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Abstract—This research developed a prototype to recognize 

the activities of people with social interaction and 

communication impairments using two commercial grade 

infrared motion sensing input devices. The model uses 

skeletal joints in the form of (x, y, z) coordinates to perform 

computationally inexpensive and efficient real time indoor 

monitoring. The prototype works well for a room with the 

size of 15 ft. by 15 ft. where it can detect two human subjects 

simultaneously. The prototype promotes non-invasive 

monitoring, no wearable sensor is required on the person 

under monitoring and no identifiable face images are stored. 

The evaluation shows that it is able to recognize the 

accident-critical activities, self-injurious activities and 

inactivity with satisfactory recognition and false alarm rates. 
 

Index Terms—activity recognition, human body joints, 

gesture, accident-critical, self-injurious, inactivity, fall 

detection, people with disabilities, motion sensor 

 

I. INTRODUCTION 

People with social interaction and communication 

disabilities have three challenging behaviors: 1) 

destructive behaviours like aggressive, self-Injurious, 

property destruction, injury to others, throw, push, 

harmful behaviour with hands and feet; 2) disruptive 

behaviours like tantrums, loud noise/screaming/crying, 

running, repetitive noises, talking out, negative comments; 

3) interfering and/or irritating behaviours like self-

stimulation, repetitive and perseverative speech/questions, 

argumentative, poor task completion [1]. The key to lock 

these behaviours is a positive behavioural support which 

requires a lot of real time care, monitoring and social 

instruction as appropriate. According to the study by Raja 

et al. [2] on 26 patients with Autism Spectrum Disorders, 

ASD, 30.8% presented suicidal ideation and 7.7% 

committed suicide. 

For people with social interaction and communication 

impairments, self-injurious behaviours or activities like 

head banging (on floors, walls or other surfaces), hand or 

arm biting, hair pulling, eye gouging, face or head 

slapping, skin picking, scratching or pinching and forceful 

head shaking could invite some involuntary injuries that 

need prevention [3]. The trigger was mainly due to 

inability to express their thoughts and be understood by 

others [4]. CALL7 [5] reported a patient was found dead 

in Colorado Mental Health Institute after 
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overconsumption of drug, also contributed by the lack of 

real time activity monitoring. Currently, the focus on 

assistive technology for people with social interaction and 

communication impairments is mainly on learning 

(language and social skills) and speech therapy [6]-[9]. As 

to date, there is still a lack of real time intelligent ICT 

based tool to monitor, detect, recognize and alert in case 

of any critical behavior occurrence. The scarcity of the 

systems for preventing injury for people with multiple 

disabilities leads this research to source for a good 

contemporary solution. 

II. BACKGROUND 

When we surveyed the systems for preventing injuries 

among people with disabilities, most of them focus on fall 

detection. Some of the systems used wearable devices 

designed mainly for the elderly community with motor 

skills and capability to operate the devices. As for vision 

based systems, they required real time video streaming 

that are computationally expensive and hardware 

consuming. In general, the disabled people fall frequently 

and easily, most of the falls cause injury. In some cases, 

unintentional fall may even bring them to death [10], [11]. 

Furthermore, people with multiple disabilities have 

difficulty to communicate with others using 

comprehensible speech [12]. Recent studies [10], [13], 

[14], [15] have highlighted a need to develop fall 

detection system to trigger alarm whenever a person under 

monitoring fall and need assistance. According to 

Mubashir et al. [11], fall detection can be divided into 

three categories: wearable device based, ambience sensor 

based and vision based. Most of the fall detection models 

detect fall using wearable device i.e. pendant, watch or 

mobile phone advertised in Alert1, MobileHelp and 

LifeAlert not designed for people with multiple 

disabilities [16], [17]. If a person loses consciousness, the 

devices become useless as the alarm cannot be triggered. 

Besides, wearable devices required some motor skills and 

knowledge to use the interfaces [14]. User may feel 

unpleasant (intrusive) wearing the devices all the time and 

chooses to discontinue [10], [13]. In some instances, they 

might forget to put it on [15], [18]. 
On the other hand, Doulamis et al. [19] uses vision 

based monitoring to detect fall. Zweng et al. [14] 

proposed statistical behavior fall detection which captures 

the human subject’s behavior using multiple cameras. 

Mastorakis and Makris [15] uses Kinect’s infrared sensor 
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to detect human fall by measuring the velocity based on 

the contraction or expansion of the width, height and 

depth of the 3D bounding box expressed in world 

coordinate system. Mubashir et al. [11] commented that 

vision based approach in comparison to wearable devices 

based and ambient based, is certainly the area to look 

forward to as it deals with intrusion and robustness better. 

Multi depth motion sensors have been adapted in various 

low cost and high efficiency vision based monitoring [20], 

[21]. For instance, fall prevention, post-stroke 

rehabilitation [22], [23], early warning system for 

forthcoming health issues of residents in apartments [24], 

remote health monitoring for patients who suffer from 

multiple Sclerosis and chronic ailments which require 

periodic physiotherapy and monitoring [25] and tracking 

movement in m/second of at-risk children [26]. Most of 

the activity monitoring models focus on fall detection and 

neglect other possible threats that occur without a prior 

fall such as the loss of consciousness while sitting [27]. 

III. ACTIVITY RECOGNITION 

Ong, Lau and Bagha [28], we investigated and 

developed a model on recognizing the user’s gesture of 

falling, seeking help and inactivity. As an improvement to 

[28] to assist in monitoring people with disabilities, 

enhanced algorithms to recognize the common activities 

(observed through people with special needs) were 

modeled. The activities are categorized by accident-

critical i.e. fall, jump, slab, punch, kick, wave hands, 

climb and run; self-injurious i.e. head-banging, self-hitting, 

jumping down from a higher location and inactivity i.e. sit, 

bend, rest and stand still continuously. The activities are 

recognized by analyzing the movements of joints when 

performing various gestures, samples of the gesture are 

shown from Figure 1 to Figure 6. We model activities by 

utilizing the skeleton height, region of interest (ROI) and 

movement speed of the joints in three dimensional 

coordinates (x, y, z). For human subject height 

measurement, the automated height measurement has an 

average discrepancy of 4cm when we performed ground 

truth checking with the human subjects. The discrepancy 

of not more than 10cm is the requirement for the activity 

recognition to perform accurately. The maximum height 

of the ROI is the height of the frame i.e. 480 pixels while 

the width of the area increases or reduces when different 

gestures are performed. For instance, ROI centered at the 

head and shoulder joints is used to detect the head-

banging gesture. As for climbing, ROI centered at the foot 

and ankle joints is used instead. By estimating the 

movement speed from the current X or Y and previous 

joints, the model can recognize the more dynamic gestures 

like punching, slapping, running and kicking. 

 

Figure 1.  A jumping gesture 

 

Figure 2.  A self-hitting gesture 

 

Figure 3.  A kicking gesture 

 

Figure 4.  A climbing gesture 

 

 

Figure 5.  A head-banging gesture 

 

Figure 6.  A slapping gesture 
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IV. PROTOTYPE 

We developed a prototype which incorporated the 

modeled body gesture for injury related gesture 

recognition. We classified the body gestures into three 

main category i.e. accident critical, self-injurious and 

inactivity as the possible activities leading to injury. The 

conceptual design of our proposed model is illustrated in 

Figure 7. The human’s skeletal and joints are localized 

using infrared (IR) motion sensor [29]. This sensor uses 

infrared beam to detect skeletal structure with 20 

important joints. An infrared image with human’s skeletal 

and joints representation is produced, these 

representations are utilized for the activity recognition. 

They are two infrared (IR) sensors being used, responsible 

for capturing real time scene and localizing human’s 

skeletal and joints in three dimensional coordinates (x, y, 

z). Then, the human’s skeletal and joints representation is 

forwarded to activity recognition module for pattern 

recognition and alert notification. The activity recognition 

module detects accident-critical activities i.e. fall, jump, 

slab, punch, kick, wave hands, climb and run; self-

injurious activities i.e. head-banging, self-hitting, jumping 

down from a higher location and inactivity i.e. sit, bend, 

rest and stand still. Notification module is responsible to 

pass the alert to guardian through channels like email, 

Short Messaging System (SMS), Facebook messenger and 

Google Hangout chat via the available internet 

connectivity. 

 

Figure 7.  Conceptual Design of IRESY 2.0 

The main screen of the prototype, IRESY 2.0 is shown 

in Figure 8. The real time motion detection sends skeletal 

images to the detection modules. When any accident-

critical activity, self-injurious activity or inactivity is 

detected, it notifies the caretaker by sending SMS message, 

email and messenger chat. For the gesture of fall, if the 

subject under monitoring is recognized to perform a 

gesture of falling and the status of falling remains for 15 

seconds, an alarm is triggered. The delay of 15 seconds is 

to avoid the model from sending false alarm such as the 

human subject could be performing an exercise instead of 

falling. For the gesture of inactivity, if the human subject 

under monitoring is recognized as in an inactive state for 

more than 30 seconds, an inactivity alarm is triggered. 

This could indicate that the subject has lost consciousness 

or ability to maneuverer. For the gesture of wave hand(s), 

if a gesture of waving hand(s) continuously (possibly 

relates to seeking for help) is recognized through the real 

time skeletal images, the notification module generates 

and sends a snapshot of the current scene through email, 

messenger chat (via Google Hangout or Facebook) or 

message (SMS). A sample of email alert is shown in 

Figure 9. 

 

Figure 8.  Main interface of IRESY 2.0 

 

 

Figure 9.  Samples of alert received through email 

V. TESTING AND EVALUATION 

We invited 20 volunteers to evaluate the efficiency of 

our prototype in an indoor environment with the area of 

15 ft. x 15 ft. fixed with two commercial grade motion 

sensing input devices. Each volunteer gave his/her consent 

after explaining to them the requirements (prior to the 

testing). The volunteers have a mixture of male and 

female. To maintain anonymity and privacy, their pictures 

are not published. The evaluation aimed to test the 

accuracy of the prototype in differentiating the accident-

critical activities, self-injurious activities, inactivity from 

the normal activities. False alarm rate indicates the rates 

where false recognition of gesture happened throughout 

the evaluation, for instance when a human subject under 
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monitoring demonstrated an accident-critical gesture of 

“jump from a higher place”, it is recognized as normal 

activity. Each volunteer was given the specific scenarios 

to perform various gestures in three categories i.e. 

accident-critical, self-injurious and inactivity in an indoor 

environment. TABLE  shows the results obtained for 

accident-critical activities; we obtained an overall of 

91.58 % of recognition accuracy. For the recognition of 

waving hand(s) (to seek help), the volunteers were given 

three scenarios, 1) Wave while bending on the floor, 2) 

Wave while sitting on the chair, and 3) Wave while 

standing which achieved a recognition rate of 100% in all 

test cases. As for inactivity recognition, we tested on two 

scenarios, 1) sit/bend still for more than 60 seconds and 2) 

sit still with the head on the desk for more than 60 seconds, 

the recognition achieved an average accuracy of 100% in 

all the test cases. 

TABLE I.  ACTIVITY RECOGNITION ACCURACY AND FALSE ALARM 

RATES 

Accident-critical Gesture Recognition (%) False Alarm 

(%) 

 Jump 95.00 5.00 

 Kick 92.50 7.50 

 Fight-Punch 90.00 10.00 

 Fight-Slap 95.00 5.00 

 Fight-Smack 100.00 0.00 

 Fight-Clap 70.00 30.00 

 Fall 83.33 16.67 

 Stand, walk, run 100.00 0.00 

 Bend the body 90.00 10.00 

 Wave left/right/both 

hand(s) 

100.00 0.00 

Average 91.58 8.42 

Self-injurious Gesture Recognition (%) False Alarm 

(%) 

 Self-hitting 80.00 20.00 

 Head-knocking 90.00 10.00 

Average 85.00 15.00 

Inactivity Gesture Recognition (%) False Alarm 

(%) 

 Sit/bend (still on a 

chair)  

100.00 0.00 

 Sit/bend (still with 

the head on the desk)  

100.00 0.00 

Average 100.00 0.00 

Overall 91.85 8.15 

 

Each volunteer also demonstrated the gestures of self-
hitting, jumping, punching, slapping, clapping, smashing, 
and kicking in his/her own ways. The gesture of clapping 
has low recognition accuracy due to the inferred joints 
detected while performing the activity. The joints were 
inferred mainly when the right hand’s and left hand’s 
joints were not differentiable. 

In this evaluation, the overall recognition rate is 
91.85%, it indicates the potential of the proposed 
prototype to be utilized as a non-invasive means for 
activity monitoring. 

VI. CONCLUSION AND FUTURE WORKS 

This paper proposed a low cost real time activity 

recognition prototype that recognizes human body joints 

from two commercial-grade motion sensing input devices. 

The proposed system is non-invasive to person under 

monitoring. The guardian(s) can receive real time alert 

and snapshot through chat, short message and email when 

activity that shows accident-critical, self-injurious or 

inactivity is detected. Overall, the prototype achieved a 

recognition accuracy of 91.85% with a low false alarm 

rate of 8.15%. The limitation of this prototype is motion 

sensing devices lost tracking of the human subject when 

he/she is blocked by small-sized furniture such as a desk 

or small cabinet in an indoor environment. We intend to 

study the possibilities and ways to improve the activity 

recognition by adding in voice and sound recognition. On 

the other hand, more accident-critical and self-injurious 

gestures are to be investigated in future. 

The prototype can be embedded into intelligent 

environment for monitoring people with disabilities living 

in it. It can be enhanced to recognize more accident-

critical and self-injurious activities, and inactivity to 

prevent injury among people with disabilities. Another 

potential of the model is incorporating it into rehabilitation 

of people with disabilities by recognizing their actions and 

give appropriate responses during the rehabilitation 

sessions. It also has the potential to be enhanced for 

monitoring elderly people living alone. 
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