

A Modified HMM Forward Algorithm for an

Embedded Motion Type Classification

W. Kurdthongmee
Division of Computer Engineering, School of Engineering and Reources, Walailak University, Nakorn-si-thammarat,

Thailand

Email: kwattana@wu.ac.th

Abstract—Hidden Markov model is well-known for its

application in temporal pattern recognition. Its

disadvantages are its computational expensive and very

prone to numerically underflow. The focus of this paper is on

the forward algorithm which computes the probability of a

particular output sequence with respect to the HMM

parameters. To make it feasible to implement on an

embedded system, we propose a modified forward algorithm

that makes use of integer only representation and operations.

The outcome of these modifications is integrated into a

motion type classification system used for elderly monitoring;

7 motion types with 2×2 transition and 8 emission

probabilities, on a low cost embedded system based on a

32-bit ARM Cortex-M0+. The system is capable to perform

with comparable classification correctness to the ordinary

and the scaling coefficients algorithms. It outperforms the

ordinary ones by taking 10 percent of time, 91 percent of code

size and 54 percent of memory. It is capable of forcing the

processor to sleep the longest with only 3.1ms execution time

per second (8.7 and 3.1 percent of the ordinary and the

scaling coefficients algorithms). This makes it more suitable

for implementation on an embedded system.


Index Terms—hidden markov model, embedded system,

motion type classification, forward algorithm, elderly

monitoring system

I. INTRODUCTION

A hidden Markov model [1], or HMM for short, is a

statistical Markov model in which the system being

modeled is assumed to be a Markov process with

unobserved (hidden) states. A HMM can be considered as

the simplest dynamic Bayesian network. The mathematics

behind the HMM was developed by L. E. Baum and

coworkers. It is closely related to an earlier work on

optimal nonlinear filtering problem (stochastic processes)

by Ruslan L. Stratonovich, who was the first to describe the

forward-backward procedure. In simpler Markov models

(like a Markov chain), the state is directly visible to the

observer, and therefore the state transition probabilities are

the only parameters. In a HMM, the state is not directly

visible, but the output which is dependent on the state is

visible. Each state has a probability distribution over the

possible output tokens. Therefore the sequence of tokens

Manuscript received April 15, 2014; revised June 30, 2014.

generated by an HMM gives some information about the

sequence of states. Note that the adjective “hidden” refers

to the state sequence through which the model passes, not

to the parameters of the model. Even if the model

parameters are known exactly, the model is still “hidden”.

A HMM is especially known for its application in

temporal pattern recognition such as speech, handwriting,

gesture recognition, part-of-speech tagging, musical score

following, partial discharges and bioinformatics.

A HMM can be considered as a generalization of a

mixture model where the hidden variables (or latent

variables), which control the mixture component to be

selected for each observation, are related through a

Markov process rather than independent of each other.

By definition [2], [3], a HMM has a set of hidden states,

Q , an output alphabet (observations), O , transition

probabilities, A , output (emission) probabilities, B , and

initial state probabilities,  . The current state is not

observable. Instead, each state produces an output with a

certain probability (B). Usually the states, Q , and outputs,

O , are understood, so an HMM is said to be a triple:

),,(BA . Eq. (1) represents the formal definition of the

HMM terms.

 

 
 

 

 )(

)|()(

,...,1,

)|(

,...,1,

1,

,1,















tii

ikkiik

k

titjij

i

qP

qoPobbB

MkoO

qqPaA

NiqQ



 (1)

There are 3 canonical problems to solve with a HMM:

1) Given the model parameters),,(BA , compute

the probability of a particular output sequence. This

problem is solved by the forward, which is the focus

of this paper, and Backward algorithms.

2) Given the model parameters),,(BA , find the

most likely sequence of (hidden) states which could

have generated a given output sequence. This

problem is solved by the Viterbi algorithm and

Posterior decoding.

3) Given an output sequence, find the most likely set

of state transition and output probabilities. This

problem is solved by the Baum-Welch algorithm.

International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014

©2014 Engineering and Technology Publishing 83
doi: 10.12720/ijsps.2.2.83-90

In practice, the Baum-Welch algorithm is used to find a

set of unknown parameters, (, ,)A B  , of a HMM given

different input sequences during the model training stage.

The algorithm can be applied on a computer system with

unlimited processing power and resources. Once all the set

of parameters have already been created, the forward

algorithm is then used to find the probability of a particular

observation sequence O with respect to the set of

parameters. The model whose parameters give rise to the

maximum probability is best matched to the observation

sequence O . Many applications require implementing the

forward algorithm on a platform with limited resources and

less powerful; i.e. an embedded system platform. The

drawbacks of the forward algorithm for the embedded

system platform are its computational expensive and very

prone to numerically underflow. It is the aim of this paper

to present a modified forward algorithm that makes use of

integer representation and operations.

Automatic motion type classification is very useful in

many application areas. The characteristics of the motion

types and patterns can be used as an indicator of one's

mobility level, latent chronic diseases and aging process

[4]. The motion types can be employed to further make a

decision if one is at risk; i.e. the motion type or the

transition between the motion types may be risky and is

likely to cause a fall or it is a fall motion pattern that

requires an immediate attention. Alternatively, the motion

types may be useful as an indication to request for a close

observation/attention; i.e. a jogging is higher risk and

requires a close attention than a normal walk especially for

elderly people. The indication may be used to support the

feature of a video surveillance system for monitoring

elderly people. With respect to these examples of

application areas in combination with the requirement to

automate monitoring of elderly people as a result of “aging

society”, the demands for an automatic motion

classification have been increased. To observe and make

relation to motion types, either an acceleration sensor or

video system has been widely accepted as useful.

The objective of this research is to design and develop a

real-time automatic motion type classification and

detection of fall motion pattern given the motion

parameters sampled from the body attachment motion

sensors (gyroscope and accelerometer). The HMM is

employed to create a set of probabilistic models which are

expected to be specific to each motion pattern. This means

that given a motion pattern as an input for a set of

probabilistic models, only a model whose internal

representations is the most similar one will response with

the highest probability. This is equivalent to saying that the

HMM is used to recognize and classify motion patterns and

differentiate between normal motion patterns and a fall

motion pattern. As the HMM is computational expensive,

in order to attain the real-time performance of the

classification and detection algorithm, the alternative

implementation of the HMM will be pursued. The

algorithm is aimed to implement on an embedded system

platform with available internal resources.

The organization of this paper is as follow. In Sec. II, the

literature survey on the topic of the forward algorithms is

given. An integer representation and operations forward

algorithm is then detailed in Sec. III. To illustrate the

usefulness of the proposed algorithm, it is implemented as

a motion type classification system on a low cost

embedded system platform. This is described in Sec. IV.

Finally, the paper is concluded in Sec. V.

II. PREVIOUS WORK

In this section, the background of the ordinary forward

algorithm is given. Then, the previously proposed

approaches to rectify the drawbacks of the algorithm are

followed. Let)(it be the probability of the partial

observation sequence  Tt oooO ,....,, 21 to be

produced by all possible state sequences that end at the

i -th state.

))(|,....,,()(21 iTt qtqoooPi  (2)

Then, the unconditional probability of the partial

observation sequence is the sum of)(it over all N

states.

The forward algorithm is a recursive algorithm for

calculating)(it for the observation sequence of

increasing length t . First of all, the probabilities for the

single-symbol sequence
1o are calculated by use of Eq.

(3).

Niobpi ii ,...,1,)()(11  (3)

Then, the recursive formula given in Eq. (4) is applied.

1,...,1,...,1

)()()(1

1

1t











 



 

TtNi

obaji ti

N

j

jit (4)

)(iT is eventually resulted after iterating Eq. (4) for

1T times. Finally, the required probability is obtained

by summing)(iT over all states (Eq. (5)).





N

j

TT joooP
1

21)(),....,,( (5)

When implementing a HMM, floating-point underflow

is a significant problem. It is apparent that when applying

the forward algorithm to long sequences the extremely

small probability values causes underflow on most

machines. As the forward algorithm sums probability

values, it is not a viable solution to apply log-operation to

the values in order to avoid underflow. The most common

solution to this problem is to use “scaling coefficients”' that

keep the probability values in the dynamic range of the

machine, and that are dependent only on t .

The scaling coefficients forward algorithm rectifies the

numerical underflow by scaling down all)(it in Eq. (4)

in every iteration [4], [5]. The scaling factor should only

depend on the current time index t , but be independent of

International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014

©2014 Engineering and Technology Publishing 84

the state i . A commonly used scaling scheme for

computing forward variables is by introducing the scaling

factor
tc where:





N

i

t

t

i

c

1

)(

1



 (6)

and replace)(it with the numerical underflow safe

)(ˆ it which is defined by Eq. (7).

)()(ˆ ici ttt   (7)

By doing these, the equation to calculate the probability

is changed to be in the form:

 







 



N

i

TT ioooP
1

21)(ˆlogexp),....,,( (8)

Although, the scaling coefficients forward algorithm

gives rise to the exact value of probability of the partial

observation sequence, it is necessary to calculate the

scaling factor
tc and use it to divide the)(it of all states

i , Eq. (8), in every iteration t . In addition, it requires

invoking computational intensive functions of logarithm

and exponential in the last step. This makes it unsuitable

for embedded system implementation.

According to our literature review, it has found that

researchers in the field have continuously attempted to

make it possible to operate the forward algorithm on a

real-time basis. This is accomplished by porting the

ordinary or scaling coefficients algorithms either to the

GPU (Graphic Processing Unit) [4], [6] or the FPGA

(Field Programmable Gate Array) [5], [7]. Different

architectures and implementations have shown that the

acceleration is impressive and significant as they make use

of the parallelism within the target platforms. While the

objective of our research is also to speed-up the overall

operation of the forward algorithm, our target platform is

focused to be an embedded system with a low cost and

performance.

III. AN INTEGER REPRESENTATION AND

OPERATIONS FORWARD ALGORITHM

A. The Proposed Forward Algorithm

Our proposed algorithm is aimed to be implementable

on an embedded system platform. It is designed to rely on

using integer representation and operations. The overall

side effect of performing these causes the final results to

only approximate the exact value; i.e. Eq. (5). By selecting

the suitable set parameters, to be mentioned shortly, the

deviation is kept minimal. With respect to the proposed

algorithm, during the preprocessing stage, the HMM

parameters A, B and  are scaled up to their nearest

integer values by multiplying them with the scaling factors

, f fA B and
f , respectively. All scaling factors are

chosen to be the power of two in order to simplify the

probability, Eq. (5), calculation at the termination stage of

the algorithm. As the right shifting operation can replace

the complex division.

Algorithm 1. An integer representation and operations based hmm

forward algorithm

Our proposed algorithm is presented in Algorithm (1).

During the operation of the algorithm, Eq. (3) and Eq. (4)

are performed as usual. By scaling up the HMM

parameters, the floating-point underflow is not possible.

All parameters can be represented by integer number and

the complex floating point operations can be substituted by

integer operations. It could, however, cause the

intermediate results to overflow. The additional steps taken

after applying Eq. (4) are to check for the possible

overflow of any)(it . If such case occurs, all  )(1 it

are required to scale down by a factor of
fD and the

number of time that the
fD is applied to  )(1 it is

updated. Let
dn be the number of time that the

fD is

applied. It is initialized to be 0 at the preprocessing stage.

The
fD and

dn will be used later to calculate the

probability),....,,(21 ToooP at the termination stage of

the algorithm.

International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014

©2014 Engineering and Technology Publishing 85

At the termination stage of the algorithm, the probability

),....,,(21 ToooP is equal to Eq. (5) multiplied by dn

fD

and divided by
f

n

f

n

f
dd BA 

1 . This can be described by Eq.

(9):

f

T

f

T

f

n

f
N

j

TT
BA

D
joooP

d







 1
1

21)(),....,,( (9)

As mentioned earlier that , f fA B and
f are chosen

to be the power of two. That is to say, their values are

2 , 2f fa b and f
2 , respectively.

 
 
 

ff

ff

ff

Bb

Aa







2

2

2

log

log

log



 (10)

Similarly,
fD is also chosen to be the power of two

which is fd
2 where  

ff Dd 2log . If the exact

probability is required, the division operation can be

substituted by the right shifting operation whose number of

time is given in Eq. (11):

fff

df

fff

df

TbTa

nd

TbTa

nd

 


)1()1(
2

2

222

2
 (11)

It is noticed that the denominator of Eq. (11) is always

more than the nominator. This is equivalent to saying that

the times to perform the right shifting operation is equal to:

 
dffffd ndTbTaP  )1((12)

With the introduction of the
dP , the first term on the

right hand side of Eq. (9) can now be called the
nP whose

form is given in Eq. (13):





N

j

jn TP
1

)( (13)

In practice, we have found that it is not necessary to find

the exact value of probability; i.e.
dn PP . Only the

maximum probability from different HMMs is considered.

The determination of the maximum probability that is free

from division is proposed in Sec. III-C.

B. Validation of the Proposed Algorithm

From Eq. (9), it can be seen that the probability of our

proposed algorithm is the product between the ordinary

one and the ratio between the scaling up and down factors.

During the operations, the ordinary intermediate

probability value is totally scaled down by dn

fD . That is to

say it is scaled down
dn times by

fD . The intermediate

probability value is also scaled up 1T and T times by

fA and
fB , respectively. In addition, it is scaled up by

f once during the initialization stage. The scaling down

factors and the number of time they operate result in the

denominator term in the equation. With the selections of

, , f f fA B  and
fD to be the power of two, the

multiplication with the scaling up factors and division with

scaling down factor, if required to perform, can simply be

replaced by the simple to perform right and left shifting

operations, respectively.

C. The Proposed Algorithm for Determination of the

Maximum Probability

The determination of the maximum probability given

the set of),....,,(21 ToooP is very important. This is

performed in order to find the best matching model; i.e. the

model whose parameters gives rise to the maximum

probability with respect to the observation sequence

 Tt oooO ,....,, 21 . For instance, in our application the

HMMs are trained with the captured acceleration data on a

motion type by motion type basis. The model whose

probability is the maximum corresponds to the queried

motion type with respect to the output

 Tt oooO ,....,, 21 . In this section, we present the

details of the algorithm for determination of the maximum

probability from a set of probabilities represented in the

form given in Eq. (14):

 
 kdddd

knnnn

PPPP

PPPP

,2,1,

,2,1,

,...,,

,...,,




 (14)

Algorithm 2. The algorithm for determination of the index of the

maximum probability

The algorithm for determination of the maximum

probability is shown in Algorithm 2. First of all, the

algorithm checks if all members of the Pd are equal. If yes,

International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014

©2014 Engineering and Technology Publishing 86

the index i where  ki ,....,2,1 whose
iP is the

maximum is the index of the maximum probability. The

value of the maximum probability is, therefore,
idP

inP

,2

, or

idin PP ,,  . Otherwise, the algorithm searches for the

minimum min,dP within dP . Then, the candidate set for

determination of the maximum probability T is created

and all its members are initialized to be zero. The members

of T are replaced by
jP where  kj ,....,2,1 whose

jdP , are equal to min,dP . Finally, it can simply be

concluded that the index j where  kj ,....,2,1 whose

jT is the maximum is the index of the maximum

probability. Once again, the value of the maximum

probability is defined by
min,2 dP

jT
 or min,2 dP

jT  . It is

obvious that the algorithm does not completely require

finding the exact value of the probability. In addition, it

does not take any division operation at all. In addition, if

only the index of the maximum probability is required,

even the right shift operation is not necessary to perform.

IV. A SAMPLE APPLICATION OF THE PROPOSED

ALGORITHM: A HMM-BASED MOTION TYPE

CLASSIFIER

In this section, the sample implementation of the

proposed forward algorithm on an embedded system

platform is described. The results, in terms of classification

correctness, code size, memory requirement and execution

time, are compared with the ordinary and the scaling

coefficients forward algorithms.

A. Acceleration Data Capturing

In our sample application, the ADXL346 development

board [8] was used as an acceleration data-logger. It was

programmed to capture the data at 100Hz sampling rate

with the maximum acceleration of 4G. During the data

collection stage, the data-logger was firmly attached to the

middle of the upper leg of the subject. Then, the subject

was requested to repeatedly perform the same type of

motion for a period of 5 minutes (total number of data are

000,30100605 ). The captured motion types

consisted of:

1) Cycling

2) Jogging

3) Sit-stand-sit

4) Motionless (i.e. Sitting or Standing)

5) Walking

6) Walking upstairs and downstairs

7) Slow walking

From this point on, the number preceding these motion

types are also used to refer to the motion type.

After obtaining the acceleration data for each motion

type, the following steps were performed on a motion type

by motion type basis to preprocess the data and make it

ready for HMM construction:

1) Transferred the acceleration data file from the

MicroSD memory card of the ADXL346 to a

personal computer. The acceleration data were

stored to the file in the following format: index,

hour, minute, second, second/128, , x yDa Da and

zDa . The first 5 fields are the time stamp. The last

3 fields are the acceleration data sampled from the

embedded acceleration sensor of the ADXL346.

2) Replaced the time stamp with the more accurate

delta time between a pair of sampled data,

converted all sampled data from

(, ,)x y zDa Da Da to (, ,)x y zA A A by

multiplying each field with 0.0039 and calculated

the magnitude of acceleration data by using:
222

zyx AAAA  .

3) Selected only part of the acceleration data which

were relevant to the captured motion type and kept

only the continuous 3 minutes of acceleration data

to the output file.

B. HMMs Construction

The Matlab scripts were coded to facilitate HMMs

construction to produce a set of HMM parameters:

iBA },,{  , where  7,....,2,1i (there are 7 motion

types as detailed in Sec. IV-A). Several experiments

confirmed that the motion type classification correctness

was the highest when HMMs were constructed by use of

the acceleration data right away. Experiments were

iteratively performed to find the set of HMM parameters

and the best motion type classification results. The set

chosen for implementation on the embedded system

platform (details given in Sec.IV-C) must have small

dimensions of both A and B . As the dimension of A is

directly proportional to the required operations while the

dimension of B is directly proportional to the memory

required to store the emission probabilities. In our

implementation, the dimensions of A and B were chosen

to be 2 and 16, respectively. This gave rise to the average

verification result of motion type classification correctness

of 79.9 % on a personal computer. Although the chosen

configuration of HMM parameters for our implementation

is fairly far from perfect in term of classification

correctness, it is a good starting point to test the proposed

algorithm. More configurations that could give rise to the

higher motion type classification correctness are being

pursued.

C. HMMs Verification

During the data capturing stage, the subject was also

requested to perform the following sequence of motion

types: motionless, sit-stand-sit, walking, jogging, cycling,

walking upstairs and downstairs and slow walking. Each

motion type was performed for a period of 1 minute. The

captured acceleration data file was used to verify the

motion type classification correctness. Experiments were

performed on a personal computer by use of Matlab scripts

to find the number of samples of data, which is equivalent

International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014

©2014 Engineering and Technology Publishing 87

to the dimension of the observations O , which gave rise to

the highest motion type classification correctness. This was

found to be 100 samples.

(a)

(b)

Figure 1. The prototype of the embedded HMM based motion type

classification platform: (a) The add-on Bluetooth module and (b) The

overall embedded system.

D. Implementations

In order to compare the benefits of the proposed forward

algorithm against the previously proposed ones, it was

implemented on an embedded platform. The ordinary and

the scaling coefficients forward algorithms were also

coded on the same platform. The mBed compiler

(www.mbed.org) was chosen as the main development tool.

The target platform for all implementations was the

Freescale KL25Z. The platform is an ultra-low-cost

development platform for Kinetis L Series KL1x (KL14/15)

and KL2x (KL24/25) MCUs built on ARM Cortex-M0+

processor. It embeds the MKL25Z128VLK4 MCU

running at 48MHz with 128KB flash and 16KB SRAM. In

addition to the platform, the Bluetooth module was

interfaced to transmit the classification result to a personal

computer. The prototype of the embedded platform is

shown in Fig. 1. Followings were the details of the

implementation:

 Use a set of HMM parameters:
iBA },,{  where

 7,....,2,1i previously trained on a personal

computer by use of the Matlab scripts whose

dimensions of A and B were 2 and 16,

respectively.

 Employ the state machine approach for processing

all the forward algorithms. The timer interrupt is

used to periodically capture the acceleration data at

a period of 10 ms (100 Hz). Once data is captured,

the forward algorithm is invoked to operate on the

captured data,
ko , in a k -state. As we have a set of

7 HMMs (7 motion types), this means that the

operations must be applied to all HMMs in a single

state. After processing 100 samples of data, or 100

states, all 7 probabilities are obtained, the maximum

probability is resolved, and the motion type is

determined.

 Verification data were prepared to be in the form of

a string consisting of a continuous sequence of

characters. Each character represents the

acceleration data whose value is in the range of

]15,0[. The verification data were transferred via a

USB port to the platform instead of relying on the

platform's embedded acceleration sensor. Doing

this makes it easy for us to verify the motion type

classification correctness between different

implementations.

 Measure the execution time taken in all states by use

of the mBed’s built-in class: Timer. Also measure

the code size and static memory requirement by use

of the mBed’s program details.

Followings are an algorithm specific implementation:

 The ordinary and the scaling coefficients forward

algorithms represent all data by use of double. It is

noted that the float data type was previously

employed in testing the implementation, it came out

that the algorithms could not perform correctly

when the number of state, which is equivalent to the

sequence of acceleration data, is greater than 50.

 The proposed forward algorithm represents all data

by use of unsigned integer. The constants are

chosen to be: 32,1024  fff BA and

536,65 BND . These constants were chosen

as they gave rise to the values of
nP and

dP which

were capable of handling by the embedded system

platform and, at the same time, did not cause

arithmetic overflow.

With respect to the verification data, all

implementations give rise to 100 % motion type

classification correctness compared to the classification

result running in offline mode by the matlab scripts on a

personal computer. Fig. 2 illustrates: (top) the acceleration

data waveform of different motion types and (bottom) the

motion type classification results where the numbers on the

y-axis represents the motion type; i.e. 1: Cycling, 2:

Jogging, 3: Sit-stand-sit, 4: Motionless (Sitting).

International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014

©2014 Engineering and Technology Publishing 88

Figure 2. The acceleration data waveform and the motion type classification results.

E. Experimental Results and Discussions

In order to proof the advantages of the proposed

algorithm, the execution times in the three main states of

the algorithm; the initialization  initT , the induction

 indT and the termination  termT states, are measured and

averaged during the verification. Table I presents the

comparison of the execution times of all implementations.

It is obvious that our proposed algorithm outperforms the

ordinary and the scaling coefficients ones in all states. The

scaling coefficients forward algorithm that was proposed

to keep the probability values in the dynamic range of the

machine is the slowest in term of execution times. This

comes from the fact that it takes time to scale down the

coefficients during the initialization and induction states.

In addition, the algorithm spends time during the

termination state in order to calculate the probabilities by

use of computationally expensive operations of

logarithmic and exponential. The ordinary forward

algorithm performs better than the scaling coefficients one

with faster execution times in all states. But it must be

taken into account that our implementation makes use of

the data representation which is capable to process a

sequence of data without underflow. If the sequence of data

is longer than 100 samples, it might cause the underflow

problem and results in incorrect classification result. It is

also possible to speed up the execution by reducing the size

of the sequence of data to be less than 50 and make use of

float data type in the implementation of the ordinary

algorithm. However, the proposed algorithm still

outperforms the ordinary one as it operates only on an

integer data type.

From the execution time in the three main states, it can

be implied that the proposed algorithm forces the processor

to sleep the longest. With the state machine approach of

implementation driven by timer interrupt at a period of 10

ms and the sequence of data of size 100, during one second

the total execution time, defined by

termindinit TTT  98 , of our proposed algorithm is only

12 + 98 × 30 + 20 = 3.082ms. While the ordinary and the

scaling coefficients forward algorithms take 107 + 98 ×

360 + 45 = 35.432ms and 316 + 98 × 570 + 44049 =

100.225ms, respectively. Therefore, it can be concluded

that our proposed algorithm is likely to consume the least

power consumption.

In addition to the execution time, the code size and the

static memory requirement of all implementations are also

considered. The results are shown in Table II. It can be

seen that as a result of employing the integer representation

and integer only operators the code size (Flash) and the

RAM usage of our proposed forward algorithm are the

minimum.

TABLE I. COMPARISON OF THE EXECUTION TIMES IN THE THREE MAIN

STATES OF ALL IMPLEMENTATIONS

State Execution Time (us)

 Ordinary

Algorithm

Scaling

Coefficients

Our Proposed

One

initT 107 316 12

indT 360 570 30

termT 45 44,049 20

Memory

Type

Memory Requirement (kB)

Ordinary

Algorithm

Scaling

Coefficients

Our Proposed

One

Flash 19.6 23.3 17.8

RAM 8.1 10.9 4.4

V. CONCLUSION

The hidden Markov model has a set of hidden states, Q ,

the output observations, O , transition probabilities, A ,

output (emission) probabilities, B , and initial state

probabilities,  . Given the hidden Markov model

parameters { , , }A B  , the forward algorithm computes

the probability of a particular output sequence O . The

drawback of the algorithm occurs when performing on a

long output sequence, the extremely small probability

values causes underflow on most machines. The most

common solution to this problem is to use scaling

International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014

©2014 Engineering and Technology Publishing 89

TABLE II. COMPARISON OF THE CODE SIZE AND THE STATIC MEMORY

REQUIREMENT OF ALL IMPLEMENTATIONS

coefficients that keep the probability values in the dynamic

range of the machine, and that are independent of the size

of the observation sequence. In this paper, the forward

algorithm targeted for embedded platform implementation

is proposed. In contrast to the previously proposed

algorithms that rely on representing and operating on

floating point data type (float or double), our algorithm

uses all integer representation and operations. The sample

application of the proposed algorithm is described to be

used for embedded motion type classification; 7 motion

types with 2×2 transition probabilities and 16 emission

probabilities, whose processor is a 32-bit ARM

Cortex-M0+. The classification results are proved to be

comparable to the ordinary and the scaling coefficients

forward algorithms. The benefits of the proposed

algorithm are three folds which are: reduction of the

execution times, code size, and memory requirement.

Additionally, the algorithm seems to force the processor to

sleep the longest. That is to say its total execution time is

only 3.082ms per second while the ordinary and the scaling

coefficients forward algorithm take 35.432 and 100.224ms,

respectively. This confirms that the proposed algorithm

preserves the overall power of the target embedded system

platform.

ACKNOWLEDGMENT

This work was funded by Walailak University under

project: Development of a Hidden Markov Based System

for Motion Types Recognition and Classification from

Body Attachment Sensors and Optimization of a Hidden

Markov Model Based Fall Detection Algorithm for

Embedded System Platform. The author would like to

thank ARM Ltd., Nuvoton Technology Corp., Freescale

Semiconductors Corp., Microchip Technology Inc. and

Analog Devices Corp. for providing us the embedded

system platforms.

REFERENCES

[1] (Dec. 2012). Hidden markov model. Wikipedia - The Free

Encyclopedia [Online]. Available:

http://en.wikipedia.org/wiki/Hidden_Markov_model

[2] L. R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Proceedings of the IEEE, vol.

77, no. 2, pp. 257-286, Feb. 1989.

[3] C. C. Yang and Y. L. Hsu, “A review of accelerometry-based

wearable motion detectors for physical activity monitoring,”

Sensors, vol. 10, no. 8, pp. 7772-7788, 2010.

[4] J. Li, S. Chen, and Y. Li, “The fast evaluation of hidden Markov

models on GPU,” in Proc. IEEE International Conference on

Intelligent Computing and Intelligent Systems, Nov. 2009, pp.

426-430.

[5] S-Z Yu and K. Hisashi, “Practical implementation of an efficient

forward-backward algorithm for an explicit-duration hidden

Markov model,” IEEE Transactions on Signal Processing, vol. 54,

no. 5, pp. 1947-1951, May 2006.

[6] J. Li, Y. Li, and S. Chen. “The parallel evaluation of hidden Markov

models on graphic processing units in supervised recognition,” in

Proc. 2nd International Conference on Computer Engineering and

Technology (ICCET), Apr. 2010, pp. 135-139.

[7] S. J. Melnikoff, S. F. Quigley, and M. J. Russell, “Speech

recognition on an FPGA using discrete and continuous hidden

markov models,” in Proc. International Conference on Field

Programmable Logic and Applications, 2002, pp. 202-211

[8] Analog Devices Inc. (2014). ADXL345 datalogger/development

board. [Online]. Available:

http://www.analog.com/en/mems-sensors/mems-inertial-sensors/a

dxl345/products/EVAL-ADXL345Z-DB/eb.html

W. Kurdthongmee received his Ph.D. in

Computer Science (Computer Graphics and

Solid Modeling) from Brunel University, UK,

in 1998. He received his B.Sc. and M.Sc. in

Physics from Prince of Songkhla University,

Hatyai Campus, Thailand in 1987 and 1994,

respectively. Currently, he is an associate

professor (computer engineering) in School of

Engineering and Resources Management,

Walailak University, Thailand. His research

interests are related to real-time embedded systems, FPGA-based systems,

system-on-chip, neural networks, machine visions and image processing.

International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014

©2014 Engineering and Technology Publishing 90

