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Abstract—Acoustic signals on transmission in underwater 

channels are often prone to corruption by ambient noises, 

wind interference and other random sources of disturbance. 

Adaptive filters can be used to extenuate the effects of 

ambient noise in acoustic signals. An effective technique for 

denoising the degraded modulated acoustic signals using 

adaptive filters has been proposed. Adaptive techniques, 

such as Least Mean Square (LMS), Normalized Least Mean 

Square (NLMS), and Kalman Least Mean Square (KLMS) 

have been analyzed based on their performance, with the 

help of characteristics like Signal to Noise Ratio (SNR) and 

Mean Square Error (MSE) for various wind speeds ranging 

from 2m/s to 6m/s. From the simulation, it is observed that 

the KLMS filter converges to the desired useful signal faster 

than the other adaptive filter techniques. This result is 

further supported by the fast converging Mean Square Error 

(MSE) signal of KLMS compared to the other adaptive filter 

techniques discussed.  
 

Index Terms—adaptive filters, mean square error, signal to 

noise ratio, underwater acoustic signal 

 

I. INTRODUCTION 

Underwater signal transmission is generally facilitated 

through acoustic signals. Electromagnetic waves, used in 

terrestrial communication are highly attenuated under 

water. Hence they cannot be used for underwater 

communication. As acoustic signals are low frequency, 

low power signals they are more prone to corruption due 

to various sources of disturbance. Therefore, the need for 

denoising becomes imminent. 

Among the various sources of disturbance, the effect of 

ambient noise on acoustic signal is highly significant. 

Ambient noises are used to refer to the background noises 

in any underwater environment. These ambient noises 

mask the information transmitted in an underwater 

channel. Therefore the detection and cancellation of the 

ambient noises is essential to enhance the Signal to Noise 

Ratio (SNR) of the acoustic signal. 
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Literature surveys on ambient noise characteristics 

show that noise from different sources occupy different 

frequency bands [1]. The variation in their Power Spectral 

Density has also been studied. Various contributions in 

this field concentrate on denoising of acoustic signals 

using wavelets.  

In this paper, the various adaptive filters based 

denoising techniques for wind driven ambient noise and 

their corresponding effect on SNR are discussed. The 

main focus is on LMS, NLMS and KLMS algorithms [2] 

and their performance has been analysed using 

characteristics like MSE. 

II. ADAPTIVE FILTERING 

Adaptive filters are basically digital filters which can 

alter their co-efficients based on different adaptive 

algorithms. These algorithms are generally used when no 

prior information about the signal is available and if the 

signal is time variant. These algorithms use a feedback in 

the form of weight update equations which alters the 

transfer function to match the changing parameters. A 

typical adaptive FIR traversal filter is shown in Fig. 1. 

A. Structure of Adaptive Filter 

Adaptive filtering algorithms generally consists of two 

processes namely, 

1. Filtering 

2. Adaptation 

Filtering is used to generate an output signal from a 

given output and generation of an error signal by 

comparing the output with a desired response while 

Adaptation is used to adjust the filter co-efficient in order 

to minimise the desired cost function. These two processes 

constitute the weight update part of the algorithm and are 

implemented by the feedback loop. The order of the filter 

determines the number of samples processed per iteration. 

The input signal to the adaptive filter is x(n) which is 

the additive sum of the desired signal d(n) and the 

interfering ambient noise v(n) as given in (1) 

x(n) = d(n) + v(n)                             (1) 
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The linear traversal filter is a Finite Impulse Response 

(FIR) filter of order p whose co-efficient are given by (2) 

w(n) = [w(0) w(1), w(2) … w(P)]
T
               (2) 

The error signal e(n) or cost function is given by the 

difference between the desired signal d(n) and the 

estimated signal ˆ( )d n  
which can be expressed as 

e(n) = d(n) - ˆ( )d n                             (3) 

The linear traversal filter estimates the desired signal by 

convolving the input signal with the impulse response is 

given by 

ˆ( )d n =w(n)x(n)                               (4) 

The linear traversal filter updates the filter coefficients 

during every time instant which can be mathematically 

expressed as follows. 

W(n+1) = w(n) + w(n)                        (5) 

w(n) is a correction factor for the filter co-efficient. 

The adaptive algorithm generates this correction factor 

based on the input and error signals. The efficiency of the 

filter depends upon the accurate design of the weight 

update equation.  

III. ADAPTIVE ALGORITHMS 

A. LMS Algorithm 

LMS algorithm [3] is one among the stochastic gradient 

algorithms. Equation (6) gives the weight update relation 

for updating the filter tap-weights so that the error e(n) can 

be minimized. 

w(n+1) = w(n) + µx(n)e(n)                    (6) 

where μ is the step-size. It must be chosen between 

0<µ<2/Tr(R) for the proper convergence of the algorithm. 

Tr(R) denotes the trace of R, where R is the 

autocorrelation matrix of x(n). Pure LMS algorithms are 

sensitive to scaling of its input x(n), it was difficult to 

calculate the step size μ to maintain the stability of the 

LMS algorithm from the analysis. Hence an improvement 

is necessary to minimize the error e(n) from the existing 

LMS algorithm which can be carried out by normalizing 

the power of the input using NLMS algorithm. 

B. NLMS Algorithm 

In NLMS algorithm [4], [5], the tap-weight vector at 

iteration n+1 is “normalized” with respect to the squared 

Euclidean norm of the tap-input vector x(n) at iteration n. 

The recursive relation for updating the tap-weight vector 

is given by (7) 

w(n+1) = w(n)+
2

( ) ( )

+ ( )

μx n e n

ε x n

                      (7) 

C. KLMS Algorithm 

KLMS [6] is a new normalized Kalman based LMS 

algorithm which has advantages over the LMS and NLMS 

algorithms [7]-[9]. The step size control in KLMS shows 

good convergence properties over a large range of signal 

input powers. The weight update equation for KLMS 

algorithm is given as, 

w(n+1) = w(n) + 
2

( ) ( )

( )
( )+

( )
v

w

x n e n

q n
P n

σ n
                   (8)

 

where qv(n) is, the auto correlation of the interfering is is 

ambient noise, 2 ( )wσ n  is the state noise variance and p(n) 

is the product of the hermitian of reference signal and the 

reference signal. 

IV. RESULTS AND DISCUSSION 

A. Data Collection 

The data is collected at the depths of 5 and 20m using a 

self made fixture containing two hydrophones at Bay of 

Bengal, Chennai. The sampling frequency used for 

collecting the data is 50kHz. The spectral characteristics 

of the collected data and a model for wind noise are 

analyzed in [1] and it has been observed that the wind 

noise dominates up to a frequency of 6kHz. 

B. Performance Analysis 

The performance analysis of the adaptive algorithms is 

done using the noise data whose wind speed is 4.23m/s. A 

sinusoidal signal, FSK modulated signal, ASK modulated 

signal and burst signal are considered as different cases of 

reference signals during simulation. The amplitude of the 

reference signals are chosen such that they remain buried 

within the interfering ambient noise. The noisy signal is 

obtained by combining the reference signal with the noise 

data. The input given to the adaptive filter is the noisy 

signal.  

It is observed that for the LMS algorithm, the output 

convergence takes more time and hence the MSE takes 

more time to converge. With NLMS algorithm, the MSE 

is reduced and converges faster than LMS algorithm. For 

KLMS algorithm, the output convergence is rapid and the 

mean square error is also very minimal. Hence it can be 

verified that KLMS algorithm exhibits better performance 

compared to LMS and NLMS algorithms in 

reconstructing the corresponding reference signals from 

the noisy signal.  

It is also inferred that the KLMS algorithm achieves 

better improvement in output SNR compared to LMS and 

NLMS algorithms for varying input SNR. In particular for 

the low SNR regions, the performance of the KLMS 

algorithm is the best when compared to other adaptive 

algorithms. It is also clearly evident that KLMS algorithm 

has a better performance with an improvement of 50-60dB 

on an average. As ambient noises dominate the 

underwater acoustic signal, the SNR at the input of the 

adaptive filter at the receiving side will be very low. Thus 

KLMS algorithm based adaptive filters at the receiver end 

are best suited for reconstructing the buried low frequency 

acoustic signals against various ambient noises. 

Simulation results show that for KLMS algorithm, the 

time taken by MSE to converge to approximately zero is 

very small, i.e., after 150 iterations. Comparatively, the 

MSE convergence is very slow for NLMS and LMS 
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algorithms, and it takes more than 5000 and 32000 

iterations, respectively. The total number of iterations 

carried out is 32000 and it is clear that LMS requires even 

more number of iterations to converge to zero. It is 

observed that MSE has not been achieved zero by LMS 

algorithm even after maximum number of iteration 

considered.  

TABLE I.  PERFORMANCE COMPARISON OF THE KLMS, NLMS AND LMS 

ADAPTIVE ALGORITHMS 

S. No Parameter KLMS NLMS LMS 

1 
SNR Improvement 

(dB) 
41.41 31.18 22.81 

2 
Convergence 

(No. of Iterations) 
100-125 4500-5000 

More than 
32000 

3 
Convergence time 

(sec) 
7.5×10-3 3×10-2 

More than 6 
×10-1 

4 MSE achieved Negligible Very low High 

 

Table I shows the comparison between LMS, NLMS 

and KLMS in terms of SNR, convergence factors and 

MSE. Hence it is inferred that KLMS algorithm 

outperforms other algorithms as it can achieve an average 

improvement in SNR of 41.44 dB whereas it is a mere 

31.18 and 22.81 dB improvement for NLMS and LMS 

respectively. 

C. Comparison of KLMS, NLMS and LMS Algorithms 

Fig. 1 gives a pictorial representation of the basic 

structure of an adaptive FIR transversal filter.  

 

Figure 1.  Basic structure of adaptive FIR traversal filter 

Table I summarizes the performance of the three 

algorithms, in terms of SNR improvement, convergence in 

retrieving the required signal with the number of iterations, 

the time taken, and the MSE achieved for a wind speed of 

2m/s ambient noise data.  

Fig. 2 and Fig. 3 provide the comparison between LMS, 

NLMS and KLMS algorithms for a sinusoidal reference 

signal using time domain and spectrogram representation. 

Similarly, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 describe the 

time domain and spectrogram representation for FSK 

modulated reference signal and ASK modulated reference 

signal, respectively. Fig. 8 and Fig. 9 provide the time 

domain and spectrogram representation for ASK 

modulated input signal and burst input signal.  

For the various reference signals discussed, the time 

domain representation illustrates the MSE comparison of 

the various adaptive filtering techniques. The spectrogram 

depiction portrays a pictorial representation of the 

transmitted, error and recovered signals. 
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Figure 2.  MSE - comparison of LMS, NLMS and KLMS algorithms for 

a sinusoidal input signal 

 

Figure 3.  Spectrogram for LMS, NLMS and KLMS for a sinusoidal 

input showing the transmitted, error and recovered signals 
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Figure 4.  MSE - comparison of LMS, NLMS and KLMS algorithms for 

a FSK modulated input signal 
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Figure 5.  Spectrogram for LMS, NLMS and KLMS for a FSK 

modulated input showing the transmitted, error and recovered signals 
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Figure 6.  MSE - comparison of LMS, NLMS and KLMS algorithms for 

a ASK modulated input signal 

 

Figure 7.  Spectrogram for LMS, NLMS and KLMS for a ASK 
modulated input showing the transmitted, error and recovered signals 
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Figure 8.  MSE - comparison of LMS, NLMS and KLMS algorithms for 
a burst input signal 

 

Figure 9.  Spectrogram for LMS, NLMS and KLMS for a FSK 
modulated input showing the transmitted, error and recovered signals 

V. CONCLUSION 

In this paper, the performance of various adaptive filter 

based denoising techniques like LMS, NLMS and KLMS 

have been analyzed for various input reference signals like 

sinusoidal signal, FSK modulated signal, ASK modulated 

signal and burst sequence. It is inferred that the KLMS 

algorithm adapts faster and reconstructs the desired signal 

very quickly when compared to LMS and NLMS. KLMS 

thereby achieves maximum convergence in minimum 

number of iterations. It is also found that the MSE for 

KLMS algorithm is the least compared to NLMS and 

LMS. High output SNR for low frequency, low SNR can 

also been achieved by KLMS technique. Thus KLMS 

algorithm can be used for effectively denoising all kinds 

of low frequency acoustic signals in underwater 

communication. 

VI. FUTURE WORK 

The analysis of performance for various reference 

signals discussed in this paper can be extended to other 

denoising techniques like wavelet decomposition and 

empirical mode decomposition (EMD). Implementation of 

EMD based denoising techniques in a real time 

underwater wireless sensor network is also proposed as 

future research. 
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