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Abstract—An image splicing can be easily made by a skilled 

image editor, and verification of authentic image has 

become important. In this paper, we propose a detection 

method for splicing boundaries that uses uniformity on 

camera response function (CRF) in an image. This 

uniformity is observed as differential features of CRF. In 

altered image, the non-uniformity of CRF mostly appears 

on the edges of a splicing region. The characteristics of CRF 

extracted from edges in an image differ between an altered 

region and an authentic region. We analyze these 

characteristics by using QR map. The QR map represents 

the relation between this features and image intensity. An 

authentic boundary has the characteristics of a common 

CRF within an image, but a splicing boundary is not so. We 

show the tendency of authentic boundaries in QR map, and 

we argue about the method of estimating whether a target 

boundary is spliced by evaluating the consistency of QR 

map. 

 

Index Terms—camera response function, splicing boundary, 

QR map, digital forensics 

 

I. INTRODUCTION 

An image can be edited by using the high functionality 

of image editing software. Given this situation, there is 

sometimes editing and splicing of images to create 

images unintended by the photographer, and being unsure 

of whether the digital image is real or not makes it 

difficult to certify it as authentic. In response, digital 

watermarking is used as means of verifying an image’s 

authenticity. This is a method of detecting alteration by 

embedding information within the image; however, it 

requires embedding of the information in advance. 

Therefore, a detection method of altered region which do 

not need embedded information has become important. 

In this paper, we estimate the camera response function 

(CRF) as shown in Fig. 1 and investigate the consistency 

of the response function within the image in order to 

detect whether the image has been spliced. That is, the 
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CRF has a consistency within an original image; however, 

within an altered image, some different CRFs are 

included, as shown in Fig. 2. The characteristics can be 

used for detecting altered regions. The CRF is not 

generally known. In order to analyze and estimate CRF, 

many methods have been proposed [1]-[4]. K. Ikeuchi et 

al. used several images of the same static scene taken 

from the same view point to estimate it accurately in the 

presence of noise [1]. S. Lin et al. have achieved 

radiometric calibration from an image, based on RGB 

distributions at edges [3]. Also, S. F. Chang et al. have 

defined the geometrical invariant (GI) as CRF 

differentiation, which is a camera-specific invariant 

obtained from the gradient information around the edges 

[5]-[8]. The method can estimate it from a piece of image. 

We focus on splicing boundaries between altered area 

and authentic area. And we analyze the features of 

splicing boundaries differing from those of a normal edge 

area and discuss a method for detecting altered regions 

from a single image. 

In this paper, we detect the existence of an alteration 

by investigating this tendency. The paper is organized as 

follows: In Section II, we clarify the principles of 

alteration detection, Section III describes a method for 

comparing an authentic boundary and a splicing boundary 

by using the differential features, and Section IV 

describes a method for detecting splicing boundaries. In 

Section V, some experimental results are shown. Finally, 

Section VI concludes the paper. 

 

Figure 1.  Camera response function 
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Figure 2.  Intensity distribution on boundaries 

II. ESTIMATING CRF 

Y. F. Hsu et al. focused on whether there was 

consistency within an image using CRF for alteration 

detection [8]. As shown in Fig. 3, the image suspected to 

be spliced is divided into three regions of the region 1 

taken by camera 1, the region 2 by camera 2, and the 

region 3 on the boundary of these first two regions. This 

boundary region 3 is an area where a spliced edge 

potentially exists. Each CRF is respectively estimated in 

regions 1 and region 2 by the method of Tian T. Ng. In 

the case of altered image, there is a significant difference 

in CRFs between region 1 and region 2. This difference is 

used to evaluate whether an image has been spliced. 

However this approach has a problem when textures have 

low intensity around target boundaries. That is, for the 

image which has a smaller difference in CRFs, it is 

difficult to detect altered regions. And so, we investigate 

a method of detecting the alteration in the case that some 

textures in an image partly have low intensity. 

For alteration detection, we use the Tian’s method 

using geometrical invariant (GI) as CRF differentiation. 

First, the candidates of splicing boundaries are analyzed 

by this GI. For the analysis, we use a QR map which 

expresses the relationship between GI and image intensity, 

and shows the significant difference between authentic 

boundaries and splicing boundaries. 

 

Figure 3.  Division of the splicing region 

A. Definition of Camera Response Function (CRF) 

CRF is a function for converting the irradiance, as light 

energy incident on the image sensor, into image intensity. 

So, CRF is generally expressed as R=f(r), where R is the 

image intensity and r is the light energy incident on the 

image sensor. CRF is generally unknown because it 

varies by device and photography setting, and it is known 

to be a non-linear function as shown in Fig. 1. CRF is 

modeled as a gamma curve,   rrf  . However, because 

the actual CRF cannot be expressed by this gamma curve 

model in a precise sense, this function can be expressed 

by a polynomial expression as equation (1). And we show 

two expression of CRF as follow, rR:g,Rr:f  . 
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B. Geometrical Invariance (GI) 

The CRF in the coordinates of image is expressed as 

R(x, y) = f(r(x, y)). Then, GI is defined as equation (2). 
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where Rx, Ry are the first-order derivatives in the x-

direction and y-direction, respectively. And Rxx, Ryy, Rxy 

are the corresponding second-order derivatives. As 

expressed in equation (2), GI can be defined in terms of 

the derivatives of CRF, but also in terms of the 

derivatives of R. Moreover the GI can be determined 

from the majority of edges in an image. It can be obtained 

from the intensity in an image without irradiance. 

Therefore it is possible to estimate CRF by analyzing GI. 

CRF is modeled as equation (1), but it can be simply 

expressed as   rrf  . Thus, the relationship between 

the gamma curve model and GI, is expressed as 
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C. Estimation of Parameter γ 

The CRF estimation means estimating the parameter γ 

in the gamma curve model. And the parameter γ of 

equation (3) is extended to a polynomial function in 

equation (4). 
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In equation (4), Q(R) can be obtained by equation (3), 

and the parameter r can be obtained by R in equation (1). 

However, as it is not possible to obtain the parameters α0, 

α1 directly, instead they can be estimated as 
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where  10  ,~  , and *~  is an estimated parameter. 

Furthermore, Qj is the value of GI obtained from an 

image.  kj R|QP  means to be a weight factor. The GI 

includes some factors unsuitable for estimating of CRF, 

and the weight term is used to minimize the effect (see 

reference [6] for a detailed definition). 

III. CHARACTERISTICS OF SPLICING BOUNDARY 

The characteristics of GI change in dependence on the 

shapes of boundaries. Here we explain the differences 

between the behavior of a splicing boundary and that of 

an authentic boundary. The differences of characteristics 
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between the authentic and splicing boundaries are shown 

in Fig. 2. While the authentic boundary shows 

consecutive and smooth changes in intensity, splicing 

boundary in an altered image presents drastic and sharp 

changes in intensity. Furthermore, in Fig. 3, the areas 

suspected of being spliced are divided into three regions. 

As region 1 and region 2 are images captured by different 

cameras, their CRF differs from each other. And region 3, 

which is the boundary, is considered to have a CRF that 

is not natural characteristics in the case of altered image. 

Therefore, GI of the splicing region 3 has a behavior 

different from an authentic image. 

A. QR Map 

The QR map is Q(R) in equation (3), plotted as a 

scatter diagram. An example is shown in Fig. 4. The 

horizontal axis expresses the intensity R and the vertical 

axis expresses Q(R). White points in Fig. 4 express GI, 

and the solid line presents a curve of a parameter γ 

estimated from equation (5). Q(R) basically has an 

approximately uniform distribution for a given intensity.  

CRF is consistent within an image. However, as the 

estimates of Q(R) is limited when estimating from only 

one part of the image, the distribution of Q(R) often 

deviates from original characteristics and it is often not to 

be a unique CRF. Therefore, a simple comparison of the 

estimated CRF in each region is not a particularly good 

method for judging whether a region includes a splice. 

 

Figure 4.  QR map 

B. Difference between Splicing and Authentic Boundary 

We explain about the differences between a splicing 

boundary and authentic boundary in terms of the QR map. 

Fig. 5(a) and Fig. 5(b) express QR maps of the splicing 

and authentic boundaries. R is normalized from 0 to 1. 

 

Figure 5.  Comparison of QR map 

The QR map for an authentic boundary, when it is 

compared with that of the splicing boundary, has a 

distribution in a form that matched the estimated curve of 

CRF. The distribution of authentic is uniform within the 

profile. In contrast, the splicing boundary is often 

concentrated around a local area, as shown in Fig. 5(a). 

The distribution profiles present different tendencies for 

the splicing and authentic boundaries. However, there is 

no clear difference at the Root Mean Square Error 

(RMSE) of these estimated curves, Q(R), in order to 

distinguish between authentic and splicing boundaries. 

Although there are differences in the distribution 

profile, Q(R) of authentic boundary is distributed adjacent 

to the estimated curve. The RMSE between the estimated 

curve and Q(R) has a tendency to be affected more by the 

texture of background than whether it is an authentic or 

splicing boundary. In the region where there has high 

intensity of texture in the boundary, the distribution in the 

QR map spreads regardless of whether it is authentic or 

spliced. Therefore, it is difficult to distinguish it based 

solely on the RMSE between the distribution and 

estimated curve. However, it can be distinguished by 

finding the similarity of the estimated curve and Q(R) 

distribution profiles. 

IV. COMPARISON OF ESTIMATED CURVE AND 

DISTRIBUTION PROFILE 

In Section III-B, we stated that the QR map of an 

authentic boundary has a tendency to better match the 

CRF estimated curve. In other words, the shape of the 

distribution profile for authentic boundary in the QR map 

is similar to that of the estimated curve. For this reason, 

we can artificially estimate a distribution profile that 

follows the shape of the estimated curve. The detection of 

altered region can be performed by comparing the 

estimated distribution in the QR map with actual 

distribution. And when actual distribution resembles an 

estimated distribution, that is, it resembles a distribution 

of authentic boundary, we assume it an authentic 

boundary, but when it do not resemble, we assume it a 

splicing boundary. 

 

Figure 6.  Density distribution of Q in QR map 

Fig. 6 shows the estimated distribution based on the 

curve. The horizontal and depth axes express intensity 

and Q(R), and the vertical axis indicates the density of Q. 

The density of Q has a high value, when Q(R) is 

distributed with high probability. Therefore, the estimated 

distribution profile is set the highest value on the CRF 

estimation curve and a lower value further away from the 

curve. We let the profile of the density of Q be a normal 

distribution. The correlation shown in equation (6) is 

investigated as a method for comparing the assumed 

distribution and actual observed distribution. 
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where x, y are the QR map coordinates, f(x, y) is the Q(R) 

distribution estimated from the CRF estimated curve, and 
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g(x, y) is the Q(R) distribution actually observed. The 

correlation of an authentic boundary should be high, 

whereas that for splicing boundary should be relative low, 

because a splicing boundary tends to be concentrated 

around a local area. These differences can be used to 

judge whether a boundary is a splicing boundary. 

  

 

 

 

Figure 7.  QR maps of image #1 

  

 

 

 

Figure 8.  QR maps of image #2 

TABLE I.  CORRELATION  

 Boundary 
#1 

Boundary 
#2 

Boundary 
#3 

Boundary 
#4 

Image #1 0.3888 0.3947 0.1666 0.1508 

Image #2 0.3443 0.1534 0.2849 0.3854 

V. EXPERIMENT AND DISCUSSION 

For the present study, we took multiple boundaries 
from an image that included a splicing boundary and 
investigated whether it can be identified as a spliced 
image. This was done by taking the correlation between 
the respective QR map profile and the QR map estimated 
from the CRF estimated curve. 

We investigated using the method discussed in Section 
IV. Specifically, we evaluated multiple boundaries 
extracted from a single image and analyzed whether each 
was a splicing boundary. For the experiment, the variance 
in the normal distribution was set as 0.25. The boundary 
was divided into RGB regions, and the correlation values 
are respectively taken the average. Fig. 7(a) and Fig. 8(a) 
show the altered images for experiments. The spliced 
regions in these images were the calendar and computer, 
as shown in Fig. 7(b) and Fig. 8(b). Fig. 7(c) and Fig. 8(c) 
express the boundaries extracted from the respective 
images. The results of calculating the correlation of the 
QR distribution profile and the QR distribution assumed 
from the CRF estimated curve are shown in Table I. 

For experimental image #1, the total boundaries were 
divided into two groups: boundaries #1 and #2, and 
boundaries #3 and #4. The correlation values for the first 
group are high, compared with those for the latter group, 
which is characteristic of splicing boundaries. The total 
boundaries can be distinguished as a splicing boundary 
from Fig. 7(b) and Fig. 7(c). Boundaries in experimental 
image #2 reveals the same results as those revealed for 
experimental image #1, that is, the boundaries of #1, #3 
and #4 show the characteristics of being an authentic 
boundary, and the boundary #2 can be distinguished as 

(c) Target boundaries 

(g) Boundary #4 in QR map 
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the splicing one. Experimental image #3 compares the 
correlation values of authentic and splicing boundaries. 
The authentic boundaries #1-4 have a higher correlation 
than the splicing boundaries #5-8 as shown in Fig. 9(d). 
For experimental images #4 and #5, the QR maps of the 
extracted boundaries in the RGB plane are shown in Fig. 
10 and Fig. 11. The distribution profiles were 
discontinuous because there are few GI. The reason is 
that a tendency of the density resembles splicing. 
Although the distribution in the QR map differs by each 
RGB plane of image #4 as shown in Fig. 10(f), and image 
#5 in Fig. 11(e), the distribution profiles resemble the 
other distribution profiles in each plane. That is, the 
correlation values for the boundaries #1-2 of image #4-5 
are low, compared with those for #3-4 from Table II. 

 

 

Figure 9.  QR maps of image #3 

  

 

 

 

Figure 10.  QR maps of image #4 

  

 

 

 

Figure 11.  QR maps of image #5 

TABLE II.  CORRELATION VALUES 

 Boundary 

#1 
Boundary 

#2 
Boundary 

#3 
Boundary 

#4 

Image 
#4 

R 0.1392 0.1026 0.4541 0.2212 

G 0.1523 0.1007 0.3816 0.2010 

B 0.1579 0.0778 0.3481 0.3149 

Image 

#5 

R 0.0964 0.1045 0.2475 0.3539 

G 0.0769 0.0902 0.2828 0.3336 

B 0.1063 0.1014 0.3022 0.3385 
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VI. CONCLUSION 

In order to verify authentic images such as evidence 

photographs, we performed splicing boundary detection 

by analyzing GI while estimating CRF. We used the 

characteristic that CRF have consistency within an 

original image. For an authentic image, the distribution in 

the QR map always follows the shape of the CRF 

estimated curve, whereas for a splicing boundary, the 

distribution would be concentrated in a local area. We 

focused on the differences between the profiles of 

distribution in the QR map. And by taking a correlation 

between the actual distribution profile and the distribution 

assumed from the CRF estimated curve in the QR map, it 

is possible to distinguish between a splicing boundary 

and an authentic boundary. In future work, we will 

investigate boundaries where smoothing is performed on 

altered region and the changes in intensity on boundaries 

are smooth. 
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