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Abstract—In active sonar, received echoes are composed of 

multiple replicas of transmitted sonar signal with time 

delays and attenuations through multipath. In non-

stationary scenarios, different multipath also exhibits 

different scaling. This phenomenon provides a way to 

explicitly resolve the multipath components given the 

availability of a rational orthogonal wavelet (ROW) analysis 

framework. This paper establishes the ground work of a 

wavelet-based multipath resolving structure by tackling the 

fast wavelet transform (FWT) filter bank (FB) design for 

ROWs. A review of different FWT algorithms in terms of 

scaling, translation and computational complexity is 

presented. The proposed FWT FB design for ROWs enables 

practical applications of the multipath/Doppler resolving 

structure in both active and passive sonar signal analysis. A 

simplified model for active sonar signal multipath resolving 

is presented to demonstrate the multipath resolving 

mechanism.  

 

Index Terms—fast wavelet transform, sonar signal analysis, 

multipath, rational orthogonal wavelet, wavelet filter banks  

 

I. INTRODUCTION 

In sonar signal analysis, estimate of multipath delays 

serves the purposes of multipath cancellation, beam 

forming, and target localisation/tracking [1], [2], [3]. For 

scenarios that the platform (either the target or the 

receiver, or both) is moving, different multipath signals 

exhibit different time delays and scaling [4], [5]. An 

accurate estimation of the scale factors, therefore, enables 

a separation of multipath components. More importantly, 

the resolved multipath components are expected to be 

combined in an array processing context to improve sonar 

target detection and tracking [6], [7]. 

For active sonar, a natural solution to resolve the 

multipath in terms of multipath delays and scales in 

motion settings, is to use wavelet pulse (at the transmitter) 

and wavelet analysis (at the receiver). The wavelet 

analysis decomposes the sonar echoes and localises the 

multipath signal into specific orthogonal wavelet 

subspaces and time instants. Most fast algorithms to 

calculate the wavelet analysis parameters are based on 
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dyadic wavelets. The scale dilation factor is j2 . 

However, in sonar systems, the wavelet scales resolution 

that one is expected to achieve is much finer in order to 

distinguish the multipath components. The scale 

resolution is expected to be less than 210  which is 

hard to achieve by most of the fast wavelet analysis tools. 

In the literature, various wavelet analysis algorithms 

were proposed with different resolution and 

computational complexity. The reader is referred to 

section II for a review of these algorithms. Among them, 

rational orthogonal wavelet (ROW) is a prospective 

solution with a fractional dilation factor 1
, .

q
q Z

q
 
 

 The 

scale resolution is
q

1
 approximately. The mathematical 

definition of the ROW family could be found in [8] and 

[9]. 

In this paper, the authors focus on the derivation of fast 

wavelet transform (FWT) algorithm for ROWs. The fast 

algorithm is then applied to active sonar to demonstrate 

the multipath resolving with ROW filter banks (FBs). 

The paper is organized in the following. Section II 

summarizes wavelet transform algorithms with different 

scale resolutions and translations. Section III details the 

FWT for ROWs based on rational sampling filter bank 

(FB). A simplified example for active sonar multipath 

resolving is presented in section IV. Section V presents 

the conclusion. 

II. REVIEW OF FAST WAVELET TRANSFORM 

ALGORITHMS WITH DIFFERENT RESOLUTIONS 

Based on the original continuous wavelet transform 

(CWT) [10], [11], fast wavelet transforms were 

developed with different time/scale resolution and 

computational complexity to meet specific requirements 

on signal analysis. 

The continuous wavelet transform of a signal f (t), t ∈ 

R is defined by  

*1
( , ) ( ) ( ) , {0},

t
W f f t dt R R


    




   

 (1) 
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where ψ(t) is the wavelet basis function, α is the scale 

factor, τ is the translation factor, ∗ represents complex 

conjugate, and Wψ f (α, τ ) are the wavelet coefficients. 

Direct computation of continuous wavelet transform 

(CWT) requires )( 2NO  operations per scale. With FFT-

based fast convolution algorithm, the computational 

complexity reduces to O (N log (N)) per scale. 

As a special case of CWT, FWT algorithms were 

developed to calculate wavelet coefficients at discrete 

scale and translations. The famous Mallat’s FWT 

algorithm [10] is defined under the framework of dyadic 

multiresolution analysis (MRA). It calculates discrete 

wavelet transform (DWT) for orthogonal/biorthogonal 

wavelets at dyadic scales j2  and dyadic translations τ 

= kα, j, k ∈ Z. Its computational complexity is a global 

O(N ) based on perfect reconstruction filter banks. 

Based on different discretisation of the scale and 

translation factors, the à trous FWT algorithms [12] were 

proposed with dyadic scale j2 and integer translations 

τ = k, j, k ∈ Z. In comparison, B-spline-based FWT [13] 

has an integer scale α = j, and integer translations τ = k, j, 

k ∈ Z. The computational complexity is O (N) per scale 

for both FWT algorithms. It is worth noting that the 

algorithms have an octave or an integer scale resolution, 

which might not be adequate for applications requiring a 

finer scale resolution. 

To obtain a finer scale resolution, Shensa’s FWT 

algorithms [14] were developed for discretised scale and 

translation  

2 , 2 , , , 0, , 1,
m

J
jM k j k Z m M M Z 


       

where m is called the ’voice’. It gets a finer resolution per 

octave and the computational complexity is M times of 

the octave-by-octave algorithm. A more detailed 

comparison of Mallat, à trous and Shensa’s wavelet 

transform was given in [15]. 

Another octave-based FWT algorithm with finer scale 

resolution is the general spline-based FWT. It calculates 

wavelet coefficients at .,,,,2  ZQZkjkQ

j

 The 

computational complexity is O (N) per scale. Notice that 

for Q = M , the two algorithms have the same scale 

resolution which is equivalent to the dilated scales 

.22,

11

00
MQj aa   If the discretisation parameters M or Q 

are selected properly, these algorithms would be able to 

approximate a CWT, i.e., to calculate wavelet coefficients 

at an arbitrary scale, and therefore were termed as fast 

CWT algorithms in the literature. 

To achieve a global O (N) computational complexity 

and finer resolution to approximate the CWT, one of the 

solutions is the rational orthogonal wavelet (ROW) based 

on the framework of rational MRA (a), where 




 Zq
q

q
,

1


. The FWT algorithm is implemented via 

rational sampling wavelet analysis/synthesis FBs. It is 

similar to Mallat’s FWT but with a finer scale resolution 
ja ,1 < a < 2. An illustration of the scale resolution 

of different FWT algorithms is given in Fig.1. Table I 

gives a brief summary of these algorithms. 

 

Figure 1. A comparison of different resolution 

III. FWT FOR RATIONAL ORTHOGONAL WAVELET 

(ROW) 

In this section, a detailed description of the FWT for 

ROWs is presented. As proven in [9], the ROWs have 

compact support in the frequency domain and are infinite 

in the time domain. Therefore, there is no FIR solution of 

the analysis/synthesis filters for the FWT. The fast 

algorithm, however, is available that is implemented in 

the frequency domain as shown in [16] or by FIR-based 

approximation as the derivation of discrete Meyer 

(dMeyer) wavelet from Meyer wavelet [17]. Both 

frequency-domain and time-domain FWT algorithms are 

described in this section with a focus on the design of 

time-domain tree structured FWT algorithms. The 

computational complexity for real-time implementation 

of the FWT is also analysed. 

A. Frequency-Domain FWT Algorithm for ROWs 

In Baussaud’s paper [16], the fast algorithm for real 

ROWs was given and implemented in the frequency 

domain. The corresponding pyramid synthesis and 

analysis algorithms for the real valued wavelets with 

q

q

q

p
a

1


 are shown in Fig. 2 and Fig. 3. The lowpass 

filters are computed by 

 
 

Figure 2. Synthesis filter bank of real rational orthogonal wavelet 

)1,(  qp
q

p
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TABLE I. A COMPARISON OF CWT AND DWT ALGORITHMS 

Scale and Translation Algorithm Computational Complexity 

RR    },0{  
CWT 

)( 2NO  per scale; ))log(( NNO per 

scale with FFT 

Zkjkj  ,,,2   Mallat’s FWT Global )(NO  

Zkjkj  ,,,2   à trous’s FWT )(NO  per scale 

Zkjkj  ,,,  à trous’s FWT; B-spline-
based FWT 

)(NO  per scale 









ZMMmZkj

aka MjjM

m
j

,,,0,,

,2,2,2

1

00



  
Shensa’s FWT Global )(MNO  





ZQZkj

aka QjQj

,,

,2,,2

1

00

/   
Spline-based FWT )(NO  per scale 

ZjZq

qqaqj





 ,

,/)1(,,2   Aucher’s rational MRA; 
Baussard’s FB 

Global )(NO  

 

( )
( )

( )

ina

n

a
H a e 









                (2) 

where Φ(ω) is the Fourier transform of the scaling 

function ),(t  and n = 0, • • • , q − 1. The highpass filters 

are given by 

( )
( )

( )

a
G a











                               (3) 

where Ψ(ω) is the Fourier transform of the wavelet 

function ).(t  

Notice that Hn(ω) and G(ω) are used which are also 

denoted as )( j

n eH  and )( jeG for discrete filters. The 

filters are of infinite length in the time domain, therefore 

the pyramid algorithm in [16] was implemented in the 

frequency domain in order to take advantage of the 

definition of filters in the frequency domain. However, 

the time domain FB algorithm might be preferable to the 

block-by-block algorithm in the frequency domain for 

delay sensitive applications. 

 

Figure 3. Analysis filter bank of real rational orthogonal wavelet 

( , 1).
p

a p q
q

  
 

B. Time-domain FWT Algorithm for ROWs 

In this section, a FIR approximation of the fast analysis 

and synthesis algorithm is proposed. The algorithm is not 

restricted to the perfect reconstruction property but with a 

fidelity that suits communications applications. 

Following the FB construction for dyadic Meyer 

wavelet as shown in [17], we give the example of FB 

construction for a RROW with q = 2 and
,

2

31





q

q
a

 

denoted by )(
)

2

3
(

t . The filters hn [n] and g[n] are 

constructed by synchronous sampling of the continuous 

filters hn (t) and g(t), which are numerically constructed 

based on their definition in the frequency domain. The 

lowpass and highpass synthesis filters h0 [n], h1[n] and 

g[n] are shown in Fig. 4. Note that to conform to the 

spectrum of the continuous filters hn(t) and g(t), the 

sampling rate fs is selected to be greater than or equal to 

the Nyquist rate, 

23 1Nyquist

sf a
 

 
                         (4) 

1
1

2 1

q
q

q


  


                         (5) 

3

2
q                                (6) 

The constructed filters h0 [n], h1 [n] and g[n] are 

related to a redundant multiresolution analysis (MRA) 

structure of a frame [18] 

},,
2

3
),(:)({ 00

2)(

,;0 s

j

j

a

kjb fbakbtaat    rather than a R-

wavelet [18] }1,
2

3
),(:)({ 0

2)(

,;1  baktaat j

j

a

kj  .  

This redundancy leads to the shift-invariance property of 

the FB which is closely related to the issue of 

synchronisation for communication applications [5]. 

The validity of the tree-structured FWT algorithm 

could also be verified by the convergence of the iteration 

of the synthesis filters [19]. Based on the two-scale 

relation of the rational MRA(a) as shown in equations (2) 

and (3), there are 

1
( )
2( ) ( ) ( )jna

na a H e   


                  (7) 
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Figure 4. Synthesis filters h0, h1, g for real rational orthogonal 
wavelet (a=3/2, (a) filter h0, (b) filter h1, and (c) filter g. 

 

Figure 5. Convergence of iterated FB to the wavelet function, (a) 

wavelet function )(
)

2

3
(

t , (b) output of 2 iterations, (c) output of 4 

iterations, and (d) output of 6 iterations 

1
( )
2( ) ( ) ( )a a G  



                 (8) 

Therefore, the wavelet function can be generated by 

)()()( 11
)

2

1
(




 aaGa   

1 1
( ) ( )

1 ( 1)2 2

2

( ) { ( ) } (0)k jna k

n

k

a G a a H a e  


 
   



   

where .1)0(   Based on the filters shown in Fig. 4, the 

wavelet basis function )(
)

2

3
(

t  can be generated by the 

iteration of g and h0 (n = 0), or g and h1 (n = 1). Fig. 5 

shows the comparison of the RROW function )(
)

2

3
(

t  and 

the output of 2, 4, and 6 iterations of the constructed 

synthesis filters. The resemblance of the wavelet function 

and iteration outputs demonstrates good convergence of 

the tree-structured FWT. 

C. Simplified Tree-Structured FWT FB 

The synthesis/analysis FBs shown in Fig. 2 and Fig. 3 

can be further simplified into 2-branch FBs based on the 

observation of the strong resemblance of Baussard’s FB 

and Jelena and Vetterli’s rational sampling PR FB of the 

direct design method [20]. The connection between the 

two FBs provides a method to simplify Baussard’s FB by 

replacing the parallel lowpass FB with a single branch. 

On the other hand, the knowledge of Baussard’s FB gives 

a solution to the design of rational sampling FB based on 

the rational orthogonal wavelet. 

 

Figure 6. Direct design of rational sampling FB. 

The direct design method proposed in [20] is based on 

the equivalent FB structures shown in Fig. 6. It 

transforms a single branch with upsampling by q and 

downsampling by p to a q channel analysis bank with 

downsampling by p and an inverse polyphase transform 

of size q (IPT(q)), assuming q and p are coprime and q > 

1. The filters in the q-channel analysis bank are defined 

by  

' ( )( ) ( )i

i

d v

i tH z z H z                         (9) 

where 










q

pi
di

. The operator  x  returns the largest 

integer not greater than x. The integer number 
it  is the 

modulus of
q

pi , ).,mod( qpiti   Functions )(

1

)(

0 ,, v

q

v
HH   

are the polyphase components of H with respect to q. The 

rational sampling FB design problem is reduced to 

finding a perfect reconstruction structure for a q-channel 

FB, with design constraints imposed on filters 
)(

1

)(

0 ,, v

q

v
HH  . 

The above relations between the single branch rational 

sampling filter H and the parallel FB '

iH  can be utilized 

directly to simplify Baussard’s FB by replacing the 

parallel lowpass filters nh  , n = 0, • • • , q − 1 in Fig. 2 

with a single branch of filter with rational sampling factor 

p/q as shown in Fig. 6. The equivalent filter H is derived 

as 

)()()()( 0

)1)(1(

0

)1(

0

qqpqqqpq zHzzHzzHzH     

)

0

)1)(1()1( )(1( qqpqqp zHzz     

(1 ) )

0( ) ( )p q qA z H z                      

(10) 

where 
)1(211)(   qzzzzA  . The filter 

H0(z) is given by equation (2) with n = 0. The derivation 

is presented in the Appendix A.  

The connection between the two FBs shown in Fig. 2 

and Fig. 6 also gives a solution to the design of rational 

sampling FB with sampling factor of p/q, p = q+1, based 

on the rational orthogonal wavelet with scale factor of 

a=p/q=1+1/q. The nature of the continuous WT/IWT 

FBs forms the basis of PR and shift-invariance (SI) 

properties of the designed rational sampling FB. The PR 
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property is verified immediately based on the definition 

of wavelet transform pair. The shift-invariant property of 

the iterated FB can be examined by evaluating the two-

scale relation of the wavelet lowpass filters 
ih

~
and the 

highpass filter g proposed in [16]: 

  
r

rjiisqj arpsha ,1, ][
~

                  (11) 

 
r

rjnj arpngd ,1, ][~                       (12) 

Shifting the approximation and detail coefficients by 1, 

there are 

  
r

prjiiqsj arpsha ,1)1(, ][
~

            (13) 

  
r

prjnj arpngd ,1)1(, ][~             (14) 

which infer that a delay of 1 at stage j means a delay of 

for the input signal. Therefore, the FBs shown in Fig. 2 

and Fig. 3 have the SI property. 

D. Computational Complexity 

Based on the FWT algorithm proposed in section III-C, 

the computational complexity of FWT for ROW FBs can 

be evaluated. The computational complexity has the order 

of  

1 2 ( 1)( JO N Na Na Na              (15) 

1(( 1)(1 )JO q a N                           (16) 

(( 1) )O q N as J                        (17) 

where a is the scale factor. Therefore the computational 

complexity of FWT for the ROW FBs increases when the 

value of q increases or when a is getting closer to 1. 

IV. A SIMPLIFIED MODEL FOR MULTIPATH RESOLVING 

WITH FWT  

Given the FWT FB algorithm derived in section III, 

this section uses a simplified multipath model to illustrate 

the resolving of two multipath by the ROW FB. The scale 

factor of the designed FB is a = 201/200. The transmitted 

signal is only distorted by two multipath with delay and 

attenuation. The model is given as 

))(())(()( 2211
21   tataty

mm       (18) 

where )(t  is the transmitted signal, y(t) is the received 

signal,
iii m,, are the attenuation, time-delay and 

scaling at the i-th multipath, i = 1, 2, and 
21 mm  .  

If normalising the multipath signal based on the first 

arrival, and assuming the target is approaching the 

detector, the received signal is expressed as 

))(()()(    tatty m
                   (19) 

where 0 < 𝜌 < 1 and Zm . Assuming the direct path 

has a length of D and the second path has a length of L, 

there is L > D. The first multipath has a scale factor of 1. 

The second multipath signal has a scaling factor of 
maLD  / . The normalised attenuation factor is 𝜌 = 

D/L = 𝛼. The multipath time 
MT is defined as 𝜏. 

Assuming m = 2, the FB that covers the scale range of {m 

= −2, −1, 0, 1, 2, 3, 4, 5}. The FB outputs are illustrated 

in Fig. 7. For a situation that the multipath 
2

1
MT , there 

is 1/  aLD . The FB outputs are shown in Fig. 8. 

The multipath is resolved in both time and scale domain 

as the two emissions are localised in different subbands 

with different time shifts as shown in Fig. 7 and Fig. 8. 

 

Figure 7. Simplified scenarios with two multipath with wavelet 

signaling 
)(

200

201
ta   

 

Figure 8. Simplified scenarios with two multipath with wavelet 

signaling 
)(

200

201
ta 

 (less delay between two multipath). 

V. CONCLUSION  

The paper proposes a time-domain design of fast 

wavelet transform (FWT) filter banks (FBs) for the 

rational orthogonal wavelet (ROW) family. The 

availability of the FWT algorithm facilitates practical 

applications of the ROWs in data communication and 

sonar detection. Notice that the FIR approximation of the 

wavelet analysis/synthesis filters prevents the wavelet 

transform and its perfect reconstruction (PR) and shift 

invariance (SI) properties to be exact. However the PR 

and SI properties hold with high fidelity based on the 

good convergence of the FIR approximation to the 

continuous wavelet transform. As shown in section IV, 
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resolving of multipath is demonstrated using a ROW FB 

with scaling factor of

1q
a

q




, q =200. The multipath 

signals are resolved illustratively, but not precisely in the 

scale domain. Based on the preliminary result, a more 

realistic geometrical channel model will be used to test 

the multipath resolving performance in both active and 

passive sonar. 

VI. APPENDIX A DERIVATION OF SIMPLIFIED ROW 

ANALYSIS FB 

Let us start from the direct rational sampling FB design 

method in [20]. The filters in the equivalent q-channel 

analysis FB were given in equation (20), and quoted 

herein, 

)()( )(' zHzzH v

t

d

i i

i                  (20) 

Considering the special case of p = q + 1, the 

definition is equivalent to 

)()( )(' zHzzH v

i

i

i                    (21) 

where i = 0, • • • , q − 1. The polyphase expression of the 

equivalent filter H in the single branch is 

 )()()()( )(

1

1)(

1

1)(

0

qv

q

qvqv zHzqzHzzHzH 

      (22) 

The resemblance of the FBs in Fig. 2 and Fig. 6 infers 

the relation that 

)(
~

)(
~ )( zHzzH v

i

i

i                     (23) 

where )(
~

zHi
 , i = 0, • • • , q − 1 are the filters in the 

rational orthogonal analysis FB in Fig. 2. )(
~ )( zH v

i
 , i = 

0, …, q – 1 are the polyphase components of H
~

with 

respect to q. The filter H
~

is the equivalent single branch 

filter we seek, and can be expressed by  

)(
~

)(
~

)(
~

)(
~ )(

1

1)(

1

1)(

0

qv

q

qvqv zHzqzHzzHzH 

     (24) 

Based on the definition of )(
~

zHi
in equation (2), there is 

)(
~

)(
~

0 zHzzH ai

i

 , i = 0, · · · , q − 1        (25) 

Substituting (25) into (24), we have 

)(
~

)(
~

)(
~

)(
~

0

)1)(1(

0

)1(

0

qqpqqqpq zHzzHzzHzH     

                   (26)  

Defining )1(211)(   qzzzzA  , the 

equivalent filter H
~

is expressed as 

)(
~

)()(
~

0

)1( qqp zHzAzH                  (27) 
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