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Abstract—Results on realization theory of dynamic linear 

systems with lags are obtained through Laurent series 

expansions. The results are related to controllability and 

observability properties as well as to mismatching among a 

real transfer matrix and its nominal version For this 

purpose, an infinite polynomial block Hankel matrix and 

associate τ -finite polynomial block matrices are defined in 

order to relate the spectral controllability and observability 

properties of minimal realizations with the minimum 

feasible finite rank of such a Hankel matrix. 

 

Index Terms—realization theory, Hankel matrices, delays 

 

I. INTRODUCTION 

The minimal realization problem of dynamic linear 

time-invariant delay-free systems is to find a linear state-

space description of the minimal possible dimension 

whose associate transfer matrix exactly matches a proper 

predefined rational matrix in  smp
K  over a field K. 

Any proper(i.e. realizable) rational transfer matrix 

   ssG mp K  can be expanded in a formal Laurent 

series at  resulting in the formal identity 

  





0i

i

i sHsG ,  
0

i iH N
(often denoted as 

  0iH  ) being an infinite sequence of matrices which 

are the block matrices of the infinite block Hankel matrix, 

with  00 NN  and N being the set of the natural 

numbers. The minimal realization problem in the delay-

free case may be focused on as finding a state-space 

realization  D,C,B,A , with nnA R , mnB R , 

npC R  and mpD R , of order nN  being minimal 

(i.e. as small as possible) so that given the infinite 

sequence   0

mp

iH K , verifies the identity 

    DBAIsCsHsG 1i

0i

i  




  so that 

DH 0   and BACH 1i

i

 , iN . The classical 

related problem was firstly formulated by Kalman, [1], 

[2], for the single-input single-output case. The minimal 

partial realization problem of any approximation τ is 

formulated as follows: Given a finite given sequence 

 τ0mp

iH K , some τ N , satisfying DH 0  , 

BACH 1i

i

 ,  : 1, 2 , .... ,i τ τ   , it exists a 
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quadruple  , , ,A B C D , with A
n n

R , mnB R , 

p nC R  and mpD R , of minimal order Nn  (the 

order of A) such that 

   1τi
τ

0i

i

1 s0sHDBAIsC 



   , [3]-[7]. 

This formalism is extended to the presence of delays. 

II. DESCRIPTIONS OF THE SYSTEMS 

Consider the linear time-invariant dynamic system in 

state-space form: 

    




  



´htuBhtxAtx i

q

0i

ii

q

0i

i

´

  (1) 

     tuDtxCty                        (2) 

where nn:x RRR  , mm Y:u RRR   

and pp Y:y RRR   are the state, input and 

output vector functions in their respective state, input and 

output spaces U,  and Y,  0z:z:  RR , 

´

0 0
0h h   and ih R   q,...,2,1:qi  , 

Rih  




  ´qi  are the internal and external point, in 

general, incommensurate delays; i.e. hi and hj are not 

necessarily equal to ihb and jhb  ´qj,qi  , some hb>0, 

hb>0, nn

iA R   0qi  , 

mn

iB R   0qi ´ , npC R  and mpD R  are 

matrices of real entries which parameterize the system. 

The dynamic system is subject to initial conditions 

  n0,h: R , where  i
qi

hMax:h


  being 

piecewise continuous possibly with bounded 

discontinuities on a subset of zero measure of its 

definition domain. By taking right Laplace transforms in 

the state-space description with 0 , a transfer matrix 

exists defined by: 

 
 
 

  
   0tuLap

tyLap

sU

sY
:sG
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











  

DeBeAIsC

´
´
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q

j

sh
i

q

i

sh
in 




























 









0

1

0

 (3) 

where     tvLap:sV   is the right Laplace 

transform of s
RR :v  provided it exists. Note that G(s) 
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is a complex matrix function in mp
C  in the complex 

indeterminate s whose (i, j)- th entry is: 

  jiq

0k

sh

in

q

0j

s´h

j

q

0k

sh

in

T

i

ji D

eAIsDet

ebeAIsAdjc

sG

k

´

k


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


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
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
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 


 

(4) 

where Adj (.) and Det(.) stand for the adjoint matrix and 

determinant of the (.)-matrix, respectively, and 
T

ic  and 

jb 
 being the i-th row of C  pi and j-th column of 

B   0q ´ , respectively. Define complex 

 ´qq   and  ´q̂q̂   tuples: 

   ́
qq1qq1

EI z,z,z,....,zz,z:z
  

´qq C  

   ́
q̂q̂1q̂q̂1

EI z,z,z,....,zẑ,ẑ:ẑ
  

´q̂q̂ C  (5) 

where 






















 



q

1i

0
i

q
n:q̂q̂q

;  1qq̂:q̂q̂q ´

0

´

0

´´   

Then,  z,smp
R , the space of realizable (i.e. proper) 

rational transfer p×m matrices of real coefficients in the 

complex  1q̂q̂ ´ - tuple  ẑ,s (of numerator and 

denominator being, respectively, a quasi-polynomial 

matrix and a quasi-polynomial), is isomorphic (in the 

sequel denoted with the symbol “  ”) to  smp
R  so 

that there is a natural bijection between each entry 

 sG ji
 and 

 
 

 ẑ,sM

ẑ,sN
ẑ,sG

ji
ji   



 

 








n

0k

q̂

0

k

k

n

0k

q̂q̂

0

k

kji

ẑsM

ẑsN
ji

´







                    (6) 

III. MINIMAL REALIZATIONS AND FORMAL SERIES 

DESCRIPTIONS 

Note that the numerator and denominator of  ẑ,sG ji
 

are, respectively, in the polynomial rings  ẑ,smp
R  and 

 ẑ,sR  generated by  ẑ,s . By using a formal Laurent 

series expansion at   in the variable s of the form 

    i

0i

i sẑHẑ,sG 




  with    ẑẑH mp

i

R , it 

follows that       ẑsẑ,s mpmp   RR  (the ring 

of formal Laurent power series with matrices over mp
R  

at   in the polynomial multiple indeterminate defined 

by the components of the ẑ - tuple). Note that the formal 

series ring     ẑsmp
R  is the completion of the 

polynomial matrix ring    ẑsmp
R  (  ẑ,smp R ) 

with respect to the I- adic topology where I is the ideal of 

the polynomial matrix ring    ẑsmp
R  generated by 

the indeterminate complex 




  1´q̂q̂ - tuple  ẑ,s . 

Theorem 1: The following properties hold for any 

positive integers p, m and n: 

(i)   0qi:e
shnn i 


R  Inn zR ; 

 










 0qi:e ´

ś
i

h
mn

R  Emn z R  

(ii)  ẑ,smp
R     ẑsmp R  ẑ,smp R  

(iii)    ẑsmp
R  is a dense subspace of 

    ẑsmp
R , which is a complete topological ring, 

with respect to the I-adic topology where I is the ideal of 

the ring    ẑsmp
R  generated by the indeterminate 

complex 




  1´q̂q̂ - tuple  ẑ,s . 

From Theorem 1 (i), the following bijections may be 

established: 

   InnI

i

q

0i

i

Ish
q

0i

i zzA:zAeA i 







  R   (7) 

   InnE

i

q

0i

i

Esh
q

0i

i zzA:zAeB
´
i

´









  R (8) 

So that the controllability and observability matrices of 

the n-th realization (1)-(2) result to be: 

         EI zB,zAzB,zA nn CC   

          EInEIE zBzA,...,zBzA,zB: 1  

     n nO , O , IC A z C A z  

    1: , , ... ,T T I T n T I T TC A z C A z C     (9) 

In    ẑmnn 
R  and    ẑmpp 

R , respectively. 

Define the following controllability and observability 

testing sets  h
nC

S  and  h
nO

S , respectively, 

depending of the real  ´qq   -tuple of delays 

 
´

´ '

´ ´ ´

1 2 1 1 2 2, , ... , , , , ..., q q

q q q q q q
h h h h h h h h h 

  
    h R  

(the closed first orthant in 
´qq 

R ) and the associated sets 

of delays u cH  and u oH  where controllability and, 

respectively, observability are lost: 

    ,ezz:z...,,z,zz:
sh

ii

qq

q21
i

i

´ 



  Ch
nC

S  

 ln ´, , ,
i i

C C

i i

z tg
i q q

h h


       R R  

     nC ,I Erank A z B z n  
 

    ,ezz:z...,,z,zz:
sh

ii

q

q21
i

i



  Ch
nO

S  

 
qi,

h

tg
,

h

zln

i

i
O

i

i

O 


 RR
, 
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   nO , Irank C A z n  
 

 

   

 hRh
nCcu SH ::

´qq  

   

 hRh
nOou SH ::

´qq               (10) 

If the full rank property in the above polynomial 

matrices are lost for some h such that the respective 

testing set is empty then controllability ( respectively, 

observability) in a ring hold for the corresponding set of 

delays. If the sets  h
nC

S , respectively,  h
nO

S  are 

empty for any 
´qq 

Rh  then the system is controllable 

(respectively, observable) in a ring independent of the 

delays. Note directly that: 

   hh
nCcu SH

   

 cuC HS
n

´qq, Rhh  

And similar assertions are applicable to the sets 

 h
nO

S  and 
u oH . 

Theorem 2: The following properties hold: 

(i) The state space realization is spectrally controllable 

for some given 
´qq 

Rh  in the first orthant if and only 

if 

C











 

 


s,neB,eAIsrank

q

0i

q

0i

sh

i

sh

in

´

´

ii . 

(ii) The state space realization system) is spectrally 

observable if and only if 

C













s,nC,eAIsrank
q

0i

T
s´

i
h

T

n i

. 

(iii) The state-space realization (1)-(2) is minimal of 

order n if and only if it is spectrally controllable and 

spectrally observable; i.e. 














  

 


q

i

q

i

sh
i

sh
in

´
´
ii eB,eAIsrank

0 0

 

C













 




s,nC,eAIs

q

i

T
s´

i
h

T
n

i
0

 (11) 

Both full rank conditions hold simultaneously then the 

state-space realization (1)-(2) is minimal and the converse 

is also true. 

(iv) The state space realization is controllable in a ring 

independent of the delays (i.e. for any
´qq 

Rh ) if 

    nC ,rank A z B z n   
, 

´qqCz  while the 

converse is not true in general. The state space realization 

(1)-(2) is observable in a ring independent of the delays if 

  nO ,rank C A z n   
, 

´qqCz  and the 

converse is not true. The state-space realization is 

minimal of order n independent of the delays if: 

          nzA,CrankzB,zArank  nn OC , 
´qqCz   while the converse is not true in general. 

(v) The state space realization is controllable 

(respectively, observable) in a ring independent of the 

delays if and only if   h
nC

S  for any ´qqR 

h  

(respectively,   h
nO

S  for any 
´qqR 

h ). The state 

space realization (1)-(2) is minimal if and only if 

     hh
nn OC

SS  for any 
´qqR 

h ; i.e. if and only 

if it is both controllable and observable in a ring 

independent of the delays. 

(vi) The state space realization is controllable 

(respectively, observable) in a ring for any given 
´qqR 

h  if and only if   h
nC

S  (respectively, 

  h
nO

S ). The state space realization is minimal if and 

only if      hh
nn OC

SS ; i.e. if and only if it is both 

controllable and observable in a ring. 

(vii) The state space realization is controllable 

(respectively, observable) in a ring either dependent on 
´qqR 

h  or independent of the delays if and only if it is 

spectrally controllable (respectively, spectrally 

observable) either dependent on or independent of the 

delays. 

(viii) The state space realization of (1)-(2) is 

controllable (respectively, observable) in a ring 

independent of the delays, and equivalently spectrally 

controllable (respectively, spectrally observable) 

independent of the delays if and only if cuH  

(respectively, 
u oH  ). 

The state space realization (1)-(2) is minimal 

independent of the delays of order n if and only if 

 oucu HH ; i.e. if and only if it is both controllable 

and observable in a ring independent of the delays. The 

state space realization of (1)-(2) is spectrally 

uncontrollable (respectively, spectrally unobservable) for 

a given 
´qq 

Rh  if and only if u cHh (respectively, 

ouHh ) and, equivalently, if and only if   h
nC

S  

(respectively,   h
nO

S ). 

Now, consider the sequence        1i ẑH:ẑH  

with N  which defines the  - finite block complex 

Hankel matrix: 

 

   

    





















ẑH....ẑH

ẑH....ẑH

:)ẑ,i1,iH

i

i11

  

     

       





















EIEIi

EIiE

zBzAC....zBzAC

zBzAC....zBC

11 



 (12) 

For  , the infinite Hankel block matrix is 

     N j,i1jiG ẑHMatrixBlock:ẑH . The 

subsequent technical result holds where the generic rank 

(denoted as gen rank) of the (.) – polynomial matrix (.) is 
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its maximum rank reached on the overall set of values of 

its argument. Note that there is a natural surjective 

mapping 
´´ q̂q̂qq  CC which maps each argument z 

into one corresponding ẑ (z), it is irrelevant to replace the 

argument ẑ  by its pre-image z in all the subsequent 

notations and related discussions about controllability/ 

observability in the appropriate rings of polynomials, 

quasi-polynomials or series. Therefore, both arguments z 

and ẑ  are used indistinctly where appropriate according 

to convenience for clarity. 

Lemma 1: The following properties hold independent 

of the delays: 

(i) 

    I

i zA,Cẑ,i1,iH O     EI

i1 zB,zAC , 

´q̂q̂ẑ  C . 

(ii)     n,i1,iMinẑ,i1,iHrank  , 
´q̂q̂ẑ  C . 

(iii)    nẑ,i1,iHrank  , for any N i,  with 

1in  , ni , 
´q̂q̂ẑ  C , where n is the order of 

the state-space realization. 

(iv) 

     ẑHrankgenẑHrank G
q̂́q̂

ẑ,ni,in

G






C1

   nẑ,i,iHrankgen
q̂́q̂

ẑ,ni,in






1

1



 C

; 

´q̂q̂ẑ  C . Lemma 1 establishes that the rank of a  - 

finite or infinite block Hankel matrix is always finite and 

it cannot exceed the order of given state-space realization. 

Theorem 3: Consider two state-space realizations of 

the transfer matrix  

    D,C,qjB,B,qiA,A:R ´

j0i0   

    ´
ji qjB,B,qiA,A:R  00 , 

,C D D )                               (13) 

of respective orders n (minimal) and nn  . Then, the 

following properties hold independent of the delays: 

(i)   ẑHrankgenn G
q̂́q̂

ẑ,ni,in






C1

 

   nẑ,i,iHrankgen
q̂́q̂

ẑ,ni,in






1

1



 C

 

 
  

 
   nẑ,i,iHrankgen,ẑ,i,iHrankgenMin

ẑ,ni,inẑ,ni,in





















11

nOnC S1S1


 hh

 

 
     

 
      nzB,zArankgen,zB,zArankgenMinn EI

ẑ,n

EI

ẑ,n















 






OC
n0nC SS hh

, 
´qq 

 Rh  

(ii)   ẑ,i1,iHrankgen
´q̂q̂

ẑ,Nni,1in




 C

 

     EI

q̂́q̂
ẑ,n

zB,zArankgen 



C






C

 

    nzA,Crankgen I
i

q̂́q̂
ẑ,n






O

C

    (14) 

(iii) None of the conditions below can hold for a 

complex function 
´qqqq:z 

  CRC  defined by 

   ),s(z,),s(z,sz EI
hhh   

1

´´
1, ... , , ,... ,q

h sh sh s h s qe e e e
  

  
 

        (15) 

associated with internal and external delays  qih i  , 

 ́qjhh ´

jjq 
. 

   nẑHrank G   

   nẑ,i1,iHrank   

for any     N ni,1in  

      nzB,zArank EI C ,   N n  

    nzA,Crank I O ,   N n     (16) 

IV. SYNTHESIS OF MINIMAL REALIZATIONS 

The problems of synthesis of a minimal realization, or 

a minimal partial realization, is formulated in terms of 

finding a state-space realization such that it matches a 

certain transfer matrix which is formally identical to a 

series Laurent expansion at  . Thus, given the sequence 

       0i ẑH:ẑH  with   N , find matrices 

nn

iA R   0qi  , mn

iB R   0qi ´ , 
npC R  provided they exist such that the following 

matching condition holds independent of the delays either 

for N  (minimal synthesis problem) or for some 

finite N  ( minimal partial realization problem): 

  1

1
0

















 

q

i

I
ii zAAIsC:ẑ,sG  

 1

01
0 0 


















 
τi

τ

i
i

q

i

E
ii ssHDzBB

´

 (17) 

where 

   ẑ,sẑ,sG mpR  

       i

i
i

mp sẑHẑs 









0

R          (18) 

Such that n is as small as possible. If the minimal 

(respectively, partial minimal) realization synthesis 

problem is solvable (i.e. it has a solution) then by making 

the changes sh

i
iez


 , 

sh

jq

´

jez


  





  ´qj,qi , a 

state-space realization is obtained so that the above 

description holds for N ( respectively, for some 

natural number  ). If the problem is solvable then 

there are infinitely many minimal (respectively, partial 

minimal) realizations satisfying it since any nonsingular 

state transformation preserves the transfer matrix. In the 

following, the result that the McMillan degree (denoted 
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by  ) of a rational transfer matrix coincides with that the 

rank of the infinite associated block Hankel matrix for 
´qqẑ C  (which is also called the McMillan degree of 

this one) is extended from the delay-free case. 

Theorem 4: The following properties hold: 

(i) The McMillan degree   h,sGμn   of the 

transfer matrix  h,sG  is the unique order of any 

minimal realization of  h,sG and satisfies the 

constraints below for any set of delays being components 

of some given 
´qq 

Rh : 

     hh ,sGμn   

   
  











 


zHμMax

z hhN
τOτC SS

 

       













  

 


1ji ji

z:z,j,iHrankz,j,iHrankMax hh
N ττ 0C SS

 

   
  NN

hh





τ1ni,in:z,j,iHrankMax
z 0C SS

                                                                                      (19) 

(ii) The state space dimension    Nh τn τ
 of any 

minimal partial realization satisfies 

  hτn  

   
   
















τi:z,i1τ,iHμMax

z hhN
τOτC SS

(20) 

   hh nn τ   and then the minimal partial realization 

is a minimal realization for all   N 0ττ  and 

sufficiently large finite Nτ 0   with  

     hhh nnn
0ττ   

   
  Nττi,Niτ:z,iτ,iHrankMin

z





11 00
SS 0C hh

                                                                                      (21) 

(iii) Redefine by simplicity the delays according to 
´

iiq hh 
  ´qi . Define 000

h  and let 0i
h  be defined 

with 0h i   and  ij0h j   for  ´qqi  . Assume 

that   00i nnn 0i
h  (some constant 

0n  in N), qi , 

where 

   













  

 


1ji ji

ii0i

0i 0i
0i

α,j,iHrankα,j,iHrankMin:n
N

   













  

 


1ji ji

ii

0 0
0

α,j,iHrankα,j,iHrankMin
N

 

(22) 

with 
´qq

iα C  having the i-th component distinct 

from unity and the remaining ones being unity, 0i
h  is an 

associate  ´qq  - tuple of delays in 
´qq 

R with only the 

i-th component being nonzero and 0A i  , with the 

remaining ones being zero and 

 ´0i0 qqi:τMax:τ  . Then, the order for any 

minimal realization independent of the delays is: 

    00 τnnnn  0i
hh  

     
 

















z,iτ,iHrankgenMax

z

 1

τOτC0 SS hhN

                                                                                      (23) 

´qq 

 Rh and all the matrices defining the state-

space realization are independent of the delays. 

Theorem 5: Consider the transfer matrix: 

  1

0
121




















 

q

i

sh
~

sh
in eeAIsCh

~
,,,,,sĜ i  

DeeB

´q

i

śh
~

sh
i

i  



















0
2

          (24) 

Parameterized in the sextuple of real scalars 

 ´21 h
~

,h
~

,,,,: p , which models a perturbation 

of a nominal transfer matrix: 

 h
~

,,,,,sĜ  21  

DeBeAIsC

´q

i

sh
i

q

i

sh
in

ii 





























 









0

1

0

 (25) 

Parameterized by  0,0,1,1,1,1:0p  and assume 

that the denominator quasi-polynomial and all the 

numerator quasi-polynomials possess principal term. If 

the realization is minimal then a minimal realization of 

the same order n is given by the original proposed one 

with the parametrical changes CC 1 , 

ii AδA    0qi  , 
i2i AB  , DD   and 

delay changes h
~

hh ii  , ´´

j

´

j h
~

hh  , 

    0qj,0qi ´  for any finite delay 

perturbations h
~

 and ´h
~

 and for any real   if and only if 

021  . 
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