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Abstract—The general approach to the synthesis of algorithm 

for efficient computation of type II/III DCT/DST/DHT 

transforms using cyclic convolutions is considered. The 

technique is based on a hashing array, which is formed on 

the basis of simplified arguments of the basis transform. The 

synthesis of algorithm owing to hashing arrays defines 

partitioning of the basis into submatrices which can identify 

and arrange the computation as cyclic convolutions. The 

example of synthesis of the algorithms and the common 

computation structures for type II/III DCT/DST/ DHT for 

the sizes of powers of two are presented. 
 

Index Terms—discrete cosine transform (DCT), discrete sine 

transform (DST), discrete hartley transform (DHT), fast 

algorithm, cyclic convolution 

 

I. INTRODUCTION 

Discrete transforms and convolutions are main 

operations and key tools in digital signal processing. The 

real discrete transforms, including the discrete Hartley 

transforms (DHT) with its types, and the discrete 

trigonometric transforms (DTT) with its types (common 

name discrete harmonic transform), which present signals 

in frequency domain, are especially widely used [1]. For 

example, the most common variant of discrete cosine 

transform is the type-II DCT, its inverse the type-III DCT, 

is used in JPEG, H.26x image compression, MJPEG 

video compression, and MPEG family video compression. 

There, the two-dimensional DCT-II of 8x8 blocks is 

computed, the results are quantized and entropy coded. 

The successful use of transforms relies on the 

existence of the so-called fast transforms. One of the first 

applications of fast Fourier transform (FFT) algorithm 

was to implement convolution faster (theorem of 

convolution) than the usual direct method. The discrete 

convolutions obtained importance in various aspects of 

time-domain, especially in Finite impulse response (FIR) 

digital filters. The paradox of inverse connection between 

frequency and time domains lies in the fast computation 

of discrete transforms that can use convolutions as 

efficient transform technique. 

The technique, first used by Rader for obtaining a 

prime length DFT [2], identifies cyclic structures within 
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the transform matrix. Using low complexity of 

convolution algorithms in cyclic structures of basis 

matrix leads us to efficient computation of transforms [3], 

[4]. Efficient algorithmic schemes for the conversion of 

the discrete harmonic transforms into cyclic correlation or 

convolution structures are now available and have been 

found to be very efficient for hardware implementation 

using VLSI technology [5]-[7]. Consequently, cyclic 

convolution and circular correlation structures provide 

high computing speed, low computational complexity, 

and low I/O bandwidth. 

The different strategy of cyclic or skew-cyclic 

structures identification within the transform matrix is 

investigated in papers [8]-[10]. The algorithm of the 

DCT/IDCT conversion with any length N by using two 

N-length linear convolutions or two cyclic convolutions 

form, such that one can easily implement with 

technologies that are well suited for doing convolutions, 

is presented in paper [8]. The paper [9] shows that when 

the length of a p prime is such that (p-1)/2 is odd, the 

DCT can be computed as two cyclic convolutions, each 

of length (p-1)/2. The paper [10] proposes to decompose 

the computation of the N point DCT into two matrix-

vector multiplications, where each matrix is of size 

(M−1)×(M−1) and M = N/2. Each of the decomposed 

matrix-vector products is then converted into a pair of 

[(M−1)/2] point circular convolution-like operations for 

reduced-complexity of concurrent systolization. 

Not much work has been dedicated to development of 

efficient implementation of generalized techniques for 

computation of discrete harmonic transforms. Paper [11] 

presents a DCT algorithm that converts the DCT 

computation into cyclic convolutions. They show that by 

using multiplicative groups of integers, one can identify 

and arrange the computation as convolutions. The index 

sets can be extended to find a suitable group and the 

functions that can be used to compute the DCT as a 

convolution over a larger group. 

These techniques have the raised complexity or 

demand of concrete sizes of transform and type of 

harmonic transform. Therefore, the approaches and 

means of discrete transforms reformulation into cyclic 

convolutions or circular correlations need further 

development. 
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In this paper, the approach to the synthesis of efficient 

algorithm based on the cyclic convolutions is proposed. 

This approach to the synthesis of algorithms is more 

general and efficient for arbitrary number of points than 

the algorithms mentioned earlier. 

Information technologies widely use DCT, DST, DHT 

type II, represented respectively by the form: 

for DCT
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where α(n)=1/√2, if n=0; otherwise α(n)=1, 

for DST
II 

1
2

0

2 ( 1)(2 1)
( ) ( ) ( )sin[ ],  0,  1,  ...,  1

2

N
s

N

n

k n
X k n x n k N

N N








 
     (2) 

where α(n)=1/√2, if n=N-1; otherwise α(n)=1, 
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The common computation structures of 

DCT/DST/DHT type II and inverse transforms for the 

sizes of integer power of two with point of view of the 

general approach of circular formulation are considered. 

The rest of the paper is organized as follows. Section 2 of 

this paper presents analysis and simplified arguments of 

the discrete harmonic transforms basis. In Section 3, the 

synthesis of algorithm for computation of discrete 

harmonic transforms is defined. Section 4, presents the 

examples to demonstrate common computation structures 

of DCT/DST/DHT type II/III for the size N=8. Section 5 

offers some concluding results of computations of 

DCT/DST/DHT type II/III for the sizes of integer power 

of two, and Section 6 presents conclusions. 

II. ANALYSIS AND SIMPLIFIED ARGUMENTS OF THE 

DISCRETE HARMONIC TRANSFORMS BASIS 

Discrete harmonic transform reflects the input of a 

linear combination of weighted basis functions. There are 

8 types of discrete cosine transform (DCT), 8 types of 

discrete sine transform (DST) [12], called discrete 

trigonometric transforms, and four types of generalized 

discrete Hartley transform (DHT) [13]. Wide applied the 

computation of DCT
II
, DST

II
, DHT

ІІ
 and DCT

III
, DST

III
, 

DHT
ІIІ

 types using cyclic convolutions need close 

analysis and further development. 

The matrix form of the discrete harmonic transform is 

defined by: 

X = W* x                                  (4) 

where W(k,n) is a basic square matrix; x(N), and X(N) - 

matrix columns of input and output data; N- size of 

transform. 

The basic square matrix contains harmonic function 

and can be presented in the form: 

W(k,n)=[cos(ck,n)], discrete cosine transform (DCT); 

W(k,n)=[sin(ck,n)], discrete sine transform (DCT); 

W(k,n)=[cas(ck,n)] = [(cos(ck,n)+sin(ck,n)], discrete Hartley 

transform (DHT). 

The analyses of the structured basis matrix for the 

main types of harmonic transforms for arguments with 

components сk,n are executed respectively, especially for 

two/thirt types: 

for discrete cosine transform, 

for DCT 
II
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III
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for discrete sine transform, 

for DST
II 

, ( 1)(2 1) / 2 ,( , 0,1,... 1)k nc k n N k n N        (7) 

for DST
III 
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for discrete Hartley transform, 

for DHT
II 

, (2 1) / ,( , 0,1,... 1)k nc k n N k n N           (9) 

for DHT
III

 

, (2 1) / ,( , 0,1,... 1)k nc k n N k n N         (10) 

The periodic (2π), symmetric (π) and asymmetric (π/2) 

basis functions for each type of transforms are presented 

respectively in Table I. 

TABLE I. PROPERTIES OF BASIS FOR DISCRETE HARMONIC 

TRANSFORM TYPES. 

Properties 
Types 

Periodic 
T 

Asymmetric Symmetric 

DCTII, DCTIII 4N  2N N 

DSTII, DSTIII 4N  2N N 

DHTІІ, DHTІІІ 2N  N N/4 

 

Matrix of arguments Ha(k,n) for each of the discrete 

harmonic transform types for periodic property is 

respectively equal to 

Ha(k,n)=[(ck,n) mod (T)]=[ha(k,n)]             (11) 

where T - period of basis function, k,n=0, 1, …N-1. 

The algebraic system <N-1,*> with operation on set (1, 

2…N-1) corresponds to equivalent basis matrix of 

discrete harmonic transform. In case the size of transform 

N is prime, algebraic system <N-1,*> is of Abelian group. 

Besides, the algebraic system <N-1,*> with prime N 

presents cyclic group, and matrix of arguments Ha(k,n) as 

table of operation is a Hankel circular matrix. Elements 

of cyclic group are equal to natural power of generate 

element α G. Generate element α of cyclic group is a 

primitive root, and α is not the only one. Primitive 
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element will also be α
N-1

 also. Therefore, all elements of 

cyclic group can be determined by the powers of 

primitive element. Non-primitive elements of cyclic 

group generate a part of set, and the other part of set is 

formed by multiplication of two elements of generated set 

by modulo N. 

Let us analyze Hankel matrix of arguments of degree 

(NN) as a substitution of πi for each row (column) 

ai,i {1, 2, …, x} to first row (column) of matrix, where N 

is prime. Summation of substitutions {π1, π2, π3, π4, 

π5…πx} form cyclic group. The quantity of generating 

and non-primitive elements is the same for substitutions 

and algebraic operation (*=(n x k) mod N) of arguments 

of multiplication by modulo N. Based on the substitutions 

of rows/columns from data matrix (11), hashing arrays 

P(n) are formed, and correspond of the cyclic 

decomposition of substitution. Forming hashing array 

briefly defines block cyclic structures of basis matrix [14], 

[15]. 

Accordance of properties of discrete harmonic 

transform of simplified matrix elements of the arguments 

is determined by the consistent performances: 

for DCT 
II –III

, DST 
II –III  

hk,n=T-[ha(k,n)], if [ha(k,n)]>T/2            (12) 

hk,n=T/2-{T-[ha(k,n)]}, if {T-[ha(k,n)]}>T/4    (13) 

otherwise, hk,n=сk,n; 

for DHT
ІI-III

 with even N 

hk,n=[ha(k,n)]-T/2, if [ha(k,n)]>T/2          (14) 

for DHT
ІI-III

 with N multiple 4 

hk,n={T/4-[ha(k,n) -T/2]}, if T/8<{ha(k,n)-T/2}<T/4  (15) 

hk,n=T/4+{T/2-[ha(k,n)-T/2]}, if 3T/8<{ha(k,n) -T/2}<T/2  

(16) 

otherwise, hk,n=hk,n. 

Simplified matrix of arguments is complemented with 

matrix S [k,n] of cosine, sine, casine signs, (17-19) 

defined by the inequalities: 

for DCT
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for DHT
II-ІII

 matrix Sh of casine signs 
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where k,n=0, 1, …N-1. 

Therefore, expression (11) defines elements of matrix 

and forms a hashing array P(n). Then, using expressions 

(12-16), one can define the elements of simplified 

hashing arrays P’(n) and elements of signs arrays S(n) 

(17-19), which take part in the synthesis of algorithm for 

efficient computation of discrete harmonic transforms 

using cyclic convolutions. 

III. SYNTHESIS OF THE ALGORITHM FOR 

COMPUTATION OF DISCRETE HARMONIC 

TRANSFORMS 

The research work is aimed at further development of 

generalized means of synthesis and computation of 

discrete harmonic transforms, which include DCT
II
, 

DST
II
, DHT

ІІ
 types, on the basis of cyclic convolutions. 

The convolution structures play an important role in 

discrete harmonic transforms due to its regularity and 

simplicity during its software and hardware 

implementation. 

The structural parts of means of synthesis of 

algorithms and computations of harmonic transforms 

consist of SU, PU - main components (Fig. 1). These are 

synthesis unit (SU), processor unit (PU) and unit (W) of 

computation of the coefficients of harmonic function. 

Input x(n) and output X(k) are real data sequences. The 

integer number N given on input of SU and W specifies 

arbitrary transform size. 

 

Figure 1. Structural parts of means of the synthesis and computation of 
discrete harmonic transforms. 

The SU defines a hashing array, according to the value 

of size N and type of harmonic transform: 

P(n)=P(n1)P(n2)…P(nk)= 

=(n11, n12, n13, …, n1L1)(n21, n22, n23,…, n2L2)…(nk1, nk2, …, 

nkLk), n=(L1+L2+...+Lk)                      (20) 

where k – number of subarrays, n – size of hashing array, 

nij – element of a hashing subarray, Li – number of 

elements or longth of subarray P(ni). The P(n) determines 

the structure of the basis matrix and also the order of 

elements of input data x(n) for computation of discrete 

harmonic transform. 

The hashing arrays can efficiently be represented on 

smaller values of elements of subarrays P’(n) (15-19), 

complemented with according subarrays of signs S(n) 

(20-22) on the basis of the property of the symmetry of 

basis of harmonic transforms. The submatrices of signs 

S(n) consist of values of elements equal to +1, -1, 0 

(indicate short +, -, 0). The simplified hashing arrays are: 

P’(n)=P’(n1)P’(n2)…P’(nk)                    (21) 

S(n)=S(n1)S(n2)…S(nk )                       (22) 
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Then SU analyzes the structure of basis matrix that 

defines the specifics of computational algorithm. The SU 

conducts analyses of repeatability of cyclic structures and 

compares coordinates of first element (n1,k) of cyclic 

submatrices. Analyses of reiteration the cyclic 

submatrices uses the matrix structure (Table II).

TABLE II. TABLE OF COORDINATES OF THE FIRST ELEMENTS OF 

SUBMATRICES AND THEIR VALUES.

(i+Li, j+Li ) – si,j сi,j;

(0,0) – si,j сi,j; (0,0+L1) – si,j сi,j; …

…

…

(0+L1,1) – si,j сi,j; (0+L1,0+L1) – si,j сi,j;

(0+L1+L2,1) – si,j сi,j; (0+L1+L2,0+L1) – si,j

сi,j;

(0+L1+L2+…+Lk,0)

–si,j сi,j;

(0+L1+L2+…+Lk,0+Lk)

–si,j сi,j;

(0+L1+L2+…+Lk,0+2Lk)

–si,j сi,j;

In case of the identical submatrices placed along the 

vertical of basis matrix, one cyclic convolution is 

computed. In case of the identical submatrices placed 

along the horizontal of basis matrix, one cyclic 

convolution with combined x(n) of input data is 

computed. This reduces the number of cyclic 

convolutions in the computational algorithm of discrete 

harmonic transform.

To summarize, the algorithm of synthesis can list the 

steps involved in performing:

Step 1 – determination if the amount N belongs to a 

subset of integers {2, 4, 8, 16, 32, 64, 128, 256, ...};

Step 2 – definition of cyclic decomposition of 

substitutions P(n) using rows of argument the basic 

matrix;

Step 3 – simplification of cyclic decomposition of 

substituting P’(n) based on the symmetry of the basic 

functions;

Post processing – union of the intermediate results of 

cyclic convolutions to output X(k) data.

The first and the last execution stages of PU are simple 

additions, and a middle stage computes fast cyclic 

convolutions with multiplications. The derivation of the 

levels of synthesis and processing is very general, and 

yields a wide variety of implementations of frequency 

and time domain techniques. Therefore, consider the 

examples using generalized scheme for synthesis of 

algorithm and computation of DCT
II
/DST

II
/DHT

ІІ
for 

sizes of N=8.

IV. EXAMPLES OF COMPUTATION OF 

DCT
II
/DST

II
/DHT

ІІ
USING CYCLIC 

CONVOLUTIONS

A. The Structure of Direct Computation of 

DCT
II
/DST

II
/DHT

ІІ
for Size N=8 Using Cyclic 

Convolutions

The characteristics of hashing array P(n) determine the 

complexity of the algorithm for efficient computation of

DCT
II
/DST

II
/DHT

ІІ
. The specifics for each of transform 

types are analyzed in [16], [17]. A difference of values 

(5-10) in rows and columns requires transition from 

hashing array P(n) to the appropriate hashing array 

indices of the rows Pr(n) and columns Pc(n). In result the 

cyclic decomposition of substitutions using rows/columns

of argument the basic matrix (11) of the transforms of 

size N=8 the hashing arrays are:

for DCT
II

Pc(16)=(0,1,4,13,8,9,12,5) (15,14,11,2,7,6,3,10);

Pr(16)=(1,3, 9, 5, 15,13,7,11)(2,6,14,10) (4,12)(8)(0);

for DST
II

Pc(16)=(0,1,4,13,8,9,12,5) (15,14,11,2,7,6,3,10);

Pr(16)=(0,2,8,26,16,18,24,10)(1,5,17,21)(3,11)(7,23);

for DHT
II

Pc(8)=(1,13,9,5)(3,7,11,15);

Step 4 – complementation of signs S(n) of simplified 

cyclic decomposition of substituting P’(n);

Step 5 – analysis of the structure of basic matrix of 

transforms that used P(n), P’(n), S(n), what describes the 

block-matrix structure of the discrete harmonic transform 

of arbitrary size.
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Figure 2. The sequential computational stages of PU.

The processor unit (PU) executes computation of 

discrete harmonic transforms during three (Fig. 2) 

sequential stages:

Pre-processing – union of input data according to 

identical horizontal submatrices;

Processing – computation of cyclic convolutions using 

efficient algorithms of fast cyclic convolution;

Pr(14)=(1,13,9,5)(3,7,11,15)(2,10)(6,14)(4)(0).

data.

Simplified hashing array 

S(n)) defines expressions (12-19),

following form:

for DCT
II

Pc’(8)=(1,3,7,5,1,3,7,5),

Sc(8)=(+, +, -, +, -, -, +, -);

Pr’(16)=(1,3,7,5,1,3,7,5) (2,6,2,6)(4,4)(8)(0),

Sc(16)=(+, +, -, +, -, -, +, -) (+, +, -, -) (+, -) (0) (+1);

for DST
II

Pc’(8)=(1,3,7,5,1,3,7,5),

Ss(8)=(+, +, +, -, -, -, -, +);

Pr’(16)=(1,3,7,5,1,3,7,5) (2,6,2,6)(4,4)(8,8);

Ss(16)=(+, +, +, -, -, -, -, +)(+, +, -, -)(+, +)(+1,-1);

for DHT
II

Pc’(8)=(1,5,1,5)(1,5,1,5);

Sh(8)=(+, -, -, +)(+, -, -, +);

P’r(14)=(1,5,1,5)(1,5,1,5) (2,2) (6,6) (4)(0);

Sh(14)=(+, -, -, +)(+, -, -, +)(+, -)(0,0) (+1) (+1);

The bold font of the elements Pr(n) indicates output 



Hashing array P(n) of transform defines specific 

structure of basis matrix reduced to cyclic submatrices. 

Identity cyclic submatrices are defined via analysis of 

submatrices distribution in the structure of the basis 

matrix for Table III and Table IV. Coordinates of the first 

elements of submatrices are determined by (i+Li), (j+Li), 

where Li is the size of hashing subarrays, which are 

chosen for condition of membership value of the first 

elements of the submatrices in the matrix structure to the 

element of hashing subarrays (21). 

TABLE III. TABLE OF COORDINATES AND FIRST ELEMENTS OF 

SUBMATRICES DHTII, N=8. 

(i+Li, j+Li ) - sijnij – sign with value of first element 

(0,0) – +1; (0,4) – +1; 

(4,0) – +1; (4,4) – -1; 

(8,0) – +2; (8,2) – +2; (8,4) – +6; (8,8) – +6; 

(10,0) – +6 (10,2) – +6; (10,4) – +2; (10,6) – +2; 

(12,0) – +4; (12,4) – -4; 

(13,0) – +0; 

 

The analysis of the structure of basis matrix (Table III) 

defines two of 4-point cyclic convolutions with identical 

group of elements and two of 2-point cyclic convolution 

with identical group of elements. The remaining two 

output data are determined through element-wise 

addition/subtraction. 

TABLE IV. TABLE OF COORDINATES AND FIRST ELEMENTS OF 

SUBMATRICES DCTII, DSTII, N=8. 

(i+Li, j+Li ) - sijnij – sign with value of first 
element 

(0,0) – +1; DCTII 

(0,0) – +1; DSTII 

(8,0) – +2; DCTII 

(8,0) – +2; DSTII 

(8,4) – +2; DCTII 

(8,4) – +2; DSTII 

(12,0) – +4; DCTII 

(12,0) – +4; DSTII 

(13,0) – +0; DCTII 

(13,0) – +8; DSTII 

TABLE V. TABLE OF VALUES OF SIMPLIFIED ELEMENTS WITHOUT 

SIGNS OF MATRIX DSTII, N=8. 

k 
n 0: 1: 4: 13: 8: 9: 12: 5: 

0: 1 3 7 5 1 3 7 5 

2: 3 7 5 1 3 7 5 1 

8: 7 5 1 3 7 5 1 3 

26: 5 1 3 7 5 1 3 7 

16: 1 3 7 5 1 3 7 5 

18: 3 7 5 1 3 7 5 1 

24: 7 5 1 3 7 5 1 3 

10: 5 1 3 7 5 1 3 7 

1: 2 6 2 6 2 6 2 6 

5: 6 2 6 2 6 2 6 2 

17: 2 6 6 2 2 6 6 6 

21: 6 2 6 2 6 2 6 2 

3: 4 4 4 4 4 4 4 4 

11: 4 4 4 4 4 4 4 4 

7: 8 8 8 8 8 8 8 8 

The analysis of the structure of basis matrix (Table IV) 

defines the 8-point cyclic convolution with identical 

sequences, which resulted in four defined output data, 

and 4-point cyclic convolution with identical sequences, 

which resulted of two output data. The remaining two 

output data are determined through one point products. 

Basis matrix arguments resulted in a form of cyclic 

submatrices without signs can be reproduced with 

hashing arrays Pr(n), Pc(n). The matrix of simplified 

argument without signs of basis transform N=8 is 

presented in Table V, which corresponds to the 

generalized Table IV. 

Computation of cyclic convolution is performed for 

combined input data for identity and quasi identity 

submatrices selected for analysis horizontally and 

vertically. The resulting structure for DCT
II
/DST

II
/DHT

ІІ
 

of size N=8 consists of such components (Fig. 3): BRC – 

buffer register of coefficients, BRD – buffer register of 

input data, ±/Ui – element-wise addition/subtraction unit, 

n-point CCU - cyclic convolution unit, OBRD - buffer 

register of output data. 

4 - p

CCU

2 - p

CCU

1- p

CCU
-/U3

U4

BRC

BRD
±/U1

8-p.

module

x(n )  

w(n )  

±/U2

 -

+

 -

+

±/

1- p

CCU
U5±/

processing

O

B

R

D

X[n]

 

Figure 3. Structure of processing module DCTII/DSTII/DHTІІ of size 
N=8. 

The numbers of cyclic convolutions are the 4-point 

cyclic convolution and 2-point cyclic convolution, the 

remaining output data are determined through one point 

products (components denote edotted line - using for 

computation of DHT
ІІ
 only). The values of sequence w(n) 

of coefficients of BRC specifies P'c(n) in trigonometric 

function for φi=2πni/(T/2). Hashing array of Pc(n) 

specifies the order of input data BRD. Output data of 

transform in a result of computation are saved in OBRD. 

For example, consider the execution of the 

computation of DCT
II 

in
 
processing module. 

The order of sequence of coefficients: 

w(n)={cos (φ), cos (3φ), cos(7φ), cos(5φ), cos(2φ), 

cos(6φ), cos(4 φ)} 

where φ=π/16. 

The order of sequence of input data: 

x(n)=2{x(0),x(1),x(4),x(2),x(7),x(6),x(3),x(5)}, 

which are combined in corresponding element-wise 

addition/subtraction by consistent performances in the 

±/U1 unit: 

x(0)+x(7), x(1)+x(6), x(4)+x(3), x(2)+x(5); 

x(0)-x(7), x(1)-x(6), x(4)-x(3), x(2)-x(5); 

in the ±/U2 unit: 
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[(x(0)+x(7)]-[x(4)+x(3)],[(x(1)+x(6)]-[(x(2)+x(5)], 

[(x(0)+x(7))+(x(4)+x(3))], [(x(1)+x(6))+(x(2)+x(5))]; 

in the ±/U3 unit:  

[(x(0)+x(7))+(x(4)+x(3))]-[(x(1)+x(6))+(x(2)+x(5))]; 

in the ±/U4 unit: 

[(x(0)+x(7))+(x(4)+x(3))]+[(x(1)+x(6))+(x(2)+x(5))]. 

The cyclic submatrices have sequences with reiterative 

identical groups of elements for cyclic convolution in the 

form W(n)=(w1, w2, …, wm, -w1, -w2, …, -wm). 

Computation (Table IV) of the 8-point cyclic convolution 

is performed as 4-point cyclic convolution and 4-point 

cyclic convolution as 2-point cyclic convolution with 

identical sequences by the following formula: 












































1

0

10

10

1

0

)()m(W

)()m(W

)m(W)m(W

)m(W)m(W

Y

Y

XX

XX

X

X

       

(23) 

where   - cyclic convolution. 

B. The Structure of Inverse Computation of 

DCT
II
/DST

II
/DHT

ІІ
 for size N=8 Using Cyclic 

Convolutions 
 

The following relations hold for inverse 

DCT
II
/DST

II
/DHT

ІІ
 matrices are obtained as their 

transpose: 

(DCT
II
)

-1
=(DCT

II
)

T
=DCT

III
 

(DST
II
)

-1
=(DST

II
)

T
=DST

III
 

(DHT
II 

)
-1

=(DHT
II 

)
T 

=DHT
III

                 (24) 

Therefore, DCT
II
 and DCT

III
, DST

II
 and DST

III
, DHT

II
 

and DHT
III

 are inverses of each other. Information 

technologies widely use DCT
III

, DST
III

, DHT
III

 types, 

represented respectively by the form: 

for DCT
III 

1
3

0

2 (2 1)
( ) ( ) ( )cos[ ],  0,  1,  ...,  1

2

N
c

N

n

k n
X k n x n k N

N N









     (25) 

where α(n)=1/√2, if n=0; otherwise α(n)=1, 

for DST
III 

1
3

0

2 (2 1)( 1)
( ) ( ) ( )sin[ ],  0,  1,  ...,  1

2

N
s

N

n

k n
X k n x n k N

N N








 
    (26) 

where α(n)=1/√2, if n=N-1; otherwise α(n)=1, 

for DHT
III 

1
3

0

(2 1)
( ) ( )cas [ ],  0,  1,  ...,  1

N
h

N

n

k n
X k x n k N

N






         (27) 

In result of the definition (20) of cyclic decomposition 

of substitutions P(n) using rows/columns of argument, the 

basic matrix of the transforms of size N=8 hashing arrays 

are: 

for DCT
III 

Pc(16)=(1,3, 9, 5, 15,13,7,11)(2,6,14,10) (4,12)(8)(0) 

Pr(8)=(1,3,9,27,17,19,25,11)→(0,1,4,13,8,9,12,5) 

for DST
III 

Pc(16)=(0,2,8,26,16,18,24,10)(1,5,17,21)(3,11)(7)(15) 

Pr(8)=(1,3,9,27,17,19,25,11)→(0,1,4,13,8,9,12,5) 

for DHT
III 

Pr(8)=(1,13,9,5)(3,7,11,15) 

Pc(15)=(1,13,9,5)(3,7,11,15)(2,10)(6,14)(4,12)(0). 

Simplified hashing array (12-19) defines P'(n) 

complement of signs S(n), which have the following form: 

for DCT
III 

Pc’(16)=(1,3,7,5,1,3,7,5) (2,6,2,6)(4,4)(8)(0), 

Sc(16)=(+, +, -, +, -, -, +, -) (+, +, -, -) (+, -)(0)(+1); 

Pr’(n)=(1,3,7,5,1,3,7,5), 

Sc(16)=(+, +, -, +, -, -, +, -); 

for DST
III

 

Pс’(n)=(1,3,7,5,1,3,7,5)(2,6,2,6)(4,4)(8)(16), 

Ss(n)=(+, +, +, -, -, -, -, +)(+, +, -, -) (+, +) (+1)(0). 

Pr(n)=(1,3,7,5,1,3,7,5), 

Ss(n)=(+, +, +, -, -, -, -, +); 

for DHT
III

 

P’c(8)=(1,5,1,5)(1,5,1,5) (2,2) (6,6)(4,4)(0); 

Sh(n)=(+, -, -, +)(+, -, -, +)(+, -)(0,0)(+1,-1)(+1); 

Pr’(8)=(1,5,1,5)(1,5,1,5); 

Sh(n)=(+, -, -, +)(+, -, -, +); 

TABLE VI. TABLE OF COORDINATES AND FIRST ELEMENTS OF 

SUBMATRICES DHTIII, N=8. 

(i+Li, j+Li ) - sijnij – sign with value of first element 

(0,0) – 

+1; 

(0,4) – 

+1; 

(0,8) – +2; (0,10) – 

6; 

(0,12) – 

+0; 

(2,8) – +2; (2,10)– 6; 

(4,0) – 

+1; 

(4,4) – -

1; 

(4,8) – 6; (4,10) – 

+2; 

(4,12) –  

-0; 

(6,8) – 6; (4,12) – 

+2; 

TABLE VII. TABLE OF COORDINATES AND FIRST ELEMENTS OF 

SUBMATRICES DCTIII, DSTIII, N=8. 

(i+Li, j+Li ) - sijnij – sign with value of first element 

(0,0) – 

+1; 

(0,8) – 

+2; 

(0,12) – 

+4; 

(0,14) – 

+8; 

(0,15) – 

0; 

(2,12) – 

+4; 

(4,8) – 
+2; 

(4,12) – 
+4; 

(6,12) – 

+4; 

TABLE VIII. TABLE OF VALUES OF SIMPLIFIED ELEMENTS WITHOUT 

SIGNS OF MATRIX DCTII, DSTIII, N=8. 

1 3 7 5 1 3 7 5 2 6 2 6 4 4 8 0 

3 7 5 1 3 7 5 1 6 2 6 2 4 4 8 0 

7 5 1 3 7 5 1 3 2 6 2 6 4 4 8 0 

5 1 3 7 5 1 3 7 6 2 6 2 4 4 8 0 

1 3 7 5 1 3 7 5 2 6 2 6 4 4 8 0 

3 7 5 1 3 7 5 1 6 2 6 2 4 4 8 0 

7 5 1 3 7 5 1 3 2 6 2 6 4 4 8 0 

5 1 3 7 5 1 3 7 6 2 6 2 4 4 8 0 
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The analysis and finding of identical and quasi 
identical submatrices (with the same index, but opposite 

signs) in the structure of basis matrix is based on the 

values of parameters of hashing array P(n) and hashing 
array P’(n), supplemented array of signs. For Table VI 

and Table VII only the first elements of Hankel 
submatrices are identified in the analysis of the structure 

of the basis in coordinates for placement submatrices. 
The half of matrix of simplified arguments without 

signs of basis DCT
II
, DST

III
 transform for N=8 is 

presented in Table VIII, which corresponds to the 
generalized Table VII and its transpose of matrix for 

Table V. 
Consider the example for synthesis of algorithm and 

computation of DST
III

 N=8 also. For the contrary, with 

respect to DST
II
, basis matrix of arguments DST

III
 with 

elements for (11) contains the values (k+1) of the 

elements in the first row of quantity 31 and covers the 
entire period equal to 4N. The first column contains the 

values (2n+1) of quantity 16 and covers the entire period 
equal to 4N. 

Hashing array DST
III

 for column is more extended and 

equals to DST
II
: 

Pc(n)=(1,3,9,27,17,19,25,11)(31,29,23,5,15,13,7,2)(2,6,1

8,22)(30,26,14,10)(4,12)(28,20)(8,24)(16)(32). 

Permutation of number 32 columns is defined by the 

first horizontal row and the corresponding row in the 

matrix [(2k+1)(n+1)] mod 4N. Simplified hashing array 

for column permutation has the form: 

Pс’(n)=(1,3,7,5,1,3,7,5)(1,3,7,5,1,3,7,5)(2,6,2,6)(2,6,2,6) 

(4,4)(4,4) (8,8)(16)(0)’ 

Ss(n)=(+,+,+,-,-,-,-,+)(-,-,-,+,+,+,+,-)(+,+,-,-)(-,-,+,+) 

(+,+)(-,-)(+,-)(0)(0). 

Performance of element-wise additions of input data of 

simplified hashing array has the form: 

Pc(n)=(1,3,9,27,17,19,25,11)(2,6,18,22)(4,12)(8,24)(16) 

(32)→(0,2,8,26,16,18,24,10)(1,5,17,21)(3,11)(7)(15); 

Pс’(n)=(1,3,7,5,1,3,7,5)(2,6,2,6)(4,4)(8)(16), 

Ss(n)=(+,+,+,-,-,-,-,+)(+,+,-,-)(+,+)(+)(0). 

Hashing array for rows: 

Pr(n)=(1,3,9,27,17,19,25,11)→(0,1,4,13,8,9,12,5), 

The values of rows require transition (2n+1)→n from 

hashing array to the appropriate hashing array indexes of 

the rows Pr(n). 

Since basis matrix of DST
III

 is a transposed basis to 

DST
II
, rows and columns of the basis are rearranged. 

However, this approach, due to different indexing rows 

and columns, is a bit specific and perform element-wise 

additions of input data. 

The resulting structure of processing module for 

inverse DCTI
II
/DST

III
/DHT

ІIІ
 of size N=8 consists of such 

components (Fig. 4): BRC– buffer register of coefficients, 

BRD – buffer register of input data, ±/Ui – element-wise 

addition/subtraction unit, n-point CCU - cyclic 

convolution unit, “-” -inverse signs of the results of 

convolution, ∑ - output adder, OBRD - buffer register of 

output data. 

Combining the results of cyclic convolutions in Output 

adder is performed on the basis of coordinates of the first 

elements of submatrices horizontally (Table VI, VII). 

Since basis matrix of DCT
III 

/ DST
III

 / DHT
ІIІ

 is a 

transposed basis to DCT
II 

/ DST
II
 / DHT

ІІ
, and efficient 

computing can be synthesised by supplementing the 

Output adder to Structure of processing module (Fig. 4). 

O

B

R

D

X[n]∑

-

-

-

-

4 - p
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CCU
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Figure 4. Structure of processing module DCTIII/DSTIII/DHTІIІ of size 
N=8. 

V. RESULTS AND DISCUSSION 

The general approach is flexibility in the process of 

synthesis of corresponded algorithm for efficient 

computation of discrete harmonic transforms using cyclic 

convolutions. The distribution of cyclic submatrices in 

basis matrix structures and characteristics of hashing 

array P(n) determines the computational complexity of 

the algorithms. The main advantage of approach is 

availability of more than one hashing array P(n) for each 

type and size of transform, precisely: 

The hashing arrays have the following form, for 

example, for DCT
II
, DST

II 
of size

 
N=16: 

a) P(32)=P1(1) P2(2
4
) P3(2

3
) P4(2

2
) P5(2

1
) P6(2

0
), 

b) P(32)=P1(1) P2(2
3
) P3(2

3
) P4(2

2
) P5(2

2
) P6(2

1
) P7(2

1
) 

P8(2
0
) P9(2

0
) P10(2

0
), 

c) P(32)=P1(1)P2(2
2
) P3(2

2
) P4(2

2
) P5(2

2
)P6(2

1
) P7(2

1
) 

P8(2
1
) P9(2

1
) P10(2

0
)P11(2

0
) P12(2

0
) P13(2

0
) P14(2

0
) P15(2

0
) 

P16(2
0
), 

The hashing arrays have a variety set of elements in 

subarray, for example, for DHT
II 

of size
 
N=8: 

P(15)= (0 (1,13,9,5)(3,7,11,15)(2,10)(6,14)(4)(12), 

P’(15)= (1,5,1,5)(1,5,1,5) (2,2) (6,6) (4)(0); or 

P(15)= (1,3,9,11) (5,15,13,7) (2,6) (10,14) (4,12) (8), 

P’(15)= (1,1,1,1) (5,5,5,5) (2,6) (2,6) (0,0) (0). 

That further select hashing array P(n) of DHT
ІI
 for 

structure (Fig. 3) of processing module 

DCT
II
/DST

II
/DHT

ІІ
 of size N=8. However, the approach 

has a bit specific of performance element-wise additions 

of input data for cyclic convolutions. 

In general, computational expenses of proposed 

technique on the basis of cyclic convolutions on the stage 

of performance can be presented in the following form: 

  
i

IIIiI CCpCC ,                       (28) 

where С
+

I – addition/subtraction on the stage of unions of 

identical and quasi identical cyclic submatrices placed 

horizontally; Cpi
+,*

– arithmetic operations for 

International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014

©2014 Engineering and Technology Publishing 125



computation of p-point cyclic convolution, i- number of 

cyclic convolution; С
+

III – addition/subtraction on the 

stage of unions of the results of cyclic convolutions and 

some input data. The matrix structure defines optimal 

serial-parallel combination of the results of cyclic 

convolutions in the last stage of synthesis. Computation 

of cyclic convolutions includes all multiplications of 

algorithm for the discrete harmonic transforms. This 

approach of efficient computation uses availability of the 

fast convolution algorithms [18]. Moreover, the 

submatrices in basis matrix structures can be identical 

and quasi-identical, placed horizontally and vertically. 

These reduce the number of computations of cyclic 

convolution, because for identity and quasi-identity cyclic 

submatrices placed horizontally, we perform the 

computation of single cyclic convolution (first row 

submatrix and corresponding element-wise additions of 

input data) and use results only of single cyclic 

convolutions for all identity submatrices placed vertically.  

The number of arithmetic operations on the basis of 

this approach is largely dependent on the choice of fast 

cyclic convolution algorithm (with a minimum number of 

multiplications or balance in the operations of addition, 

and so on). The comparison the number of arithmetic 

operations from our approach using cyclic convolutions 

(with minimal numbers of multiplication) and the results 

obtained from the traditional approach [13], [19], [20] of 

existing algorithms for the size N=8 of transforms are 

presented in Table IX, where m - number of 

multiplication, a - number of addition/subtraction. 

TABLE IX. THE NUMBER OF ARITHMETIC OPERATIONS FOR 

EXAMPLES 

Transform Proposed method Traditional approach 

DHTІI, DHTІII N=8, m=6, a=26 N=8, m=4, a=18, [13] 

DCTІI, DCTІII N=8, m=8, a=33 N=8, m=12, a=29 [19] 

DSTІI, DSTІII N=8, m=8, a=37 N=8, m=9, a=24, [20] 

 

Determination of the number of operations for each 

type and size of transform requires specific analysis of 

the kernel resulting structure and optimization on stages 

of combining input data and results of convolutions. 

Similar to the resulting structure of processing module for 

direct and inverse DCTI
II
/DST

II
/DHT

ІI
 of size N=8, the 

computational structure for sizes of transforms N=2
n 

on 

basis general approach of efficient computation of 

discrete harmonic transform can be developed. 

TABLE X. THE SIZES OF CYCLIC CONVOLUTIONS OF DCTІI/DSTІI, 

N=2N 

N 4 8 16 32 64 128 ... 2n 

k 4 5 6 7 8 9 ... N+2 

L1 

L2 

… 

 
 

Lk 

2 
1 

4 
2 

1 

8 
4 

2 

1 

16 
8 

4 

2 
1 

 

32 
16 

8 

... 
2 

1 

64 
32 

16 

... 
2 

1 

 
 

... 

2n-1 

2n-2 

… 

22 

2 

1 

 

In case the computation DCT
ІI
/DST

ІI
 for size of 

transform N=2
n
(n=2, 3, …), using for the synthesis of the 

hashing array in the form a) P(2
n+1

)=P1(2
0
) P2(2

n
) P3(2

n-1
) 

P4(2
n-2

)…Pk-1(2
1
) Pk(2

0
), consists the set of the sizes of 

cyclic convolutions, which is presented in Table X, where 

k - number of subarrays in hashing array, Li - sizes of 

cyclic convolutions. 

The further researches of proposed approach would be 

sent to the structures of the other sizes of discrete 

harmonic transforms. The further researches of proposed 

approach would be sent to the structures of the other sizes 

of discrete harmonic transforms. 

VI. CONCLUSIONS 

The proposed general approach of efficient 

computation of discrete harmonic transforms of 

sequences of arbitrary number of points using cyclic 

convolutions is suitable for DCT, DST, DHT
 
type II/III 

transforms. The main characteristics of algorithm that 

specifies the types of transform are: function of basis 

arguments; initial dimension of basis matrix; sequences 

of input data; sequence of output data; convolution with 

identical sequences; version of hashing arrays; axes of 

symmetry for size of transform. As a result, the proposed 

algorithm of computation DCT, DST, DHT
 
type II/III 

using cyclic convolutions posses such advantages: 

 General method of using hashing array P(n), 

which corresponds to the cyclic decomposition of 

substitution of rows/columns from basis matrix of 

arguments, to arrive at an efficient conversion of 

the basis of an arbitrary length into parallel 

circular structures; 

 Analysis of the level of simplified hashing array 

P’(n) with supplement of respective subarray of 

S(n) signs reduces the amount of computation of 

cyclic convolutions; 

 An efficient scheme for the definition of identity 

and quasi identity cyclic submatrices are used in 

analysis of the structure of basic matrix of 

transforms; 

 The synthesis of algorithms, including 

determination of P(n), P’(n), S(n) with variety set 

of elements in subarray and analysis of the 

structure of basis matrix uses integer arithmetic. 

The general approach for the conversion of the discrete 

harmonic transform into convolution structures is now 

available and has been found to be very efficient for 

hardware implementation using VLSI technology. Indeed 

the circular formulation creates possibility to obtain 

modular structures, what consisting of the simple and 

regular elements. 
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