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Abstract—Synchronization of the broadband-like 

information-maskable state trajectories of the Lorenz-63 

and Burke-Shaw chaotic systems is presented in this paper. 

The two systems are three-dimensional dissipative chaotic 

systems which have similar algebraic structures but are 

topologically nonequivalent. Active controllers were 

designed and employed to track the exponentially divergent 

information-masking signals of their state trajectories into 

synchrony, based on the Lyapunov stability criteria. 

Numerical simulation results via MATLAB 7 software 

confirmed the global synchronization of the systems for all 

initial conditions and the asymptotic stabilization of the 

resulting synchronization error dynamics in the sense of 

Lyapunov. In addition, the robustness of the generalized 

synchronization scheme to parametric perturbation in the 

nonlinear hyperbolic structure of the Burke-Shaw slave 

system when interchanged between sinh and cosh holds 

possibility for online tuning of the coupled systems to vary 

the broadband spectrum density of the information-

masking carrier when applied to modelling and design of 

chaos-based secure communication systems. 
 

Index Terms—lorenz-63 system, burke-shaw system, 

synchronization, active control, lyapunov stability 

 

I. INTRODUCTION 

Research into the control and synchronization of 

chaotic systems has gained the attention of researchers 

cutting across various disciplines especially mathematics, 

physics and engineering. This is justified by the 

increasing applications of the principles of chaos control 

and synchronization to practical system designs in secure 

communication and other fields. Chaos is a behavioural 

dynamics which results from the extreme sensitivity or 

hypersensitivity to perturbations in the structural 

parameters and initial conditions of some deterministic 

dynamic systems and has been found to be prevalent in 

many man-contrived and natural systems such as the 

ecology [1], economics [2], power systems [3], neurology 

and medicine [4], electronics and communication systems 

[5]. Chaos synchronization occurs when under 

appropriate coupling configurations, the trajectories of 

two systems achieve synchrony in finite time. As novel 
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chaotic systems continue to be evolved, the imperative of 

studying the characteristics of these systems to ascertain 

their applicability in real-life modelling and design 

becomes a fascinating endeavour. Essentially, when a 

chaotic system meets the conditions of controllability and 

synchronizability, it becomes a possible candidate for 

multi-faceted applications, especially in information 

theory and secure communications where the primary 

objective, among others, is to mask transmitted 

information so that it assumes a pseudo-noisy broadband 

spectrum in a transmitting channel. Consequent to this 

development, various methodologies have been studied 

and employed to synchronize identical or non-identical 

chaotic signals. Among them are the feedback control [6], 

active control [7], linear control [8], adaptive control [9], 

fuzzy control [10], sliding mode control [11], linear 

matrix inequality (LMI)-based fuzzy control [12]. 

Equally, several chaotic systems have received much 

attention in the literature due to their topological 

properties and structural adaptability such as the Lorenz-

63 system [13], Lorenz-84 systems [14], Chen [15], Lu 

[16], Sprott [17], Chua [18]. However, in recent years, 

attention has also been focused on the usefulness of 

recently evolved systems in the context of 

synchronization. These systems include the Lu-Chen-

Cheng [19], Chen-Lee [20], Lorenz-63-Pelivan [21], 

hyperchaotic Lu [22] and so on. In this paper, attention is 

focused on the coupling of the Lorenz-63 and Burke-

Shaw system which has received less attention in the 

literature, but is nonetheless dynamically complex with 

distinctive properties. 

II. THE LORENZ-63 AND BURKE-SHAW CHAOTIC 

SYSTEM 

The Lorenz-63 system is a three-dimensional chaotic 

system that has two nonlinear terms in its system 

equations [13]. When the parameters of the system are 

appropriately adjusted, it evolves into the popular 

butterfly-shape attractor. The algebraic structure of the 

system is governed by the following equations: 
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where g1, g2, g3 are states of the system, ,  ,      are 

constant parameters that determines the shape of the 

evolved chaotic attractor. For values of 

10,  28,  8 / 3     , the system evolves the 

popular butterfly attractor. The information-maskable 

state trajectories of the Lorenz-63 system are depicted in 

Fig. 1(i)-Fig. 1(iii). 
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Figure 1.  (i)-(iii) Information-Maskable state trajectories of the Lorenz-
63 system 

The Burke-Shaw (BS) chaotic system [23] is also 

three-dimensional system that possesses two quadratic 

nonlinear terms in its system equations. The BS system 

was evolved from the Lorenz-63 system, and therefore 

has similar algebraic structure to that of the Lorenz-63 

system, but is topologically nonequivalent. Detailed 

structural and parametric analyses have been reported in 

[24]. The governing equation of the system is given by 

the following equations: 
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                           (2) 

where h1, h2, h3 are state variables, ,  0    are positive 

constants. Eq. (2) unfolds different attractors as  is 

varied positively. For typical values of 

10,  4.272   , the information-maskable 

trajectories of the system are depicted in Fig. 2(i)-Fig. 

2(iii). 
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Figure 2.  (i)-(iii) Information-Maskable state trajectories of the Burke-
Shaw system 

III. GENERALIZED SYNCHRONIZATION 

Generalized synchronization, which is a special case of 

identical synchronization occurs in cases where two 

chaotic systems g and h are coupled such that in transient 

time, the trajectories of h are regulated by g. In a master-

slave (transmitter-receiver) topology, if the information-

maskable state variables of the master system is denoted 

as 
1 2

( ) ( ,  ,  ...,  )
n

g t g g g  where n is the dimension of 

the system and 
1 2

( ) ( ,  ,  ...,  )
n

h t h h h  denotes the state 

variables of the slave system, then global synchronization 

occurs if there exist a coupling function   such that after 

time 
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The resulting coupled dynamics can be expressed as 

   
1 2 1 2
,  ,  ...,  ,  ,  ...,  

n n
g g g h h h  , which implies that 

( )g t  regulates the evolution of ( )h t . Generally, the 

coupling function is a nonlinear control law. 

IV. CONTROL OBJECTIVES 

Consider two chaotic systems of the form: 

' ( )x Mx N x                              (3) 

' ( )
i

y Py Q y u                            (4) 

where ,  x y  are system states, ,  p q  are vector fields that 

models the chaotic systems and ( 1,  2,  ...,  )
i

u i n  are 

the active controllers to be designed. If M P , the two 

systems are identical, otherwise, they are non-identical. 

Let 
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where n is the dimension of the chaotic systems. By 

subtracting (3) from (4), we can obtain the error 

dynamics expressed in the following form: 

' ( ) ( )e Py Mx Q y N x u                  (6) 

The control objective is to design active controllers 

that will enable the information-maskable state dynamics 

of the master to regulate the evolution of the slave’s state 

dynamics and also asymptotically stabilize the resulting 

error dynamics of the synchronized systems in the sense 

of Lyapunov. i.e. 

lim ( ) 0, (0)
i

t

e t e


                        (7) 

V. ACTIVE CONTROLLER DESIGN 

Active control design strategy has been applied in 

several works in the literature [7], [21]. Let the Lorenz-63 

system in (1) be taken as the master system. The slave 

and responding system in (2) can be rewritten with the 

control functions as: 
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Subtracting (1) from (8) and applying the 

synchronization error given in (5), we obtained the 

following error dynamics: 
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2 2 1 3 1 2 1 3 2
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Setting 10,  10,  8 / 3,  4.272,  28          

and using the convention in (5), the active controllers are 

chosen as: 

1 1 2 2
9 10 20u e e x  

 

2 1 3 1 1 3
10 28u h h g g g                      (10) 

3 1 2 1 2 3 3
10 4.272 8 / 3u h h g g g e       

Inserting (10) into (9), the error dynamics becomes: 
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Theorem 1: If the active controllers governed by (10) 

are selected, then the state vector dynamics of Lorenz-63 

system (1) will regulate the evolution of the state 

dynamics of the Burke-Shaw system (2). 

To verify the asymptotic stability of the error dynamics, 

we apply the Lyapunov stability criteria [25] and choose 

the Lyapunov function candidate 

2 2 3

1 2 3 1 2 3

1
( , , ) ( )

2
V e e e e e e                  (12) 

Theorem 2: If the partial derivative of (12) along the 

trajectories of the error dynamics (11) is negative semi-

definite or negative definite, then the error dynamics is 

asymptotically stable in the sense of Lyapunov for all 

initial conditions. 

1 2 3 1 2 3
(0),  (0),  (0) (0),  (0),  (0)g g g h h h  

Proof: 

' ' ' '

1 2 3 1 1 2 2 3 3
( , , )V e e e e e e e e e                (13) 

By inserting (11) into (13), 
'

1 2 3
( ,  ,  ) 0V e e e   which is 

negative definite function on
3

 . Consequently, the 

trajectories of (9) will be locally and globally 

asymptotically stable in the sense of Lyapunov as 0t  . 

VI. NUMERICAL SIMULATION RESULTS 

The synchronized systems were simulated with 

MATLAB software for the following initial conditions: 

Master system, 
1 2 3

(0), (0), (0)
(0) [8,  2,  10]

g g g
g   and the 

Slave system, 
1 2 3

(0), (0), (0)
[14,  9,  6]

h h h
h    which gives 
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1 2 3
(0), (0), (0)

(0) [22,  7,  16]
e e e

e   . Fig. 3, Fig. 4 and Fig. 5 

are plots depicting the simulation results. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

-10

0

10

20

30

t(s)

g
1
,h

1

 

 

g1

h1

 
(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-30

-20

-10

0

10

20

30

t(s)

g
2
,h

2

 

 

g2

h2

 
(b) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

t(s)

g
3
,h

3

 

 

g3

h3

 
(c) 

Figure 3.  (a)-(c) Converged trajectories of the synchronized signals 
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Figure 4.  Time series of the synchronization error dynamics 
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Figure 5.  Dynamics of the active control signals 

VII. CONCLUSION 

Global synchronization of non-identical information-

maskable state trajectories of the Lorenz-63 and Burke-

Shaw chaotic systems has been demonstrated via 

numerical simulations. The designed active controllers 

seamlessly synchronized the two systems and 

asymptotically stabilized the error dynamics that resulted 

from the coupled trajectories. The designed controller 

was also robust in cases where the positive constant   

was varied between 4.272 and 13. The relevance of this 

synchronization lies in their usefulness in chaos-based 

secure communication scheme in which the broadband 

information-maskable signals could serve as encryption 

keys on vulnerable transmitting channels that are 

susceptible to third party information pilfering. The 

variability of the responding signals indicates the 

possibility of online tuning of the spectrum density in the 

transmission channel to enhance information security. 
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