv to other domains, as per equation (2).

P(v) = <hd, VMi, Cv> (2)

Thus, the event of attack Ai exploiting the vulnerability

factors Vj is represented in the equation (3)

E(Ai, Vj) = ∑ Ai x [P(v)] (3)

III. ENHANCED AVAILABILITY MODEL FOR VIRTUAL

ENVIRONMENT

The availability in the context of virtual machines is

the portion of the time during which the hypervisor is

functioning as per the functional and performance

specifications. The percentage can be called as the ratio

of uptime to total time where the total time is the sum of

uptime and the mean time to repair. The repairing is to be

carried out once the hypervisor has been attacked either

from outside or due to internal design flaws. The

challenges are cross-platform systems management for

both the virtual and physical machines when the

hypervisor is attacked. Especially, when the data

migration or live VM migration take place, it is simpler

to enhance the performance of legacy applications but

ensuring security involves additional efforts.

The real issues and challenge to enhance the

availability of the virtual machines are determined by the

availability of fixed type of virtualization either server or

application or network when the hypervisor is attacked,

and the durability over which the deployed virtual

machine should have the expected behavior. The

availability of the virtual machine Avm at time t, is

determined by the availability of the hypervisor Ahypervisor

which is determined by the reliability Rhypervisor and

security factors Shypervisor that exist with respect to the

hypervisor.

Avm(t) α Ahypervisor(t)

Ahypervisor(t) α Rhypervisor(t) x Shypervisor(t)

To model and design a formal and efficient

virtualization technique with correct type, duration and

scalable virtual entities for both computing and

networking solutions, it is possible to incorporate a duty

based strategy on disposable and universal virtual

machine configurations and networking interfaces.

The enhanced availability model is proposed for Type

1 Hypervisors where the software or firmware runs

International Journal of Signal Processing Systems Vol. 3, No. 1, June 2015

©2015 Engineering and Technology Publishing 89

directly on the hardware. The proposed model focuses on

establishing various modules (shown in Fig. 1), namely,

Hypervisor Health Monitor (HHM), Ambiguous Request

Analyzer (ARA), Resource Switching Verifier (RSV),

Timing Call Checker (TCC) and Injected Interface

Manager (IIM) in order to enhance various quality factors

thereby bringing in availability when the hypervisor as a

whole is attacked. The Hypervisor Health Monitoring

(HHM) module verifies the incoming and outgoing data

of the hypervisor by taking health samples periodically.

The expected transitions and flows are defined by the

CFP (Control Flow Process). Any deducible deviation

from CFP defines the unstable or attacked state of the

hypervisor.

Figure 1. Highly available secured hypervisor

Any event of attack triggers the TCC (Timing Call

Checker) module. The timing call checker provides an

absolute remedy in the case of hypervisor attacks based

on the intrinsic delays that are observed during

hypervisor attacks. The TCC scrutinizes the average

response time of the hypervisor in all condition and

interact with other running VMs or active VMs once the

delay exceeds the normal value.

The Ambiguous request analyzer (ARA) plays as a

security guard for the hypervisor. It checks the integrity

of the request before submitting any task to the

hypervisor. It makes use of Embedded Intelligence to

check the data the request is trying to access and the code

it is trying modify in order to gain access into the guest

or host. This module reduces the load over the hypervisor

by enabling policy definition at an abstraction layer that

lies above the hypervisor. Various policies are defined

within the module to limit the functionality of the request

coming to the hypervisor from the overlying entities.

This reduces the need for the implementation of various

security mechanisms such as Mandatory Access Control

(MAC) within the hypervisor. The Resource Switching

Verifier (RSV) component proposed in the model

supports the hypervisor by verifying the switching time

of the virtualized resources for the next application. The

timing call checker (TCC) component disallows any

delayed call from any one of the domains or VMs. In the

case of suspected requests based on the reports from

ARA, RSV and TCC top-ups, the hypervisor is available

only to the legal and authenticated requests through

injected interface management module (IIM).

IV. PROCESS MODEL OF HYPERVISOR

The process model depicts the control transfer between

various modules stated in Fig. 1 under versatile

conditions. The various processes with accepted and

limited colored tokens (designed as per CPN) are

declared in the communicating sequential process model

of the hypervisor with limited concurrency. The

hypervisor states are defined as “Active”, “Risk”,

“Attack”, “Wait” and “Footprint”. The “Active” state

represents the fully functional state of the hypervisor

where all the VMs come up and operate as expected.

Under active state, multiple state transitions are possible

depending on the event that follows it. For example, the

hypervisor may be attacked by some external forces or

the hypervisor might get overloaded due to the creation

of numerous VMs that affects the performance of the

entire virtual environment and create room for attacks

due to lacking updates in dormant VMs thereby creating

“back doors”. When the hypervisor gets loaded with

multiple dormant VM, the hypervisor state transitions to

“Wait” state where in, the auxiliary code gets executed

that removes the dormant VMs that are highly inactive,

hosting insensitive data. However, auxiliary code doesn’t

remove dormant VMs that host sensitive data such as

critical configurations, encryption keys, etc. It will rather

ensure that such VMs are kept up-to-date with required

access policies and other security procedure. The

hypervisor remains in “Wait” state during this process

and moves back to “Active” state upon completion.

The ARA (Ambiguous Request Analyzer) module

introduced in section III acts as a guard process that

intimates the hypervisor about malicious trials for entry

into the core hardware. Under such suspicious conditions,

the hypervisor moves from “Active” state to “Risk” state.

Moving the hypervisor to “Risk” only indicates that some

ambiguous request is being analyzed by ARA and this

transition doesn’t affect the normal functioning of the

hypervisor. If these ambiguities are resolved in the ARA

module (shown in Fig. 1), the hypervisor moves back to

“Active” state.

The proposed model holds a Hypervisor Foot Print

(HFP) module (shown in Fig. 1) which is considered as

the heart of the system that stays isolated from the core.

The footprint module keeps track of various tasks that

happen at core level without intervention. It takes control

over the overlying VMs under critical scenarios that are

caused because of external attacks on the hypervisor.

Ideally, a hypervisor gets attacked adversely, when an

attacker manages to run some arbitrary code in the kernel

space of the hypervisor through illegitimate entry. On

detection of such malicious entry, the proposed model

transitions the control to the HFP module and moves the

hypervisor to “footprint” state indicating that the normal

functioning of the hypervisor is taken over by the HFP

module. This enhances the availability of various entities

in the virtual environment as they are made available

even when the hypervisor as a whole gets attacked. The

control transfer to HFP module is done to enable the

hypervisor to recover in this duration. However, the

virtual machines can be kept functional by the HFP

International Journal of Signal Processing Systems Vol. 3, No. 1, June 2015

©2015 Engineering and Technology Publishing 90

module only for a specific time duration within which the

core module of the hypervisor is expected to recover.

Recovery before the HTP timeout moves the hypervisor

to “Active” state and the control is taken care by the

hypervisor (core).

Figure 2. Communicating process model of hypervisor

The formal model of secured hypervisor has to be

checked for the different functional modules proposed

towards its security. Model checking is a method to

verify whether a model obtained satisfies the formal

specification. The availability of the virtual machines can

be enhanced if the hypervisor is healthy and attack free.

So the study is focused towards the hypervisor attacks

and its prevention to safe guard the number of VMs

running on it. The vulnerability of the hypervisor has to

be understood as a scenario where the event of attack will

be realized by running suitable modules each calling their

respective functions. The phase of the attack prevention

is to describe the procedure that are to be followed one

after the other with all its conditions checked as per the

status of the respective conditions of the hypervisor as

shown below:

Let S represent the set of states represented in the

communicating process model (shown in Fig. 2), C

represents set of possible configuration and S ́ represent

the set of state transition triggers.

set of states S = { ACTIVE, RISK, WAIT,

FOOTPRINT};

set of state_triggers S ́ = {ATTACKED, THREAT,

OVERLOADED};

set of configuration C = {VM_config,

process_config, interface_type};

procedure hypervisor_health_monitor (state S)

 trusted_domain_check();

 if ¬S: = ACTIVE then

 ambiguous_request_analyzer();

 else return 1;

 fi

endproc

procedure ambiguous_request_analyzer()

 if S :́ = THREAT then

 S :́ = ATTACKED;

 hypervisor_footprint (S)́;

else if S ́= OVERLOADED then

 until ((S: = WAIT) V remove

dormant VMs);

 S: = ACTIVE;

 fi

endproc

procedure hypervisor_footprint (state S)́

 transfer control_flags;

 transfer register_sets;

 while (¬S :́ = Recovered) do

 sleep (10);

 od

 if (S ́= Recovered) then

 post_attack_health_status();

 transfer control_to_master;

 S: = ACTIVE;

 fi

endproc

procedure boolean post_attack_health _status()

 check configurarion C;

 if S: = ACTIVE && RSV: = TRUE

 return 1;

endproc

V. SIMULATION USING CPN TOOLS

The communicating process model of the hypervisor is

explored by simulating it using Coloured Petri Net (CPN).

A CPN model of a system describes the states of the

system and the events (transitions) that can cause the

system to change state [8]. It enables step-by-step

execution thereby providing a perfect “walk through” for

the proposed model.

Figure 3. Hypervisor state - active

A CPN model consists of tokens that have data values

attached to them. The various hypervisor states are

represented as places (drawn as ellipses) and the

International Journal of Signal Processing Systems Vol. 3, No. 1, June 2015

©2015 Engineering and Technology Publishing 91

transitions are represented in rectangular boxes. Fig. 3

shows the initial state of the system where the hypervisor

is in “active”.

The possible transitions from “active” state are

depicted in the form of tokens. Each token carry an

integer and a string value that is taken as input by the

next place or transition (within the CPN model). The

string value sent in the token hold the current state of the

hypervisor.

Figure 4. Hypervisor state - vulnerable/attacked/overloaded

The token values sent between the processes states

hold the token number (int) and the state information

(string). These token values are shown in the places

(shown in ellipse). A hypervisor in “active” state might

either get attacked or might identify a threat of or might

get overloaded with too many VMs. These triggers

transition the hypervisor to appropriate states (shown in

Fig. 4) based on the token values (n, d) sent.

Fig. 5 depicts the recovered state of the hypervisor

after the security measures taken by appropriate modules

like RSV, TCC and IIM as and when the suspicious event

is detected.

Figure 5. Hypervisor state - recovered

VI. CONCLUSION

The proposed work has focused on hypervisor security,

introduced modules to prevent malicious entry into the

hypervisor. The model has also introduced ways to

handle the virtual environment once the hypervisor as a

whole gets attacked due to disastrous threat that bypassed

the firewall and other security enhancements enabled in

the system. The model provides a way to make the virtual

environment available by transferring control to the

footprint module when the bare metal hypervisor goes

down completely. The serious limitation of the current

work is the uncertain features of all attacks which may

affect the resource utilization of the memory of the

hypervisor. The focus of the future work will be towards

heterogeneous hypervisors integration so as to realize and

get ready for the remedial actions to minimize the loss.

The other significant area of further work is to focus on

the self-assembling virtual machines and having VMs for

IO devices and computing cores separately to isolate the

exploits of attacks.

ACKNOWLEDGMENT

The authors wish to thank Ravi Jagannathan, Senior

Staff Engineer at Juniper Networks, Sunnyvale for his

valuable comments which helped in successful

completion of the current research work. They also thank

Aquin Mathai and Stanzin Takpa from Juniper Networks

India Pvt. Ltd., who stood as a strong pillar rendering

their continuous support and encouragement that helped

in successful delivery of this work.

REFERENCES

[2] Q. Duan, “Modeling and Performance analysis on network

virtualization for composite network–cloudservice provisioning,”

in Proc. 2011 IEEE World Congress on Digital Object Identifier,

2011, pp. 548-555.

[3] S. Jin, J. Ahn, S. Cha, and J. Huh, “Architectural support for

secure virtualization under a vulnerable hypervisor,” in Proc. 44th

Annual IEEE/ACM International Symposium on

Microarchitecture, Port Alegre, Brazil, 2011, pp. 272-283.

[4] CVE and CCE statistics. National Vulnerability Database.

[Online]. Available: http://web.nvd.nist.gov/view/vuln/statistics

[5] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the

hypervisor attack surface for a more secure cloud,” in Proc.

Conference on Computer and Communications Security (CCS),

2011.

[6] T. Garfinkel and M. Rosenblum, “When virtual is harder than real:

Security challenges in virtual machine based computing

environments,” in Proc. 10th Conference on Hot Topics in

Operating Systems, 2005.

[7] Requirements and Security Assessment Procedures, PCI Data

Security Standards, ver. 2.0, Oct. 2010.

[8] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured petri nets

and CPN tools for modelling and validation of concurrent

systems,” ACM International Journal on Software Tools for

Technology Transfer (STTT), vol. 9, pp. 213-254, May 2007.

International Journal of Signal Processing Systems Vol. 3, No. 1, June 2015

©2015 Engineering and Technology Publishing 92

[1] L. Turnbull and J. Shropshire, “Breakpoints: An analysis of

potential hypervisor attack vectors,” in Proc. IEEE Southeastcon,

2013, pp. 1-6.

http://web.nvd.nist.gov/view/vuln/statistics

Ms. Arthi Ravishankar, was born in

Chennai, India in the year 1992. She

completed her B.Tech in Information

Technology in REC affiliated to Anna
University, India in the year 2013. She has

worked on numerous research works and has

proposed solutions for various real time issues.
She is currently part of Adecco India Pvt. Ltd.

and is deputed officially at Juniper Networks,

India Pvt. Ltd as System Test Engineer. One
of her previous work entitled “Application Safety Enhancement Model

using Self Checking with Software Enzymes” was hashed into

SOA\NASA Astrophysics database. Her current research domains are
cornered towards Virtualization and other areas related to networking.

Dr. Chandrasekaran Subramaniam, has his

specialization in Computer Science and

Engineering. He completed his B.E (ECE)

from C.I.T/UM, Coimbatore, India in the year
1980, followed by M.E (CSE) from N.I.T/B.U,

India in the year 1993 and Ph.D in ICE, from

C.E.G affiliated to Anna University, India in
the year 2004. He has 31 years of rich

experience in academic field and is currently

working as DEAN & PROFESSOR of CSE
department, SRM university, India. He is the

Senior Member of IACSIT (Member No. 80336573). He has published

his works in more than 90 International Conferences. He has also been
a part of various review committees during various International

Conferences. He also holds membership in IEEE, ACM, WSEAS,

WASET, SEI, IET, I.A. Engg., ASQ, ISTE, CSI. His research works
has touched almost all domains and has gained International

Recognition.

International Journal of Signal Processing Systems Vol. 3, No. 1, June 2015

©2015 Engineering and Technology Publishing 93

