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Abstract—In this paper, the performance of the single-

estimation (SE) and multiple-estimation (ME) is investigated 

in multiple-input multiple-output (MIMO) Rician flat 

fading channels using the traditional least squares (LS) 

estimator and the Bayesian minimum mean square error 

(MMSE) estimator. The closed form equations are obtained 

for mean square error (MSE) of the estimators in SE and 

ME cases under optimal training. In ME case, the optimal 

weight coefficients are achieved for both estimators. 

Analytical and numerical results show that the LS estimator 

has lower error in the case of ME than SE. Moreover, it is 

seen that the performance of MMSE channel estimator in 

the ME case is better than SE particularly at high signal to 

noise ratios (SNRs). Furthermore, it is shown that this 

estimator is more appropriate for the channels with weak 

line of sight (LOS) propagation paths and/or the low 

correlations. 

 

Index Terms—rician fading, multiple estimation, least 

squares, minimum mean square error, multiple-input 

multiple-output 

 

I. INTRODUCTION 

Multiple-input multiple-output (MIMO) system 

provides substantial benefits in both increasing system 

capacity and improving its immunity to deep fading in the 

channel [1], [2]. To take advantage of these benefits, the 

accurate channel state information (CSI) is required at the 

receiver and/or transmitter.  

Due to low complexity and better performance, 

training-based channel estimation (TBCE) is widely used 

in practice for quasi-static or slow fading channels, e.g., 

indoor MIMO channels [3]-[8]. However, in outdoor 

MIMO channels where channels are under fast fading, the 

channel tracking and estimating algorithms as the Kalman 

filter [9], [10] are used. 

In [3], the performance of the least squares (LS), 

scaled LS (SLS), minimum mean square error (MMSE), 

and relaxed MMSE (RMMSE) estimators is studied in 

the Rayleigh fading MIMO channel using TBCE scheme. 

The MMSE channel estimator has the best performance 

among the estimators, because it employs more a-priori 

knowledge about the channel.  

In [4]-[6], it is assumed that the MIMO channel has 

Rician distribution. For MIMO Rician flat fading 

channels, the new shifted scaled least squares (SSLS) 
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channel estimator is presented in [6]. It is seen that this 

estimator has the best performance among the LS-based 

estimators in Rician channel model. Nevertheless, the 

MMSE channel estimator has lower error than that of 

SSLS in Rician fading channel model especially at high 

signal to noise ratios (SNRs) and high spatial correlations 

[5].  

In [7], the performances of the time-multiplexed (TM) 

and superimposed (SI) schemes have been compared in 

MIMO channel estimation. It is shown that in fast fading 

channels and/or for many receiver antennas, the SI 

scheme is better than TM but in other cases this scheme 

suffers from a higher estimation error. In part II of this 

paper [8], to improve the performance of the SI scheme a 

decision directed approach is applied.  

In order to perform the individual channel estimation 

at the destination, in [11], the SI training strategy is 

applied into the MIMO amplify-and-forward (AF) one-

way relay network (OWRN). The discussion is restricted 

to the case of a slow, frequency-flat block fading model. 

A specific suboptimal channel estimation algorithm is 

applied in [11] using the optimal training sequences and 

to verify the Bayesian Cramér-Rao lower bound (CRLB) 

results the normalized mean square error (MSE) 

performance for the estimation is provided.  

In this paper, TBCE method is studied in the flat 

Rician fading MIMO channels. First, the single-

estimation (SE) is considered and the minimum MSE is 

obtained for LS and MMSE estimators under optimal 

training. Then, multiple-estimation (ME) is investigated 

in these estimators. In ME case, the multiple estimates of 

the channel during received N sub-blocks are combined 

optimally. The optimal weight coefficients are achieved 

for both estimators. Furthermore, the minimum MSE 

under optimal training is obtained for aforementioned 

estimators.  

Simulation results show that both estimators have 

better performance in the ME case than SE case 

especially at high SNRs. In addition, it is seen that the 

multiple estimates of the MMSE channel estimator obtain 

better performance in the channels with low correlations 

and/or weak line of sight (LOS) propagation paths. 
Notation: (٠)

 H
 is reserved for Hermitian, (٠)

*
 for the 

complex conjugate, (٠) 
–1

 for the matrix inverse, tr{٠} for 

the trace of a matrix. E{٠} is the mathematical 

expectation, I m denotes the m×m identity matrix, ||٠||F 

denotes the Frobenius norm.  
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II. SYSTEM MODEL 

It is considered a MIMO system with t transmitter and 

r receiver antennas. For MIMO channel, a flat block 

fading model is assumed. It means that the channel 

response is fixed within one block and can change from 

one block to another one randomly. Each transmitted 

block has N sub-blocks which contain training and data 

symbols. Training and data symbols are located in the 

first and end part of the sub-blocks, respectively. In 

practice, the channel is estimated using training symbols 

in the training phase. Then, the results are used for data 

detection. To estimate the MIMO channel in each sub-

block, it is required that np≥t training signals are 

transmitted by each transmitter antenna. The r×np 

complex received signal matrix can be expressed as 

  Y HX V (1) 

where X and V are the complex t-vector of transmitted 

sequences on the t transmit antennas and r-vector of 

additive receiver noise, respectively. The elements of 

noise matrix  are independently and identically 

distributed (i.i.d.) complex Gaussian random variables 

with zero-mean and unit variance. Then, the correlation 

matrix of V is given by  

 { }
p

H
nE r VR V V I  (2) 

In MIMO Rician fading channels with K as Rice factor, 

the r×t matrix of channel, H, is defined in the following 

form [12], [13]: 

 Ray LOS1/ (K 1) K/ (K 1)   H H H  (3) 

The matrix HRay explains the Rayleigh component of 

the channel and the matrix HLOS describes the channel 

mean value or LOS component of the channel.  

Using (3), it is straightforward to show that 

 LOSE{ } K/ (K 1)  M H H  (4) 

Also, the correlation matrix of the channel H can be 

calculated as follows:  

Ray

LOS

LOS

Ray Ray LOS

LOS

E{ }

1
E{ }

1 1

1

1 1

H

H H

H




 

 


 

 

H

H

R H H

H H H H

R H H

      (5) 

Then, the co-variance matrix of the channel  will be 

as: 

Ray

E{ } E{ }

1
=

1

H

H

 

 


H H

H H

C R H H

 R M M R
             (6) 

III. SINGLE CHANNEL ESTIMATION 

In this section, it is supposed that the number of sub-

blocks used for channel estimation is N=1. First, the LS 

channel estimator is studied. Then, the performance of 

the Bayesian MMSE channel estimators is examined.  

A. LS Channel Estimator 

For linear model of (1), the LS channel estimator 

which minimizes tr{(Y–HX) 

H
 (Y–HX)} is 

 
1ˆ ( )H Y X XX

H H
LS

  (7) 

Under optimal training, it is shown that the error of the 

estimator is minimized as follows [3] 

 
p

tr
J LS

2

min)(   (8) 

where p is a given constant value considered as the total 

power of training matrix X.  

This estimator achieves the classical CRLB, hence, it 

is efficient. However, the LS estimator utilizes only 

received signals and transmitted symbols that are given at 

the receiver. It has no knowledge about the channel. 

B. Bayesian MMSE Channel Estimator 

For linear model of (1), the Bayesian MMSE channel 

estimator of H is given by [5] 

 ˆ ( )MMSE   H M Y MX A  (9) 

C. Where  

 
1( )

p

H H
nr  H HA X C X I X C  (10) 

The performance of the MMSE channel estimator is 

measured by the error matrix ε = H –  MMSE, whose 

probability density function (pdf) is Gaussian with zero 

mean and the following covariance matrix: 

 
1 11

E{ } ( )H H

r

    ε ε HC R ε ε C XX  (11) 

Then, the MMSE estimation error is given by 

 

2

1 1

ˆE

E{ ( )}

1
{( ) }

MMSE MMSE
F

H

H

J

tr

tr
r

 

 
  

 



 H

H H

ε ε

C XX

(12) 

To minimize (12) subject to the transmitted power 

constraint tr{XX 

H
 }=p, the Lagrange multiplier method is 

used. The problem can be written as follows: 

 

1 11
( , ) {( ) }

[ { } ]

H H

H

L tr
r

tr p





  

 

HXX C XX

X X

 (13) 

where η is the Lagrange multiplier. By differentiating (13) 

with respect to X and setting the result equal to zero, it is 

obtained that the optimal training matrix should satisfy 
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V

H

H



 
1

1{ }H
t

p r tr
r

t




 H
H

C
X X I C  (14) 

 

 
2

min 1
( )

{ }
MMSE

r t
J

p r tr 


 HC
 (15) 

IV. MULTIPLE CHANNEL ESTIMATION 

In order to improve the performance of the estimators, 

the multiple estimates of the channel during received N 

sub-blocks are combined. In this section, it is assumed 

that the channel response is fixed within N sub-blocks. In 

other words, the coherent time of the channel is enough to 

use N sub-blocks for channel estimation. Suppose that N 

estimates 1
ˆ ˆ, ...,

N
H H  of the MIMO channel are obtained 

based on the training matrices 1 ,..., NX X , respectively. 

The results are combined in the following linear method:  

 ME
1

ˆ ˆ
N

n n
n

a


 H H  (16) 

where the optimal weight coefficients 1 ,..., Na a  are 

obtained so that the MSE (17) is minimized subject to 

1

1
N

n
n

a


 . 

 
2

1

ˆEME

N

n n
n F

J a


  
   

  

H H  (17) 

Then, the optimization problem is 

1

2

,..., 1 1

ˆmin E . 1
N

N N

n n n
a a n nF

a S T a
 

  
   

  

H H   (18) 

In this section, the problem (18) will be solved 

considering the LS and the Bayesian MMSE channel 

estimators.  

A. Multiple LS Estimation 

Using (1), the LS estimator (7) can be rewritten as 

 1ˆ ( )H H
LS

 H H V X XX  (19) 

Using (19), the error of the multiple LS estimation will 

be written as 

2

1

2
1

1

ˆE

E ( ( ) )

Multiple LS

N

n n
n F

N
H H

n n n n n
n F

J a

a







  
   

  

  
   

  

H H

H H V X X X

(20) 

Using the constraint 
1

1
N

n
n

a


  and with some 

calculations, the result is 

2
1

1

1 1

*

1 1

2

1

E ( )

E{ {( ) ( )}}

{ E{ } }

{ }

Multiple LS

N
H H

n n n n n
n F

N N
H H H

n n n n m m m m
n m

N N
H H

n m n n n m m m
n m

N

n n
n

J a

tr a a

tr a a

r tr a





 

 



  
  

  

  

  

 

V X X X

V X Ε V X Ε

Ε X V V X Ε

Ε

.(21) 

where 
1( )H

n n n
Ε X X , and the latter one is obtained 

using the following equation: 

 
;

E{ }
;

pnH
n m

r n m

n m


 



I
V V

0
 (22) 

For multiple LS estimation, the problem (18) can be 

written as 

1

2

,..., 1 1

min . 1
N

N N

n n n
a a n n

tr a S T a
 

 
  

 
Ε       (23) 

The LS estimator is unbiased. The constraint in (23) 

guarantees that the multiple LS estimation is also 

unbiased. To solve (23), the Lagrange multiplier method 

is used. The problem can be written as  

1

2

1 1

( ,..., , ) 1
N

N N

n n n
n n

L a a tr a a
 

   
       

   
Ε    (24) 

To find 1 ,..., Na a , the partial derivatives of (24) with 

respect to ( 1,2,..., )ia i N are computed. Then, the 

results are set equal to zero. Finally, the optimal weight 

coefficients in the multiple LS estimation are obtained 

from:  

 

1

1
; 1,...,

{ } 1/ { }
n N

n l
l

a n N

tr tr


 

Ε Ε

 (25) 

It is straightforward to show that under optimal 

training for LS estimator 

 
2

1{ } {( ) }H
n n n

n

t
tr tr

P

 Ε X X  (26) 

where np  is the total power of training matrix Xn which 

is used during the training phase in the sub-block n. 

Suppose that n np k p  is the transmitted power during 

the n-th training period and 
1

N

tot n
n

p p N p


    is the 

total transmitted power during the N training periods. 

Then 
1

N

n
n

k N


  and using (26), the optimal weight 

coefficients (25) can be rewritten as 
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Substituting (14) back into (12), the MSE will be 

minimized as 



 
2 2

1 1

1

( / ) ( / )
n

n n

N N

n l l
l l

k p k
a

N
t k p p t p

 

  

 

 (27) 

Using (26) and (27), under optimal training, the error 

(21) is minimized as follows  

 
(min)

2 2

2
1

N

Multiple LS n
n

r t r t
J k

N pp N 

   (28) 

Comparing (28) and (8), it is seen that in the multiple 

LS estimation, the error reduces by the number of sub-

blocks N which is used for channel estimation. It is 

notable that the error (28) is independent of np , the 

transmitted power during the n-th training period. It 

means that for uniform training powers and non-uniform 

training powers during N training periods, the error is the 

same.  

B. Multiple Bayesian MMSE Estimation 

Using (1), the MMSE channel estimator (9) can be 

rewritten as 

 ˆ ( )MMSE    H M H M XA VA  (29) 

Using (17) and (29), the MSE of multiple Bayesian 

MMSE channel estimator is expressed as 

2

1

2

1

2

1 1

*

1 1

*

1 1

ˆE

E ( ( ) )

E ( )( )

{( ) ( )

E{ } }

Multiple MMSE

N

n n
n F

N

n n n n n
n F

N N

t n n n n n n
n n F

N N
H H

t n n n t m m m
n m

N N
H H

n m n n m m
n m

J a

a

a a

tr a a

a a





 

 

 

  
   

  

  
     

  

  
     

  

   

  

H

H H

H M H M X A V A

H M I X A V A

I A X C I X A

A V V A

.(30) 

Using (23), (10), and with some calculations, the MSE 

(30) can be expressed as 

1

2 *

1

*

1 1

{ } { }

(| ) { }

{ }

Multiple MMSE

N

n n n
n

N
H H

n n n n
n

N N
H H

n m n n m m
m n

n m

J tr a tr

a a tr

a a tr





 



  

 

  

H H

H

H

C C X A

| A X C

A X C X A

 (31) 

The optimization problem is 

 
1 ,..., 1

min . 1
N

Multiple MMSE

N

n
a a n

J S T a


  (32) 

The MMSE estimator is biased. The constraint in (32) 

results in that the multiple MMSE estimation is also 

biased. The Lagrange multiplier method is used as  

1

1

( ,..., , ) 1
N Multiple MMSE

N

n
n

L a a J a


 
    

 
     (33) 

The partial derivatives of (33) are obtained with 

respect to ( 1,2,..., )ia i N , then, the result is set equal 

to zero as  

*

*

1

{ } { }

{ } 0

H H
i i i i i

i

N
H H

n n n i i
n
n i

L
tr a tr

a

a tr 




  



  

H H

H

C X A A X C

A X C X A

      (34) 

Using the equation 
1 1

(( { }) / )H
i i tp r tr t r

 
  H HX X C I C  as the optimal 

training condition in MMSE channel estimator and with 

some calculations, (34) reduces to  

1 *
2

1 1
1

{ }
1 0

{ } { }
n i

N
n

ni i

r tr a
r t

p r tr p r tr






 


 
   

   

H

H H

C

C C
  (35) 

Using 1 ... /N totp p p N p    , as the uniform power 

allocation, and 
1

1
N

n
n

a


 , (35) reduces to 

 
2

*

1 2
( 1) 0

( { })
i

r t p
a

p r tr



  

 HC
 (36) 

Using (36) and 
1

1
N

n
n

a


 , the Lagrange multiplier can 

be obtained as  

 
2

1 2

1

( { })

N r t p

N p r tr




 
 

  HC
 (37) 

Substituting (37) back into (36), it is shown that in the 

uniform power allocation 
na  is 

 
1

; 1,...,na n N
N

   (38) 

Using (38) and under optimal training, the MSE (31) is 

minimized in the uniform power allocation as 

(min)

2

1

1

1

{ }

{ }1 1

{ }

Multiple MMSE

r t
J

p r tr

r trN

N N p r tr










 
  
  

H

H

H

C

C

C

    (39) 

When N=1, (39) reduces to the special case of (15) for 

single channel estimation with the MMSE estimator. 

According to (39), it is seen that the error decreases when 

the number of sub-blocks N increases. 

V. NUMERICAL RESULTS 

In this section, the performance of the LS and MMSE 

estimators is numerically examined in the case of SE and 
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ME. As a performance measure, it is considered that the 

channel MSE is normalized by the average channel 

energy as 

 
2

2

ˆ{|| || }

{|| || }

F

F

E
NMSE

E




H H

H
 (40) 

Same as [6], the elements of the covariance matrix of 

the channel are defined as follows  

,[ ] , 0 1 , , 1,...,
1 K

k l
k l

r
k l t 


   


HC   (41) 

Fig. 1 shows Normalized MSE (NMSE) of the LS 

channel estimator with optimal training versus SNR in 

the case of SE and ME. According to this figure, 

increasing the number of the sub-blocks N results in a 

lower error of the estimation. In other words, the 

performance of the LS estimator in ME case is better than 

SE case. Clearly, the performance of the LS estimator is 

independent of the channel Rice factor K and the 

correlation coefficients ρ [6]. 
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Figure 1.  Normalized MSE of the LS estimator in the case of SE (N=1) 
and ME (N=3, 5, 10, 20) for r=t=2. 

Fig. 2, Fig. 3, Fig. 4, and Fig. 5 indicate the NMSE of 

the MMSE channel estimator in the case of SE and ME. 

As depicted in these figures, the MMSE estimator has 

better performance in ME case than SE especially at high 

SNRs. However, at low SNRs, the NMSEs of the 

estimator for various numbers of sub-blocks N are 

analogous particularly for high values of K and/or ρ.  
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Figure 2.  Normalized MSE of the MMSE estimator in the case of SE 
(N=1) and ME (N=3, 5, 10, 20) for K=0 (r=t=2, ρ=0.2). 
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Figure 3.  Normalized MSE of the MMSE estimator in the case of SE 
(N=1) and ME (N=3, 5, 10, 20) for K=0 (r=t=2, ρ=0.8). 
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Figure 4.  Normalized MSE of the MMSE estimator in the case of SE 
(N=1) and ME (N=3, 5, 10, 20) for K=5 (r=t=2, ρ=0.2). 
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Figure 5.  Normalized MSE of the MMSE estimator in the case of SE 
(N=1) and ME (N=3, 5, 10, 20) for K=5 (r=t=2, ρ=0.8). 

Comparing these figures, it is seen that improving the 

performance of MMSE channel estimator with increasing 

the number of sub-blocks N depends on the channel 

fading and the correlations. In the case of low 

correlations (ρ=0.2) and Rayleigh fading (K=0), ME with 

MMSE channel estimator results in a better performance 

than the case of high correlations (ρ=0.8) and Rician 

fading (K=5). In other words, the superiority of the 

multiple estimates of MMSE channel estimator appears in 

the channels with low correlations and Rayleigh fading. 

VI. CONCLUSIONS 
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The performance of LS and MMSE estimators in the 

case of SE and ME has been probed in the Rician flat 

fading MIMO channels. In the both SE and ME cases, the 

channel estimation errors have been obtained under 

optimal training. In the case of ME, the optimal weight 

coefficients and MSE are achieved for aforementioned 

estimators. 

Analytical and numerical results show that the MSE of 

both estimators decreases when the number of sub-blocks 

N is increased. It is shown that ME with MMSE estimator 

is proper for both Rayleigh and Rician fading channels 

and/or for both low correlations and high correlations. 

However, it is more suitable for the channel with low 

correlations and/ or Rayleigh fading.  
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