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Abstract—Hidden Markov model is well-known for its 

application in temporal pattern recognition. Its 

disadvantages are its computational expensive and very 

prone to numerically underflow. The focus of this paper is on 

the forward algorithm which computes the probability of a 

particular output sequence with respect to the HMM 

parameters. To make it feasible to implement on an 

embedded system, we propose a modified forward algorithm 

that makes use of integer only representation and operations. 

The outcome of these modifications is integrated into a 

motion type classification system used for elderly monitoring; 

7 motion types with 2×2 transition and 8 emission 

probabilities, on a low cost embedded system based on a 

32-bit ARM Cortex-M0+. The system is capable to perform 

with comparable classification correctness to the ordinary 

and the scaling coefficients algorithms. It outperforms the 

ordinary ones by taking 10 percent of time, 91 percent of code 

size and 54 percent of memory. It is capable of forcing the 

processor to sleep the longest with only 3.1ms execution time 

per second (8.7 and 3.1 percent of the ordinary and the 

scaling coefficients algorithms). This makes it more suitable 

for implementation on an embedded system. 
 

Index Terms—hidden markov model, embedded system, 

motion type classification, forward algorithm, elderly 

monitoring system 

 

I. INTRODUCTION 

A hidden Markov model [1], or HMM for short, is a 

statistical Markov model in which the system being 

modeled is assumed to be a Markov process with 

unobserved (hidden) states. A HMM can be considered as 

the simplest dynamic Bayesian network. The mathematics 

behind the HMM was developed by L. E. Baum and 

coworkers. It is closely related to an earlier work on 

optimal nonlinear filtering problem (stochastic processes) 

by Ruslan L. Stratonovich, who was the first to describe the 

forward-backward procedure. In simpler Markov models 

(like a Markov chain), the state is directly visible to the 

observer, and therefore the state transition probabilities are 

the only parameters. In a HMM, the state is not directly 

visible, but the output which is dependent on the state is 

visible. Each state has a probability distribution over the 

possible output tokens. Therefore the sequence of tokens 
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generated by an HMM gives some information about the 

sequence of states. Note that the adjective “hidden” refers 

to the state sequence through which the model passes, not 

to the parameters of the model. Even if the model 

parameters are known exactly, the model is still “hidden”. 

A HMM is especially known for its application in 

temporal pattern recognition such as speech, handwriting, 

gesture recognition, part-of-speech tagging, musical score 

following, partial discharges and bioinformatics. 

A HMM can be considered as a generalization of a 

mixture model where the hidden variables (or latent 

variables), which control the mixture component to be 

selected for each observation, are related through a 

Markov process rather than independent of each other. 

By definition [2], [3], a HMM has a set of hidden states, 

Q , an output alphabet (observations), O , transition 

probabilities, A , output (emission) probabilities, B , and 

initial state probabilities,  . The current state is not 

observable. Instead, each state produces an output with a 

certain probability ( B ). Usually the states, Q , and outputs, 

O , are understood, so an HMM is said to be a triple: 

),,( BA . Eq. (1) represents the formal definition of the 

HMM terms. 
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There are 3 canonical problems to solve with a HMM: 

1) Given the model parameters ),,( BA , compute 

the probability of a particular output sequence. This 

problem is solved by the forward, which is the focus 

of this paper, and Backward algorithms. 

2) Given the model parameters ),,( BA , find the 

most likely sequence of (hidden) states which could 

have generated a given output sequence. This 

problem is solved by the Viterbi algorithm and 

Posterior decoding. 

3) Given an output sequence, find the most likely set 

of state transition and output probabilities. This 

problem is solved by the Baum-Welch algorithm. 
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In practice, the Baum-Welch algorithm is used to find a 

set of unknown parameters, ( ,  ,  )A B  , of a HMM given 

different input sequences during the model training stage. 

The algorithm can be applied on a computer system with 

unlimited processing power and resources. Once all the set 

of parameters have already been created, the forward 

algorithm is then used to find the probability of a particular 

observation sequence O  with respect to the set of 

parameters. The model whose parameters give rise to the 

maximum probability is best matched to the observation 

sequence O . Many applications require implementing the 

forward algorithm on a platform with limited resources and 

less powerful; i.e. an embedded system platform. The 

drawbacks of the forward algorithm for the embedded 

system platform are its computational expensive and very 

prone to numerically underflow. It is the aim of this paper 

to present a modified forward algorithm that makes use of 

integer representation and operations. 

Automatic motion type classification is very useful in 

many application areas. The characteristics of the motion 

types and patterns can be used as an indicator of one's 

mobility level, latent chronic diseases and aging process 

[4]. The motion types can be employed to further make a 

decision if one is at risk; i.e. the motion type or the 

transition between the motion types may be risky and is 

likely to cause a fall or it is a fall motion pattern that 

requires an immediate attention. Alternatively, the motion 

types may be useful as an indication to request for a close 

observation/attention; i.e. a jogging is higher risk and 

requires a close attention than a normal walk especially for 

elderly people. The indication may be used to support the 

feature of a video surveillance system for monitoring 

elderly people. With respect to these examples of 

application areas in combination with the requirement to 

automate monitoring of elderly people as a result of “aging 

society”, the demands for an automatic motion 

classification have been increased. To observe and make 

relation to motion types, either an acceleration sensor or 

video system has been widely accepted as useful. 

The objective of this research is to design and develop a 

real-time automatic motion type classification and 

detection of fall motion pattern given the motion 

parameters sampled from the body attachment motion 

sensors (gyroscope and accelerometer). The HMM is 

employed to create a set of probabilistic models which are 

expected to be specific to each motion pattern. This means 

that given a motion pattern as an input for a set of 

probabilistic models, only a model whose internal 

representations is the most similar one will response with 

the highest probability. This is equivalent to saying that the 

HMM is used to recognize and classify motion patterns and 

differentiate between normal motion patterns and a fall 

motion pattern. As the HMM is computational expensive, 

in order to attain the real-time performance of the 

classification and detection algorithm, the alternative 

implementation of the HMM will be pursued. The 

algorithm is aimed to implement on an embedded system 

platform with available internal resources. 

The organization of this paper is as follow. In Sec. II, the 

literature survey on the topic of the forward algorithms is 

given. An integer representation and operations forward 

algorithm is then detailed in Sec. III. To illustrate the 

usefulness of the proposed algorithm, it is implemented as 

a motion type classification system on a low cost 

embedded system platform. This is described in Sec. IV. 

Finally, the paper is concluded in Sec. V. 

II. PREVIOUS WORK 

In this section, the background of the ordinary forward 

algorithm is given. Then, the previously proposed 

approaches to rectify the drawbacks of the algorithm are 

followed. Let )(it  be the probability of the partial 

observation sequence  Tt oooO ,....,, 21  to be 

produced by all possible state sequences that end at the 

i -th state. 

))(|,....,,()( 21 iTt qtqoooPi               (2) 

Then, the unconditional probability of the partial 

observation sequence is the sum of )(it  over all N  

states. 

The forward algorithm is a recursive algorithm for 

calculating )(it  for the observation sequence of 

increasing length t . First of all, the probabilities for the 

single-symbol sequence 
1o  are calculated by use of Eq. 

(3). 

Niobpi ii ,...,1,)()( 11                   (3) 

Then, the recursive formula given in Eq. (4) is applied. 
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)(iT  is eventually resulted after iterating Eq. (4) for 

1T  times. Finally, the required probability is obtained 

by summing )(iT over all states (Eq. (5)). 
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When implementing a HMM, floating-point underflow 

is a significant problem. It is apparent that when applying 

the forward algorithm to long sequences the extremely 

small probability values causes underflow on most 

machines. As the forward algorithm sums probability 

values, it is not a viable solution to apply log-operation to 

the values in order to avoid underflow. The most common 

solution to this problem is to use “scaling coefficients”' that 

keep the probability values in the dynamic range of the 

machine, and that are dependent only on t . 

The scaling coefficients forward algorithm rectifies the 

numerical underflow by scaling down all )(it in Eq. (4) 

in every iteration [4], [5]. The scaling factor should only 

depend on the current time index t , but be independent of 

International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014

©2014 Engineering and Technology Publishing 84



  

the state i . A commonly used scaling scheme for 

computing forward variables is by introducing the scaling 

factor 
tc  where: 
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                              (6) 

and replace )(it  with the numerical underflow safe 

)(ˆ it  which is defined by Eq. (7). 

)()(ˆ ici ttt                                (7) 

By doing these, the equation to calculate the probability 

is changed to be in the form: 

 

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Although, the scaling coefficients forward algorithm 

gives rise to the exact value of probability of the partial 

observation sequence, it is necessary to calculate the 

scaling factor 
tc  and use it to divide the )(it  of all states 

i , Eq. (8), in every iteration t . In addition, it requires 

invoking computational intensive functions of logarithm 

and exponential in the last step. This makes it unsuitable 

for embedded system implementation. 

According to our literature review, it has found that 

researchers in the field have continuously attempted to 

make it possible to operate the forward algorithm on a 

real-time basis. This is accomplished by porting the 

ordinary or scaling coefficients algorithms either to the 

GPU (Graphic Processing Unit) [4], [6] or the FPGA 

(Field Programmable Gate Array) [5], [7]. Different 

architectures and implementations have shown that the 

acceleration is impressive and significant as they make use 

of the parallelism within the target platforms. While the 

objective of our research is also to speed-up the overall 

operation of the forward algorithm, our target platform is 

focused to be an embedded system with a low cost and 

performance. 

III. AN INTEGER REPRESENTATION AND 

OPERATIONS FORWARD ALGORITHM 

A. The Proposed Forward Algorithm 

Our proposed algorithm is aimed to be implementable 

on an embedded system platform. It is designed to rely on 

using integer representation and operations. The overall 

side effect of performing these causes the final results to 

only approximate the exact value; i.e. Eq. (5). By selecting 

the suitable set parameters, to be mentioned shortly, the 

deviation is kept minimal. With respect to the proposed 

algorithm, during the preprocessing stage, the HMM 

parameters $A, B$ and   are scaled up to their nearest 

integer values by multiplying them with the scaling factors 

,  f fA B  and 
f , respectively. All scaling factors are 

chosen to be the power of two in order to simplify the 

probability, Eq. (5), calculation at the termination stage of 

the algorithm. As the right shifting operation can replace 

the complex division. 

 

Algorithm 1.  An integer representation and operations based hmm 

forward algorithm 

Our proposed algorithm is presented in Algorithm (1). 

During the operation of the algorithm, Eq. (3) and Eq. (4) 

are performed as usual. By scaling up the HMM 

parameters, the floating-point underflow is not possible. 

All parameters can be represented by integer number and 

the complex floating point operations can be substituted by 

integer operations. It could, however, cause the 

intermediate results to overflow. The additional steps taken 

after applying Eq. (4) are to check for the possible 

overflow of any )(it . If such case occurs, all  )(1 it  

are required to scale down by a factor of 
fD and the 

number of time that the 
fD  is applied to  )(1 it  is 

updated. Let 
dn be the number of time that the 

fD  is 

applied. It is initialized to be 0 at the preprocessing stage. 

The 
fD  and 

dn  will be used later to calculate the 

probability ),....,,( 21 ToooP at the termination stage of 

the algorithm. 
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At the termination stage of the algorithm, the probability 

),....,,( 21 ToooP  is equal to Eq. (5) multiplied by dn

fD  

and divided by 
f

n

f

n

f
dd BA 

1 . This can be described by Eq. 

(9): 
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As mentioned earlier that ,  f fA B  and 
f  are chosen 

to be the power of two. That is to say, their values are 

2 ,  2f fa b  and f
2 , respectively. 
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Similarly, 
fD  is also chosen to be the power of two 

which is fd
2  where  

ff Dd 2log . If the exact 

probability is required, the division operation can be 

substituted by the right shifting operation whose number of 

time is given in Eq. (11): 
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It is noticed that the denominator of Eq. (11) is always 

more than the nominator. This is equivalent to saying that 

the times to perform the right shifting operation is equal to: 

 
dffffd ndTbTaP  )1(           (12) 

With the introduction of the 
dP , the first term on the 

right hand side of Eq. (9) can now be called the 
nP  whose 

form is given in Eq. (13): 
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In practice, we have found that it is not necessary to find 

the exact value of probability; i.e. 
dn PP . Only the 

maximum probability from different HMMs is considered. 

The determination of the maximum probability that is free 

from division is proposed in Sec. III-C. 

B. Validation of the Proposed Algorithm 

From Eq. (9), it can be seen that the probability of our 

proposed algorithm is the product between the ordinary 

one and the ratio between the scaling up and down factors. 

During the operations, the ordinary intermediate 

probability value is totally scaled down by dn

fD . That is to 

say it is scaled down 
dn  times by 

fD . The intermediate 

probability value is also scaled up 1T  and T times by 

fA  and 
fB , respectively. In addition, it is scaled up by 

f  once during the initialization stage. The scaling down 

factors and the number of time they operate result in the 

denominator term in the equation. With the selections of 

,  ,  f f fA B   and 
fD  to be the power of two, the 

multiplication with the scaling up factors and division with 

scaling down factor, if required to perform, can simply be 

replaced by the simple to perform right and left shifting 

operations, respectively. 

C. The Proposed Algorithm for Determination of the 

Maximum Probability 

The determination of the maximum probability given 

the set of ),....,,( 21 ToooP  is very important. This is 

performed in order to find the best matching model; i.e. the 

model whose parameters gives rise to the maximum 

probability with respect to the observation sequence 

 Tt oooO ,....,, 21 . For instance, in our application the 

HMMs are trained with the captured acceleration data on a 

motion type by motion type basis. The model whose 

probability is the maximum corresponds to the queried 

motion type with respect to the output 

 Tt oooO ,....,, 21 . In this section, we present the 

details of the algorithm for determination of the maximum 

probability from a set of probabilities represented in the 

form given in Eq. (14): 

 
 kdddd

knnnn

PPPP

PPPP

,2,1,

,2,1,

,...,,

,...,,


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                (14) 

 

Algorithm 2.  The algorithm for determination of the index of the 

maximum probability 

The algorithm for determination of the maximum 

probability is shown in Algorithm 2. First of all, the 

algorithm checks if all members of the Pd are equal. If yes, 
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the index i  where  ki ,....,2,1  whose 
iP  is the 

maximum is the index of the maximum probability. The 

value of the maximum probability is, therefore, 
idP

inP

,2

,  or 

idin PP ,,  . Otherwise, the algorithm searches for the 

minimum min,dP  within dP . Then, the candidate set for 

determination of the maximum probability T  is created 

and all its members are initialized to be zero. The members 

of T  are replaced by 
jP  where  kj ,....,2,1  whose 

jdP ,  are equal to min,dP . Finally, it can simply be 

concluded that the index j  where  kj ,....,2,1  whose 

jT  is the maximum is the index of the maximum 

probability. Once again, the value of the maximum 

probability is defined by 
min,2 dP

jT
 or min,2 dP

jT  . It is 

obvious that the algorithm does not completely require 

finding the exact value of the probability. In addition, it 

does not take any division operation at all. In addition, if 

only the index of the maximum probability is required, 

even the right shift operation is not necessary to perform. 

IV. A SAMPLE APPLICATION OF THE PROPOSED 

ALGORITHM: A HMM-BASED MOTION TYPE 

CLASSIFIER 

In this section, the sample implementation of the 

proposed forward algorithm on an embedded system 

platform is described. The results, in terms of classification 

correctness, code size, memory requirement and execution 

time, are compared with the ordinary and the scaling 

coefficients forward algorithms. 

A. Acceleration Data Capturing 

In our sample application, the ADXL346 development 

board [8] was used as an acceleration data-logger. It was 

programmed to capture the data at 100Hz sampling rate 

with the maximum acceleration of 4G. During the data 

collection stage, the data-logger was firmly attached to the 

middle of the upper leg of the subject. Then, the subject 

was requested to repeatedly perform the same type of 

motion for a period of 5 minutes (total number of data are 

000,30100605  ). The captured motion types 

consisted of: 

1) Cycling 

2) Jogging 

3) Sit-stand-sit 

4) Motionless (i.e. Sitting or Standing) 

5) Walking  

6) Walking upstairs and downstairs 

7) Slow walking 

From this point on, the number preceding these motion 

types are also used to refer to the motion type. 

After obtaining the acceleration data for each motion 

type, the following steps were performed on a motion type 

by motion type basis to preprocess the data and make it 

ready for HMM construction: 

1) Transferred the acceleration data file from the 

MicroSD memory card of the ADXL346 to a 

personal computer. The acceleration data were 

stored to the file in the following format: index, 

hour, minute, second, second/128, ,  x yDa Da  and 

zDa . The first 5 fields are the time stamp. The last 

3 fields are the acceleration data sampled from the 

embedded acceleration sensor of the ADXL346. 

2) Replaced the time stamp with the more accurate 

delta time between a pair of sampled data, 

converted all sampled data from 

( ,  ,  )x y zDa Da Da  to ( ,  ,  )x y zA A A  by 

multiplying each field with 0.0039 and calculated 

the magnitude of acceleration data by using: 
222

zyx AAAA  . 

3) Selected only part of the acceleration data which 

were relevant to the captured motion type and kept 

only the continuous 3 minutes of acceleration data 

to the output file. 

B. HMMs Construction 

The Matlab scripts were coded to facilitate HMMs 

construction to produce a set of HMM parameters: 

iBA },,{  , where  7,....,2,1i  (there are 7 motion 

types as detailed in Sec. IV-A). Several experiments 

confirmed that the motion type classification correctness 

was the highest when HMMs were constructed by use of 

the acceleration data right away. Experiments were 

iteratively performed to find the set of HMM parameters 

and the best motion type classification results. The set 

chosen for implementation on the embedded system 

platform (details given in Sec.IV-C) must have small 

dimensions of both A  and B . As the dimension of A  is 

directly proportional to the required operations while the 

dimension of B  is directly proportional to the memory 

required to store the emission probabilities. In our 

implementation, the dimensions of A  and B  were chosen 

to be 2 and 16, respectively. This gave rise to the average 

verification result of motion type classification correctness 

of 79.9 % on a personal computer. Although the chosen 

configuration of HMM parameters for our implementation 

is fairly far from perfect in term of classification 

correctness, it is a good starting point to test the proposed 

algorithm. More configurations that could give rise to the 

higher motion type classification correctness are being 

pursued. 

C. HMMs Verification 

During the data capturing stage, the subject was also 

requested to perform the following sequence of motion 

types: motionless, sit-stand-sit, walking, jogging, cycling, 

walking upstairs and downstairs and slow walking. Each 

motion type was performed for a period of 1 minute. The 

captured acceleration data file was used to verify the 

motion type classification correctness. Experiments were 

performed on a personal computer by use of Matlab scripts 

to find the number of samples of data, which is equivalent 
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to the dimension of the observations O , which gave rise to 

the highest motion type classification correctness. This was 

found to be 100 samples. 

 
(a) 

 
(b) 

Figure 1.  The prototype of the embedded HMM based motion type 

classification platform: (a) The add-on Bluetooth module and (b) The 

overall embedded system. 

D. Implementations 

In order to compare the benefits of the proposed forward 

algorithm against the previously proposed ones, it was 

implemented on an embedded platform. The ordinary and 

the scaling coefficients forward algorithms were also 

coded on the same platform. The mBed compiler 

(www.mbed.org) was chosen as the main development tool. 

The target platform for all implementations was the 

Freescale KL25Z. The platform is an ultra-low-cost 

development platform for Kinetis L Series KL1x (KL14/15) 

and KL2x (KL24/25) MCUs built on ARM Cortex-M0+ 

processor. It embeds the MKL25Z128VLK4 MCU 

running at 48MHz with 128KB flash and 16KB SRAM. In 

addition to the platform, the Bluetooth module was 

interfaced to transmit the classification result to a personal 

computer. The prototype of the embedded platform is 

shown in Fig. 1. Followings were the details of the 

implementation: 

 Use a set of HMM parameters: 
iBA },,{   where 

 7,....,2,1i  previously trained on a personal 

computer by use of the Matlab scripts whose 

dimensions of A  and B  were 2 and 16, 

respectively. 

 Employ the state machine approach for processing 

all the forward algorithms. The timer interrupt is 

used to periodically capture the acceleration data at 

a period of 10 ms (100 Hz). Once data is captured, 

the forward algorithm is invoked to operate on the 

captured data, 
ko , in a k -state. As we have a set of 

7 HMMs (7 motion types), this means that the 

operations must be applied to all HMMs in a single 

state. After processing 100 samples of data, or 100 

states, all 7 probabilities are obtained, the maximum 

probability is resolved, and the motion type is 

determined. 

 Verification data were prepared to be in the form of 

a string consisting of a continuous sequence of 

characters. Each character represents the 

acceleration data whose value is in the range of 

]15,0[ . The verification data were transferred via a 

USB port to the platform instead of relying on the 

platform's embedded acceleration sensor. Doing 

this makes it easy for us to verify the motion type 

classification correctness between different 

implementations. 

 Measure the execution time taken in all states by use 

of the mBed’s built-in class: Timer. Also measure 

the code size and static memory requirement by use 

of the mBed’s program details. 

Followings are an algorithm specific implementation: 

 The ordinary and the scaling coefficients forward 

algorithms represent all data by use of double. It is 

noted that the float data type was previously 

employed in testing the implementation, it came out 

that the algorithms could not perform correctly 

when the number of state, which is equivalent to the 

sequence of acceleration data, is greater than 50. 

 The proposed forward algorithm represents all data 

by use of unsigned integer. The constants are 

chosen to be: 32,1024  fff BA  and 

536,65 BND . These constants were chosen 

as they gave rise to the values of 
nP  and 

dP  which 

were capable of handling by the embedded system 

platform and, at the same time, did not cause 

arithmetic overflow. 

With respect to the verification data, all 

implementations give rise to 100 % motion type 

classification correctness compared to the classification 

result running in offline mode by the matlab scripts on a 

personal computer. Fig. 2 illustrates: (top) the acceleration 

data waveform of different motion types and (bottom) the 

motion type classification results where the numbers on the 

y-axis represents the motion type; i.e. 1: Cycling, 2: 

Jogging, 3: Sit-stand-sit, 4: Motionless (Sitting). 
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Figure 2.  The acceleration data waveform and the motion type classification results.

E. Experimental Results and Discussions 

In order to proof the advantages of the proposed 

algorithm, the execution times in the three main states of 

the algorithm; the initialization  initT , the induction 

 indT  and the termination  termT  states, are measured and 

averaged during the verification. Table I presents the 

comparison of the execution times of all implementations. 

It is obvious that our proposed algorithm outperforms the 

ordinary and the scaling coefficients ones in all states. The 

scaling coefficients forward algorithm that was proposed 

to keep the probability values in the dynamic range of the 

machine is the slowest in term of execution times. This 

comes from the fact that it takes time to scale down the 

coefficients during the initialization and induction states. 

In addition, the algorithm spends time during the 

termination state in order to calculate the probabilities by 

use of computationally expensive operations of 

logarithmic and exponential. The ordinary forward 

algorithm performs better than the scaling coefficients one 

with faster execution times in all states. But it must be 

taken into account that our implementation makes use of 

the data representation which is capable to process a 

sequence of data without underflow. If the sequence of data 

is longer than 100 samples, it might cause the underflow 

problem and results in incorrect classification result. It is 

also possible to speed up the execution by reducing the size 

of the sequence of data to be less than 50 and make use of 

float data type in the implementation of the ordinary 

algorithm. However, the proposed algorithm still 

outperforms the ordinary one as it operates only on an 

integer data type. 

From the execution time in the three main states, it can 

be implied that the proposed algorithm forces the processor 

to sleep the longest. With the state machine approach of 

implementation driven by timer interrupt at a period of 10 

ms and the sequence of data of size 100, during one second 

the total execution time, defined by 

termindinit TTT  98 , of our proposed algorithm is only 

12 + 98 × 30 + 20 = 3.082ms. While the ordinary and the 

scaling coefficients forward algorithms take 107 + 98 × 

360 + 45 = 35.432ms and 316 + 98 × 570 + 44049 = 

100.225ms, respectively. Therefore, it can be concluded 

that our proposed algorithm is likely to consume the least 

power consumption. 

In addition to the execution time, the code size and the 

static memory requirement of all implementations are also 

considered. The results are shown in Table II. It can be 

seen that as a result of employing the integer representation 

and integer only operators the code size (Flash) and the 

RAM usage of our proposed forward algorithm are the 

minimum. 

TABLE I.  COMPARISON OF THE EXECUTION TIMES IN THE THREE MAIN 

STATES OF ALL IMPLEMENTATIONS 

State Execution Time (us) 

 Ordinary 

Algorithm 

Scaling 

Coefficients 

Our Proposed 

One 

initT  107 316 12 

indT  360 570 30 

termT  45 44,049 20 

 

 

Memory 

Type 

Memory Requirement (kB) 

Ordinary 

Algorithm 

Scaling 

Coefficients 

Our Proposed 

One 

Flash 19.6 23.3 17.8 

RAM 8.1 10.9 4.4 

V. CONCLUSION 

The hidden Markov model has a set of hidden states, Q , 

the output observations, O , transition probabilities, A , 

output (emission) probabilities, B , and initial state 

probabilities,  . Given the hidden Markov model 

parameters { ,  ,  }A B  , the forward algorithm computes 

the probability of a particular output sequence O . The 

drawback of the algorithm occurs when performing on a 

long output sequence, the extremely small probability 

values causes underflow on most machines. The most 

common solution to this problem is to use scaling 
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TABLE II. COMPARISON OF THE CODE SIZE AND THE STATIC MEMORY 

REQUIREMENT OF ALL IMPLEMENTATIONS



  

coefficients that keep the probability values in the dynamic 

range of the machine, and that are independent of the size 

of the observation sequence. In this paper, the forward 

algorithm targeted for embedded platform implementation 

is proposed. In contrast to the previously proposed 

algorithms that rely on representing and operating on 

floating point data type (float or double), our algorithm 

uses all integer representation and operations. The sample 

application of the proposed algorithm is described to be 

used for embedded motion type classification; 7 motion 

types with 2×2 transition probabilities and 16  emission 

probabilities, whose processor is a 32-bit ARM 

Cortex-M0+. The classification results are proved to be 

comparable to the ordinary and the scaling coefficients 

forward algorithms. The benefits of the proposed 

algorithm are three folds which are: reduction of the 

execution times, code size, and memory requirement. 

Additionally, the algorithm seems to force the processor to 

sleep the longest. That is to say its total execution time is 

only 3.082ms per second while the ordinary and the scaling 

coefficients forward algorithm take 35.432 and 100.224ms, 

respectively. This confirms that the proposed algorithm 

preserves the overall power of the target embedded system 

platform. 
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